
Toward a Reference Architecture
for Economy Mechanics in Digital Games

Wilson Kazuo Mizutani and Fabio Kon
Computer Science Department

Mathematics and Statistics Institute from University of São Paulo
São Paulo, Brazil

{kazuo,kon}@ime.usp.br

Abstract—Economy mechanics in computer games provide
unpredictable, unstable, and complex requirements to software
design. Thus, a single, generic software cannot be reused
for different games. Instead, reference architectures grant
knowledge reuse, a more abstract but flexible approach. In
our ongoing research, we are systematically designing and
evaluating a reference architecture for economy mechanics in
games. This study presents the findings we have gathered in this
particular domain, as well as the current state of the reference
architecture and its preliminary evaluations.

Keywords-computer games; software architecture; economy
mechanics

I. INTRODUCTION

Software reuse is a common practice to reduce production
costs in expensive processes such as game development.
Game engines, middleware tools, libraries, and data-driven
design are examples of this practice [1]–[3]. However, not
all parts implemented in games can be easily reused.

Game mechanics, in particular, can be divided according
to the system requirements they share in common. Based on
Adams and Dormans’ classification [?], we found three main
groups of mechanics with distinct implementation require-
ments: physics (bodies, shapes, and movement), internal
economy (interactions between currencies, life, score, and
any other in-game resource), and progression mechanisms
(stages, win conditions, story flags, etc.). Of these three types
of mechanics, internal economy is the hardest to reuse, as
we explain next.

Since physics mechanics are based on the physics of the
real world, their implementation specifications do not vary
much from game to game, so a single physics library can be
reused in multiple games. Havok1 and Bullet2 are examples
of this. Progression mechanisms also benefit directly from
software reuse through the practice of data-driven design [1],
[2], making dialogues, goal conditions, stage geometries, and
other game content be stored in files outside the source code
of the game. Engines such as Unity3 and Godot4 support

1havok.com
2pybullet.org/wordpress
3unity.com
4godotengine.org

this in the form of editable scenes representing stages of
the game. Economy mechanics, on the other hand, vary
widely from game to game and, sometimes, even inside
the same game. The economy mechanics of Hearthstone
(Blizzard Entertainment, 2014), for instance, have practically
no intersection with the economy mechanics of Factorio
(Wube Software, 2012), though both titles are economy-
focused games.

We identified three core challenges in the development
of economy mechanics that reduce the benefits of software
reuse. First, economy mechanics are unpredictable, because
they do not try to simulate realistically the real world like
physics mechanics do. Second, they are unstable, i.e., their
specifications change constantly during the iterative design
process of game development [5]. Third, economy-focused
games are designed with considerably complex mechanics,
including economy mechanics that structurally change other
economy mechanics at runtime. For instance, rule-changing
cards are one of the most popular features of Hearthstone.

In our research, we are studying how the discipline of
software architecture [6] can provide knowledge reuse in
the context of internal economy mechanics in games, since
software reuse is a less practical approach. For that, we are
designing a reference architecture [7]. Its objective is to
minimize the development cost incurred by the three chal-
lenges described above, i.e. the unpredictability, instability,
and complexity of economy mechanics.

This text is organized as follows. Section II describes our
research methodology. Section III analyzes the architectural
requirements for our reference architecture. In Section IV,
we present the current state of the reference architecture as
well as the results of our initial validations. Lastly, Section
V discusses future work of this research.

II. METHODOLOGY

The process we are using to design and evaluate our
reference architecture is an extension of the the ProSA-
RA process developed by Nakagawa et al. [8]. We cycle
through four steps, iteratively. First, we investigate infor-
mation sources such as the literature and domain expertise.
Second, we analyze the architectural practices for economy

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Short Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 623

mechanics to extract and update the architectural require-
ments and domain concepts our reference architecture should
satisfy. Third, we synthesize and improve the reference
architecture using the findings of the previous step. Fourth,
we evaluate the current state of the reference architecture to
find out how well it fulfills the objectives of the research.
Then we go back to the first step to keep iterating over the
design.

Our information sources include related work from the lit-
erature, knowledge from industry authors, expert knowledge
from active developers, recurrent solutions from commercial
implementations of games and engines, and reference mod-
els from different sources. To investigate the literature, we
performed a systematic literature review, which we submit-
ted to a major journal on computer entertainment. For expert
knowledge, we consulted a student special interest group
from a prestigious public university, which also provided us
with contacts to Brazilian studios whose developers we plan
to invite for structured interviews.

III. DOMAIN ANALYSIS

From the domain knowledge the information sources pro-
vided us, we found seventeen architectural requirements for
our reference architecture so far. Following the ProSA-RA
process, we group these requirements into domain concepts
[8] that better reflect the roles of the reference architecture
in the development of economy mechanics. Table I presents
this relation, and we briefly explain the requirements in the
rest of this section.

