
Agreste Game Engine: Development of a Dedicated OpenGL Game Engine Proposal

Joimar Brito Gonçalves Filho, João Gabriel Lima Moraes, Victor Travassos Sarinho
Universidade Estadual de Feira de Santana (UEFS)

Laboratório de Entretenimento Digital Aplicado (LEnDA)
Feira de Santana, Bahia, Brazil

joimarbgf@gmail.com, joaofeirense@gmail.com, vsarinho@uefs.br

Resumo—OpenGL is an important graphical development
API for digital game, but with a low level of public documen-
tation and tutorial examples explaining how to use it. In this
sense, the present work describes the attempt to develop a game
engine based on this API. The Agreste Game Engine (AGE)
aims to understand the concepts involved in the manipulation
of OpenGL resources, which is not directly specified to provide
new game engines. As obtained results, interactive virtual
objects were provided by AGE prototype, showing the AGE
capability of using OpenGL resources according to developed
graphics and physics engines in a dedicated platform, as well as
a public example about how to use OpenGL in the production
of new game engines.

Keywords-OpenGL; game engine tutorial; dedicated game
engine; agreste game engine;

I. INTRODUCTION

The use of OpenGL for the development of electronic
games has been widely diffused in the XXI century [1].
It is an API that directly handles the computer graphics
processing unit (GPU), thus enabling the optimization of
3D graphics involved in the production of digital games and
game engines [2].

Per game engines, they allowed the automation of the
gaming industry, which had a previous production scenario
of almost craft production [3]. It is a technology that arose
from the need to avoid redundant work in different games
with similar aspects, providing an extensible software that
can be used as the foundation for many different games
without major modification [4].

Overall, exploring OpenGL features directly is an arduous
task that is often avoided by the digital game developers
community, becoming popular game engines that encap-
sulate such features [4]. This is an activity that requires
GPU handling in low-level languages, yet embodying high-
level programming paradigms and maintaining graphical
rendering performance [5].

This paper describes the development and lessons learned
of Agreste Game Engine (AGE), a 3D game engine based on
the direct manipulation of the OpenGL API for a dedicated
platform. It seeks to understand the concepts involved in
the direct manipulation of this API, providing as a result
graphics and physics engines together with the OpenGL
knowledge about how to use it in the production of dedicated
game engines.

To this end, section 2 describes relevant theoretical aspects
for the AGE production. Section 3 presents the design,
implementation and prototype results for the proposed game
engine. Finally, section 4 describes the conclusions and
future work of this project.

II. THEORETICAL ASPECTS

A. Graphics Engine

The graphics engine is a program responsible for receiving
input from the developer and transforming it into code that
can be interpreted by OpenGL for creating and updating
frames [4]. The input can be defined in: models (3D or 2D),
textures, animation loops, light effects, camera positioning,
text, or information that can be extracted from input and
output devices.

From this, OpenGL becomes responsible for managing
operations necessary for the production of a frame, which,
according to the pipeline [6], should be sent to the GPU
through a framebuffer.

1) Shaders: Shaders play an important role in the process
of rasterizing a frame. The rasterizer, an entity responsible
for delimiting the paint zones of a frame using geometric
data, uses the shaders to paint the described entities with
their respective color pattern. Shaders are programmed to
print colors in a specific way to the area in which they are
used [6].

2) Vectors: Mathematical entity used in analytical geo-
metry to describe a point in a dimensional space, endowed
with direction and direction module. In computer graphics,
vectors are used to model entities in a given 2D or 3D
environment [6].

3) Textures: A texture (also known as texture map) is
basically an array of colors, either loaded from a file (such as
a jpeg or targa file), or occasionally generated by procedures.
Usually, these arrays have two dimensions, but there are
1D (line with different colors) and 3D (3D texture was
considered as a stack of 2D textures). 3D textures are
commonly used in medical imaging, while a 1D texture can
be used to store the result of a rendering function such as
a sine wave or a linear interpolation factor. A texture will
usually have 8 bits per pixel, with four color channels. But
there are specific context variations with 16 bits per pixel,
and images with fewer channels, such as black-and-white

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Short Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 571



maps or completely opaque images, which do not make use
of the alpha. Unlike an ordinary image on a screen, the
elements of a texture are not called pixels, but textels, short
for texture element [6].

4) Matrix Transformations: In computer graphics, matrix
transformations are extensively used, allowing any combina-
tion of rotation, translation and scale operation in a vector.
There are 2 types of matrices used: template matrix and
display matrix [6].

5) Depth: The depth is displayed on the screen from
the overlapping entities that make up a frame. Each entity
printed on screen has a Z value assigned to its pixels. This
value determines in which layer the portion of the image will
be printed, the so-called depth of the image. For example, if
two objects overlap each other, the Z value will determine
which entity stored in the depth buffer should be displayed
superimposed on another, giving the impression that one
object is in front of the other [6].

B. Physics Engine

The physics engine is a program designed to handle all
kinds of events involving simulation of physical phenomena
within a game, giving functions that deal with general
physics behaviors. However, since a versatile game engine
should give diversified options to the developer, it is not
interesting to realistically treat the phenomena that occur in
a game [7].

