
Reinforcement Learning in Collectible Card Games:
Preliminary Results on Legends of Code and Magic

Ronaldo Vieira, Luiz Chaimowicz
Departamento de Ciência da Computação

Universidade Federal de Minas Gerais
Belo Horizonte, Brazil

Email: {ronaldo.vieira, chaimo}@dcc.ufmg.br

Anderson Rocha Tavares
Instituto de Informática

Universidade Federal do Rio Grande do Sul
Porto Alegre, Brazil

Email: artavares@inf.ufrgs.br

Abstract—Games have long been a popular application area
for research on artificial intelligence. They provide hard and
diverse challenges whose solution often apply to real-life prob-
lems. Games like Chess, Go and recently Poker can be played
by computers at superhuman level, but this performance is yet
to be achieved in more complex games, such as collectible card
games. To tackle this problem, we propose a pure reinforcement
learning approach to the card game Legends of Code and Magic,
in contrast to search strategies, most commonly used in this
domain. In this paper, we present the intended methodology,
preliminary results and the next steps of the project.

Keywords-reinforcement learning; deep learning; game-
playing; collectible card games;

I. INTRODUCTION

Throughout the last decade, Artificial Intelligence (AI) has
been responsible for numerous technological and scientific
breakthroughs, most of them powered by the now feasible
deep learning methods. Despite this rapid advancement,
there are still many challenges unsolved in the field, es-
pecially regarding tasks that require more abstract thinking.

Games have long been a popular application for AI
research, since they feature vast state spaces and frequently
are beyond NP-hard complexity. Games provide non-trivial
challenges for all core areas of AI, often requiring interdis-
ciplinary solutions [1]. The recent solutions to games such
as Go [2] and Poker [3] served as milestones on the ability
of computers to deal with large state spaces and imperfect
information. Alongside these, collectible card games (CCGs)
also present the additional complexity of having dynamic
rules that are partially determined by the combination of
cards in play at each moment, as well as actions with more
diverse consequences. These factors make playing them
comparable to a task of general game playing [4].

In this paper, we tackle a collectible card game
named Legends of Code and Magic (LOCM). Besides
the aforementioned characteristics, winning a LOCM
match also requires a successful interplay of two different
tasks: deck-building and playing. In comparison to other
collectible card games, LOCM is simpler and provides a

friendlier environment for AI research, which can be later
expanded to more complex card games.

Instead of the commonly used search strategies, we pro-
pose a pure reinforcement learning approach to the game.
Both deck-building and playing tasks use policy networks,
where action selection is learned directly from the game
state representation, and are trained simultaneously by self-
play. In the process, a reimplementation of the game engine
and OpenAI Gym environments for all phases of the game
are also developed. The evaluation plan includes compari-
son with current state-of-art agents and submission to the
Strategy Card Game AI Competition1.

In Section II, we describe Legends of Code and Magic
in more detail. Section III contains a discussion on related
work, considering card games and other games. We present
the intended methodology in Section IV, then discuss pre-
liminary and expected results in Section V. Lastly, Section
VI brings the conclusion and directions for future work.

II. LEGENDS OF CODE AND MAGIC

Legends of Code and Magic is a two-player digital col-
lectible card game (CCG) that implements a subset of the
rules found in the popular Hearthstone [5] and The Elder
Scrolls: Legends [6]. It was designed to provide a simpler yet
representative environment for AI research on CCGs, where
non-determinism is found only in the orderings of cards and
in the opponent’s actions.

A match of LOCM has two phases: draft and battle. In
the draft phase, each player constructs a deck by choosing
a card between three random cards presented in each turn,
for 30 turns. Although the random cards are the same for
both players, their choices are secret. This format eliminates
any advantage of using pre-built top-tier decks. In the battle
phase, the players take turns until one of them has their
health reduced from the initial amount of 30 points to zero.

Each card can represent either a creature or an item.
Items are further divided into green (positive effect), red
(negative effect), and blue (mixed or neutral effect) item

1More info on https://jakubkowalski.tech/Projects/LOCM/COG19/.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Short Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 611

cards. Although creatures and items apply their attributes
in distinct forms, all cards have the same set of attributes:
attack, defense, mana cost, keyword abilities and additional
abilities. Keyword abilities affect combat, while additional
abilities are triggered when the card is played.