Every computer game relies on the Game Loop pattern to
alternate the execution flow between user interaction and
simulation [1], [9]. This imposes a series of restrictions
on the architecture of the game, especially regarding the
control of execution flow. Requirements (R1), (R2), and
(R3) reflect how these restrictions should be handled by
the architecture of the economy simulation subsystem. At
the same time, the economy simulation has a timeline that
dictates the sequence of changes to the state of the economy.
This timeline is independent of the timeline following the
Game Loop and fits into a spectrum that ranges from real-
time simulations to turn-based simulations. The reference
architecture contemplates this through requirements (R4)
and (R5).

The simulation of economy mechanics has a state that
changes over time. That state is composed of the in-
dividual states of each resource in the game economy.
These resources are grouped and organized into objects
for implementation purposes and the available types of
objects are dictated by the object model of the simulation.
Resources might be transferred from object to object, or
they might have their state modified by the state of other
resources [10]. Requirements (R6) and (R7) regard these
issues. The changes incurred in the state of the simulation
comprise a sequence of behaviors invoked by the simulation

Table I
ARCHITECTURAL REQUIREMENTS AND DOMAIN CONCEPTS

Code Architectural Requirement Domain Concept
(R1) Decouple interaction code from Game Loop integration

simulation code
(R2) Per-frame updates of the Game Loop integration

simulation state economy
(R3) Synchronize player actions with Game Loop integration

simulation time
(R4) Decouple simulation time from Simulation timeline

execution time and user
interaction

(R5) Support both real-time and Simulation timeline
turn-based simulations

(R6) Economy resources in the Object model
object model

(R7) Economy resources modifiers in Object model
the object model

(R8) Simulation of triggered behaviors Behavior model
(R9) Simulation of action behaviors Behavior model

(R10) Simulation of behavior modifiers Behavior model
(R11) Short and incremental Iterative development

development iterations
(R12) Extensible object model Iterative development
(R13) Flexible object model Iterative development
(R14) Extensible behavior model Iterative development
(R15) Flexible behavior model Iterative development
(R16) Data-driven object Data-driven design

specifications
(R17) Data-driven behavior Data-driven design

specifications

timeline when appropriate. The nature of the timing of
the behavior determines whether it is a triggered behavior
(invoked when a certain event occurs in the simulation) or an
action behavior (invoked as an action by something outside
the simulation, e.g., the player). Like simulation objects,
simulation behaviors are limited by a behavior model and
may also be modified by the state of resources. These
conditions are all contained within requirements (R8), (R9),
and (R10).

The game development process is often based on trial-
and-error approaches to determine what makes it fun and
engaging for users [5]. To keep the software design from
eroding due to the constant change of specifications, its
architecture needs to support iterative development. In par-
ticular, extending or changing the object model and the
behavior model of the simulation should cost the least
possible to the team. That is what requirements (R11),
(R12), (R13), (R14), and (R15) cover. There is also another
technique used to reduce this cost, called data-driven design,
where object and behavior specifications (in the case of
economy mechanics) can be loaded at runtime from data
stored in the file system, outside the game executable [1],
[2]. The last requirements, (R16) and (R17), bring this aspect
to the reference architecture.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Short Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 624

Trigger Step Action Step

Resource

Behavior

Object

 1
(3) Changes the state

 N

Triggered Behavior Action Behavior

Behavior Resource

Behavior Modifier Resource

Resource Modifier Resource

(7) Enables

(8) Modifies

(4) Object model

Simulation Timeline

Game Loop

(5) Registers triggers

(6) Modifies

(2)
Behavior

model

(1) Services

Figure 1. Conceptual view of the reference architecture.

IV. PRELIMINARY RESULTS

There are two main results our research yielded until now.
First, we have reached a work-in-progress but functional
stage of the reference architecture. Second, we partially
evaluated the current state of the reference architecture with
case studies and a quasi-experiment pilot. These results are
described in the following sections.

A. Current State of the Reference Architecture

Based on the domain concepts and architectural require-
ments, we are designing the reference architecture and
documenting it using a number of views, i.e. diagrams that
represent different architectural perspectives. Due to space
limitations, here we only show the conceptual view (Figure
1) and the module view (Figure 2).

In the conceptual view, we illustrate the relations between
four out of six of the domain concepts (Game loop inte-
gration, Simulation timeline, Object model, and Behavior
model). The Game Loop interacts (1) with the simulation
timeline, which invokes behaviors from the behavior model
(2). Each behavior changes the state of the simulation
resources (3) organized according to the object model (4).
These changes might trigger further behaviors, so they have
to be registered in the timeline for future reference (5).
Among resources, there are three special types that deserve
special attention: resource modifier resources, which change
the perceived state of other resources (6); behavior resources,
which enable one or more behaviors in the simulation (7);
and behavior modifier resources, which change the nature
of existing behaviors (8).

In the module view, we present the division of responsibil-
ities among modules of the reference architecture. The Game
Loop requests an update of the state of the economy sim-
ulation subsystem every frame through the timeline tracker
module. It runs the simulation from the step where it stopped

the previous frame, activating behaviors in the behavior
engine. This engine changes the state of the simulation by
manipulating the resources kept in the object pool, which
in turn register triggers back into the timeline tracker. Other
subsystems of the game (e.g. graphics or sound) may query
the state of resources in the pool at any time the economy
subsystem is not under control of the execution flow.