All entities in the virtual environment can be mapped
through their position in vector space. As these entities
can be abstracted into a set of vectors, they allow the
matrix transformation equations usage to simulate physical
phenomena applied to them [7]. To do this, the following
kinematics functions [7] were used:

V = V0 +at (1)
Vx+1 =Vx +axt (2)
Sx+1 = Sx +Vx+1∆t(3)
Knowing that acceleration and velocity are vectorial quan-

tities, it is possible to determine the final position of any
vector that follows this displacement pattern.

C. The Rasterization Pipeline

All objects to be drawn in a scene must be described
at the input of the pipeline through geometric data (the
vertices that make up the image). In this sense, necessary
geometric modifications are made on the inserted vertices,
such as: the spatial specification point by point; geometric
transformations (rotation, translation and scale); cropping, if
the image goes beyond the specified print area in the frame;
perspective division, that defines the size relative to the
spectator view for each object printed on screen; and camera
transformation, which defines the angle under which objects
are observed. After perform these operations, it is time to
paint the pixels described in the image, called rasterization
process. In addition, an algorithm is applied that defines

the priority of printing the pixels, giving the idea of image
depth and the alpha application that defines the transparency
of a pixel. All of this is written in the memory space of the
graphics card called FrameBuffer.

III. THE AGRESTE GAME ENGINE

A. OpenGL Resources
Some OpenGL libraries were required by the AGE de-

velopment environment (Visual Studio 2015) to provide an
initial version of the proposed game engine:

• GLM - Mathematical library oriented to the C++
language and based on OpenGL Shading Language
(GLSL) that contains functions that abstracts the cal-
culation of matrix operations, data storage and noise
[8].

• GLFW - Simple API for creating windows, contexts
and surfaces, receiving input and events.

• GLEW - Tests the compatibility of the version of the
installed OpenGL with other libraries installed and with
the operating system used [9].

• SOIL - Library that allows you to import textures to
an application without requiring conversion to bitmap
or own image formats such as the GLFW library.

An initial study was also performed to delimit the scope
of the graphics engine, defining as a result how OpenGL
performs the rendering process and how the functions in its
rasterization pipeline are delegated during this process. As
a result, it was noticed that OpenGL functions specifically
manages simple geometric models such as points, lines,
triangles, squares and circles for the production of more
complex entities, as described below:

• linestrip - A structure used basically for the represen-
tation of graphs and paths assembled through straight
segments, determined by the vectors delimiting each
segment.

• lineloop - Like linestrip, lineloop uses a similar algo-
rithm, however, its objective is to render a closed graph,
joining the first to the last vertex described, and defining
a geometric form as result.

• trianglestrip - As well as straight lines, where vertices
taken 2 to 2, OpenGL can perform a similar process
using vertices taken 3 to 3, reusing the two vertices of
the last triangle described and riding a geometric figure
composed of agglutinated triangles.

• trianglefan - Follows the logic of assembling geometric
forms from more primitive entities, through the associ-
ation of triangles from the same axis of rotation, thus
being able to form more complex figures, like circles,
for example.

• squarestrip- Similar to the triangle strip, squarestrip
performs a process of agglutination of vertices taken
four to four to form a geometric entity, reusing two of
the vertices of the last quadrilateral described to define
a new polygon.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Short Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 572



B. AGE Design

Considering the AGE architecture (Figure 1), it is based
on the interaction of the graphics and physics game engine
resources. The graphics engine interacts with the GLFW
library [10], to create windows that will receive plotted
frames. This library is also responsible for receiving user
inputs from devices like gamepad, keyboard and mouse. The
gathered input is interpreted as mathematical data, which is
used to calculate new positions in the Model Matrix, by the
physics engine.

Figura 1. AGE system architecture.

The Model Matrix is accessed by the graphics engine
in order to update the view matrix. This matrix is used
to perform various operations like clipping, camera rotation
and perspective. After completing operations, the graphics
engine can send the frame data to OpenGL, that uses
shading technologies, such as the OpenGL specific shader
description language (GLSL), to manipulate the GPU and
to create the images to be shown at the screen.

Regarding the physics engine, kinematics equations were
applied on created models, assigning them mass and speed.
Each of these components were analyzed by interacting with
the geometric transformation operations. For this purpose, a
number of transformation matrices were developed accor-
ding to the desired operation.

In the system, the manipulation of physics engine is still
indirect. Through manipulation of gravity is possible to see
the effects of the physics engine on the created objects.
All the objects are equally under the effect of gravity, The
position of each element on the frame is calculated and
updated in real time by using the kinematic equations (1),
(2) and (3).

C. AGE Implementation
AGE works by compiling user codes for the created

objects and, at the same time, presetting necessary entities
for the games like light and camera, which are called
basic objects. The user might change the values set for the
basic objects in the game by modifying their attributes. For
instance, the user might be able to: change the colour of a
light source by using a color picker; configure a hexadecimal
value directly in the code; change the angle of the camera
by dragging and dropping the mouse cursor; or inputting
the position values in a specific field. Figure 2 illustrates
one possible configuration of one game object, in this case
a light with predefined color and direction values.