On each turn on the battle phase, the active player draws
a card from their deck to their hand. Then three types of
actions can be taken: (i) place a friendly creature card on
the board from hand; (ii) use a friendly creature on the
board to attack the opponent or an enemy creature, reducing
health points according to its attack power attribute; and
(iii) place an item card on the board from hand, producing
an instantaneous effect on a target creature or player.

Figure 1. Game state of a turn in the battle phase in Legends of Code
and Magic. The player in red has four creatures on the board and five
cards in hand.

To be placed on the board, cards require spending mana
points equivalent to their mana cost attribute. The players
start with one mana point that is recharged and increased
on each turn to a maximum of twelve mana points. The
second player starts with an extra non-rechargeable mana
point2. Figure 1 shows a snapshot of a Legends of Code
and Magic match.

III. RELATED WORK

The first classic game to be mastered by a computer
was Tic-Tac-Toe, in 1952 [1]. Since then, most of the
famous classic board games were tackled by AI researchers
and eventually became playable at superhuman level. In
1997, IBM’s Deep Blue defeated Chess grandmaster Garry
Kasparov using a heavily tuned Minimax algorithm [7]. Ten
years later, the game of Checkers became mathematically
solved [8]. And recently, in 2017, DeepMind’s AlphaGo
Zero became the best Go player in history by combining
deep reinforcement learning with Monte Carlo tree search
(MCTS), and training via self-play [2].

However, classic board games are hardly the most com-
plex scenarios available. Tree search methods are able to
achieve superhuman performance on imperfect information

2For the full set of rules, see https://jakubkowalski.tech/Projects/LOCM

games like Texas Hold’em Poker [3], as well as deep
convolutional neural networks and reinforcement learning
can play video games from the Atari 2600 console using
raw pixels [9], but many games still remain as unsolved
challenges of game-playing and AI.

Collectible card games are still unsolved and have been
increasingly explored in recent years. Work on Magic: the
Gathering, the most played CCG to date, mainly comprise
design and analysis of cards [10]–[12]. However, despite
determining the optimal play being non-computable [13],
there are also work on playing, using MCTS [4], [14], [15]
and Minimax [15] with severe tree pruning strategies to
handle the huge branching factor of the game.

Deck-building is more explored on Hearthstone, often us-
ing evolutionary algorithms [16], [17]. Game-playing is also
dominated by tree search approaches and state evaluation
using both heuristics [18] and neural networks [19], [20]
from selected features. In Hearthstone, more diverse studies
such as win rate prediction [21] and finding best card tuning
to achieve balance in the metagame [22] are present.

Due to its recent proposal as AI research/competition
environment, the state-of-the-art of LOCM is composed of
the submissions on previous editions of Strategy Card Game
AI Competition and CodinGame’s LOCM Marathon3. Most
successful approaches use statistically-learned card rankings
for draft phase and 2-turn-deep Minimax or MCTS for battle
phase [23]. Imposing action orderings, using macro-actions
(such as attacking opponent with all able creatures) and
other tree pruning strategies are also common. The current
winner agent uses two separate card rankings for situations
in which it plays first or second. Both handmade heuristics
and reinforcement learning are used to estimate state values.

IV. METHODOLOGY

In this paper, we propose the first pure reinforcement
learning approach for Legends of Code and Magic. Both
draft and battle phases use policy networks that map game
states directly to actions and are trained simultaneously by
self-play. Both network architectures are yet to be defined.
To apply reinforcement learning to each phase separately,
they each need to be modeled as a Markov decision process
(MDP). In other words, a set of possible game states and
possible actions need to be defined, as well as a reward
model that expresses the agent’s goal. The intended strategy
for each phase and their MDP modeling are detailed next.

A. Draft Phase

In the draft phase, each player is required to choose a card
between three randomly presented cards each turn, for 30
turns. All chosen cards become the player’s deck on the bat-
tle phase. On each turn, the game input is formed solely by

3Info and results available at https://www.codingame.com/contests/
legends-of-code-and-magic-marathon.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Short Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 612

...Card
attributes

Cards

Hidden
layers

Choose	1st

Choose	2nd

Choose	3rd

Figure 2. Expected model architecture for draft phase. Takes card attributes
from the current choices and past picks as input and outputs probabilities
of choosing each of the three cards.

the three card choices and their attributes. The active player
is then expected to output the index of the chosen card.

In the draft phase’s MDP model, an episode is composed
by all 30 turns. As state representation, we consider not only
the attributes of the current choices but also all past picks,
to provide context for deck-building strategies to be learned.
In this phase, there are always three possible actions: choose
the first, second or third card.

The main challenge is to find a good reward model. Ini-
tially, we consider the simplest case of receiving 1 as reward
at the end of the episode if the match is won and −1 other-
wise. In most matches, though, not all cards in deck are used
in battle phase. Therefore, a direct optimization is to elimi-
nate any reward on actions that selected unused cards, since
they have not contributed to the result. An alternative is to
add some form of intermediate reward other than the match
result, at the cost of possibly falling into local maxima.

The proposed reinforcement learning model for draft
phase uses a neural network that takes as input all attributes
of the cards chosen in the previous turns plus the three
card choices in the current turn. As output, three neurons
represent the probability of selecting each of the three cards.
As playing first or second is significantly different [23],
using a distinct model for each case is also considered.
Figure 2 depicts the model architecture for the draft phase.

B. Battle Phase

The game input on a battle turn presents information
of both players including current health and mana points,
followed by the amount of cards in the opponent’s hand
and the actions performed by them last turn. Finally, the
attributes of all cards in the board and in the player’s hand
are listed. The active player is then expected to output all
desired actions for the turn.

In battle phase’s MDP model, an episode is composed by
all battle turns until the game ends. As state representation,
we consider information from all players plus the attributes
of all cards visible by the active player. 163 distinct actions
are possible, including every combination of origins and
targets for the summon, attack, use and pass turn actions.

The proposed reinforcement learning model for battle
phase also uses a neural network and takes as input the

Hidden
layers

Players'	attributes

Card
attributes

Cards

...

...
...

Summon,	card	1,	lane	1

Summon,	card	8,	lane	2
...

Attack,	creat.	1,	op.	creat.	1

Attack,	creat.	6,	op.	player

...

Use,	card	1,	creat.	1

Use,	card	8,	op.	player
Pass	turn

Figure 3. Expected model architecture for battle phase. Takes card
attributes from all visible cards and both players’ information as input and
outputs probabilities of choosing each action.

game state and gives as output the probabilities of choosing
each of the 163 possible actions. Not all actions are valid
on every state, thus the output probabilities are adjusted
accordingly after the prediction. We also consider using
policy improvement strategies such as in AlphaGo Zero [2].
Figure 3 depicts the model architecture for the battle phase.

V. PRELIMINARY AND EXPECTED RESULTS

To speed-up experiments and facilitate further research,
we developed an open-source reimplementation of the game
engine.4 It follows the OpenAI Gym [24] interface, as to in-
crease compatibility with reinforcement learning algorithms.
Three Gym environments are present: draft phase only, battle
phase only and full game.

As preliminary result, we studied the contribution of each
phase to winning the game. Every combination of random
and state-of-the-art card ranking drafting; and random and
state-of-the-art fixed-depth MCTS battling is tested against
a baseline for 2048 matches. Table I shows the win rates
of each combination.

Random battle MCTS battle
Random draft 50.00% 99.63%

Card ranking draft 61.08% 99.73%

Table I
WIN RATES OF EACH COMBINATION OF DRAFT AND BATTLE

STRATEGIES AGAINST A BASELINE (RANDOM DRAFT AND RANDOM
BATTLE).

Switching from random to a better strategy on both phases
significantly increases the win rate. This is positive evidence
that both draft and battle phase strategies are important and
contribute to the final result of the match, though the battle
phase seem to be more relevant.

By considering past picks on each choice, the draft phase
models are expected to achieve better results than the fixed
card rankings used by the best LOCM agents currently.
Similarly, by considering full information of the board,
the battle phase model is expected to perform better than
limited-depth tree search strategies. On the other hand,

4Available at https://github.com/ronaldosvieira/gym-locm

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Short Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 613

more information as input implies a bigger state space and,
consequently, longer training and tuning times.

The proposed models are to be compared with equally-
tuned implementations of baseline and state-of-the-art
agents. We plan to evaluate the draft and battle models both
jointly and individually, using win rate over other agents as
main metric. Multiple proposed agents varying on network
architecture and modeling may be used on the experiments.

VI. CONCLUSION

Games are ideal environments for research on artificial
intelligence, and collectible card games provide additional
challenges in comparison to currently solved classic board
games. In this paper, we proposed a pure reinforcement
learning approach to a new card game, Legends of Code and
Magic, that was designed to facilitate research. The intended
modeling, solution and alternatives were described.

Initial experiments show that the strategy used on both
draft and battle phases significantly affect the match result,
meaning that any prospective state-of-the-art agent should
then care about both phases. The proposed models are to
be compared to baselines and the state-of-the-art. With this
work, we expect to show that pure reinforcement learning
approaches are viable and achieve good results in the
domain of collectible card games.