Figura 2. Configured game light object with predefined color and direction
values.

Another implemented resource for the graphic engine was
the import system of 3D models — the main source pro-
jects created in software Blender. The process of importing
content from third party software consists of gathering all
mathematical data from the object, in order to calculate the
position of the pixels. The rasterization occurs by inter-
preting the pixels as primitive forms such as proposed by
OpenGL functions.

As for the physics engine, the module is static, applying
the gravity force to all rendered objects, and it uses the
GLM library to calculate all necessary vectorial data to be
correctly rendered by the graphic engine.

D. AGE Prototype
The AGE proposal is to build 3D platform games, and

it was designed to be or a game composed of many sce-
narios and objects or a huge connected world, each one
with their characteristics and limitations. In fact, work with
different scenarios has the drawback of swapping between
maps which can greatly decrease the performance. In the
same way, work with a single huge map might present the
disadvantage of the program having to load many elements
at once.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Short Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 573



In this sense, and considering the initial AGE development
results for 3D platform games, it is possible to import
geometric models and manipulate them in order to give
movement and mass, according to user configuration values.
It is also possible to assign colors to the vertices of an object,
according to their respective vector positions and interpolate
them. As an example, Figure 3 illustrates a rendered cube
by the AGE prototype, using the color interpolation shading
technique.

Figura 3. AGE rendering coloured cube.

IV. CONCLUSIONS AND FUTURE WORK

The objective of demonstrating the graphic power of
OpenGL library manipulation by the AGE in a dedicated
platform was achieved. For this, the encapsulation of the
OpenGL functions for the development of the graphic engine
was performed, as well as the use of GLM functions to per-
form the necessary calculations that the physics mechanism
applies in the Model Matrix.

The developed graphic engine is able to make essential
graphics operations used by many types of game engine (in
special for 3D platform games), such as vector manipula-
tion, colour interpolation, making 3D solids and customized
textures assimilation. The physics engine is also able to
simulate phenomena such as gravity and dumping factor.
The interactions with user commands also work successfully,
being able to use keyboard, mouse or gamepad interfaces to
interact with rendered objects.

Regarding the AGE development challenge, despite the
wide OpenGL documentation, it is not directly specified
to the production of game engines. On this matter, an ex-
ploration work was performed, often manipulating libraries
that are shortly documented. In this sense, for educational

and academic purposes, the AGE development represents an
important effort to provide an open tutorial example about
how to develop game engines with OpenGL. Moreover, the
AGE creators team will also release a documentation guide
in the future with instructions about how to use OpenGL
and support libraries (previously quoted) to make games and
game engines.

Also as future work, AGE needs to be upgraded since
must of the implemented functionalities should be encapsu-
lated within user friendly functions, to be used according to
the developer needs. The inclusion of important production
resources available in professional game engines, such as
light maps, collision detection and fluid mechanics, will be
also attached to AGE in the future. Finally, for evolution
purposes, the AGE migration to the Vulkan [11], a low-
overhead, cross-platform 3D graphics and computing API
that is listed to replace OpenGL, will also be performed in
the future.

REFERÊNCIAS

[1] OpenGL Overview, https:/ /www.opengl.org/about/,
Acessed in 01/07/2019, mar. de 1997-2019.

[2] Jeremiah, Introduction to OpenGL for Game Pro-
grammers, https : / / www. 3dgep . com / introduction -
opengl/, Acessed in 01/07/2019, fev. de 2011.

[3] H. Lowood, “Game Engines and Game History”,
Kinephanos, n.o 2, pp. 179–197, jan. de 2014.

[4] J. J. Michael Lewis, “Game Engines In Scientific
Research”, Communications of the ACM, pp. 27–31,
jan. de 2002.

[5] A. Asaduzzaman e H. Y. Lee, “GPU Computing
to Improve Game Engine Performance”, Journal of
Engineering and Technological Sciences, vol. 46,
pp. 226–243, jul. de 2014. DOI: 10.5614/j.eng.technol.
sci.2014.46.2.8.

[6] D. G. Ushaw, Notas da disciplina graphics for games,
csc3223.NewcastleUniversity, Newcastle University,
jan. de 2014.

[7] D. W. Blewitt, Notas da disciplina gaming simulati-
ons, csc3222.Newcastle Universiy, Newcastle Univer-
sity, jan. de 2015.

[8] C. Riccio, OpenGL Mathematics - A c++ mathema-
tics library for graphics programing, https://glm.g-
truc .net /0 .9 .8 / index .html, Acessed in 01/07/2017,
out. de 2002-2016.

[9] N. Stewart, The OpenGL Wrangler Library, http :
/ / glew . sourceforge . net/, Acessed em 01/07/2017,
out. de 2017.

[10] M. Geelnard, GLFW - An OpenGL Library. http :
/ / www. glfw. org / documentation . html, Acessed in:
01/07/2017, out. de 2006-2011.

[11] G. Sellers e J. Kessenich, Vulkan programming guide:
The official guide to learning vulkan. Addison-Wesley
Professional, 2016.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Short Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 574