For future work, a stateful recurrent neural network could
be tested as replacement of considering the past picks
in the state representation of the draft phase. Moreover,
Hearthstone and The Elder Scrolls: Legends also figure a
game mode similar to LOCM’s draft phase. This enables our
draft strategy to be ported to these games. Lastly, future work
could address the uncertainty in the game (opponent’s hand
and next draws) by, for example, using a Partially Observ-
able Markov Decision Process (POMDP) instead of an MDP.

REFERENCES

[1] G. N. Yannakakis and J. Togelius, Artificial Intelligence and
Games. Springer, 2018.

[2] D. Silver et al., “Mastering the game of go without human
knowledge,” Nature, vol. 550, no. 7676, p. 354, 2017.

[3] N. Brown and T. Sandholm, “Superhuman AI for multiplayer
Poker,” Science, 2019.

[4] P. I. Cowling, C. D. Ward, and E. J. Powley, “Ensemble
determinization in Monte Carlo tree search for the imperfect
information card game Magic: The Gathering,” IEEE Trans.
Comput. Intellig. and AI in Games, vol. 4, no. 4, pp. 241–257,
2012.

[5] Blizzard Entertainment, “Hearthstone: Heroes of Warcraft,”
2014.

[6] Bethesda Softworks, “The Elder Scrolls: Legends,” 2017.

[7] M. Campbell, A. J. H. Jr., and F. Hsu, “Deep Blue,” Artif.
Intell., vol. 134, no. 1-2, pp. 57–83, 2002.

[8] J. Schaeffer et al., “Checkers is solved,” Science, vol. 317,
no. 5844, pp. 1518–1522, 2007.

[9] V. Mnih et al., “Human-level control through deep reinforce-
ment learning,” Nature, vol. 518, no. 7540, pp. 529–533,
2015.

[10] F. Zilio, M. O. R. Prates, and L. C. Lamb, “Neural networks
models for analyzing Magic: the Gathering cards,” CoRR, vol.
abs/1810.03744, 2018.

[11] A. J. Summerville and M. Mateas, “Mystical tutor: A Magic:
The Gathering design assistant via denoising sequence-to-
sequence learning,” in AIIDE, 2016, Burlingame, California,
USA., 2016, pp. 86–92.

[12] G. Zuin and A. Veloso, “Learning a resource scale for
collectible card games,” in CIG, 2019.

[13] A. Churchill, S. Biderman, and A. Herrick, “Magic: The
Gathering is turing complete,” CoRR, vol. abs/1904.09828,
2019.

[14] C. D. Ward and P. I. Cowling, “Monte Carlo search applied
to card selection in Magic: The Gathering,” in CIG, 2009, pp.
9–16.

[15] “Magarena is a single-player fantasy card game played against
a computer opponent,” http://github.com/magarena/magarena,
accessed: 2019-07-14.

[16] P. García-Sánchez et al., “Evolutionary deckbuilding in
Hearthstone,” in CIG, 2016, pp. 1–8.

[17] Z. Chen et al., “Q-DeckRec: A fast deck recommendation
system for collectible card games,” in CIG, Aug 2018, pp.
1–8.

[18] A. Santos, P. A. Santos, and F. S. Melo, “Monte Carlo tree
search experiments in hearthstone,” in CIG, 2017, pp. 272–
279.

[19] M. Swiechowski, T. Tajmajer, and A. Janusz, “Improving
Hearthstone AI by combining MCTS and supervised learning
algorithms,” in CIG, 2018, pp. 1–8.

[20] D. Wang and T. Moh, “Hearthstone AI: oops to well played,”
in ACMSE, 2019, pp. 149–154.

[21] Q. H. Vu et al., “Predicting win-rates of Hearthstone decks:
Models and features that won AAIA’2018 Data Mining Chal-
lenge,” in FedCSIS 2018, 2018, pp. 197–200.

[22] F. de Mesentier Silva et al., “Evolving the Hearthstone meta,”
CoRR, vol. abs/1907.01623, 2019.

[23] “Legends of Code & Magic (CC05) - Feedback
& Strategies,” https://www.codingame.com/forum/t/
legends-of-code-magic-cc05-feedback-strategies/50996/63,
accessed: 2019-07-14.

[24] G. Brockman et al., “OpenAI Gym,” 2016.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Short Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 614