The behavior model determines what are the possible
operations the behavior engine can apply on the object
pool through its behaviors. At the same time, the object
model dictates the possible types and states of resources in
the object pool. Both these models can be either source
code definitions (such as classes) or runtime structures.
For instance, resource types can be determined by having
each resource reference a “resource type” instance from the
object model, which is a variation of the Adaptive Object-
Model pattern [11] also known as the Type Object pattern
[9]. Both the behavior model and the object model are
modules designed to grow and change with reduced cost
for developers to satisfy the Iterative development concept.

Lastly, to meet the Data-driven design concept, the spec-
ifications of behaviors and resources should be loaded from
file system data, which is the responsibility of the Content
Loader module. To further reduce development costs, the be-
havior model and the object model could also be optionally
loaded from the file system.

B. Architectural Evaluations

The first part of evaluating our reference architecture
consists of applying it to games in development and studying
the benefits and costs of doing so. We are carrying two of
these case studies at the moment, and we plan to perform
two more in the future. The first case study involves a

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Short Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 625

Economy Simulation Subsystem

Game
Loop

Timeline Tracker
Other Subsystems

Behavior Engine

Object PoolFile
System

Content Loader

Behavior Model

Object Model

Triggers

Follows

Follows

Updates

Activates

Query

Loads from Loads from

Changes

Evolves

Evolves

Figure 2. Module view of the reference architecture.

deck-building5 rogue-like6. The study demonstrated that the
current reference architecture can handle games with the
very unpredictable and unstable economy mechanics of a
card game. The second regards a base-building survival
rogue-like. Its study verified that the object model of our
reference architecture is indeed flexible and extensible.

The second part of the architectural evaluation consists of
quasi-experiments [12] to measure how much the reference
architecture reduces development costs for student projects
in game programming courses. We performed a quasi-
experiment pilot with students from a Summer course in a
prestigious public university, which shows positive results
but points out that the learning curve of the reference
architecture is too steep for beginning programmers. We will
carry out a complete version of the quasi-experiment during
an undergraduate and graduate course at the same university
during the second term of 2019.

V. FUTURE WORK

The next steps of our research involve performing struc-
tured interviews with active professional game developers to
add more domain knowledge to our analysis, finishing the
design of the reference architecture, then proceeding with
its evaluations. Two more case studies will be developed,
and we will collect more data on the performance of
the architecture during our quasi-experiment. The software
architecture and an associated reference implementation will
be released as open source software.

ACKNOWLEDGMENT

This work is supported by the São Paulo State
Research Support Foundation (FAPESP) under Grant
No.: 2017/18359-6.

5en.wikipedia.org/wiki/Deck-building_game
6en.wikipedia.org/wiki/Roguelike

REFERENCES

[1] J. Gregory, “Game engine architecture,” 3rd ed. Boca Raton,
USA: CRC Press, 2017.

[2] S. Rabin, “The magic of data-driven design,” in Game pro-
gramming gems, M. DeLoura, Ed. Newton, USA: Charles
River Media, 2000, pp. 3–7.

[3] W. Scacchi, “Practices and technologies in computer game
software engineering,” IEEE Software, vol. 34, Jan. 2017, pp.
110–116.

[4] E. Adams and J. Dormans, “Game Mechanics: Advanced
Game Design”. San Francisco, USA: New Riders, 20.4.

[5] J. Schell, “The art of game design: a book of lenses,” 2nd
edition. Boca Raton, USA: CRC Press, 2014.

[6] M. Shaw and D. Garlan, “Software Architecture: Perspectives
on an Emerging Discipline”. New Jersey, USA: Prentice Hall,
1996.

[7] E. Y. Nakagawa, P. Oliveira, and A. M. Becker, “Reference
Architecture and Product Line Architecture: A Comparison,”
Proc. European Conference on Software Architecture (ECSA
11), Sep. 2011, pp. 2–5.

[8] E. Y. Nakagawa, M. Guessi, J. C. Maldonado, D. Feitosa, and
F. Oquendo, “Consolidating a process for the design, represen-
tation, and evaluation of reference architecture,” Proc. Working
IEEE/IFIP Conference on Software Architecture (WICSA 14),
Apr. 2014, 143–152.

[9] R. Nystrom, “Game programming patterns”. Genever Benning,
2014.

[10] J. Dormans, “Engineering Emergence: Applied Theory for
Game Design”. PhD Thesis, University of Amsterdam, 2012.

[11] J. Yoder and R. Johnson. “The Adaptive Object-Model Ar-
chitectural Style”. Proc. Working Conference on Software
Architecture (WICSA), Aug. 2002, pp; 3–27.

[12] D. T. Campbell and J. C. Stanley, “Experimental and Quasi-
Experimental Designs for Research,” in Handbook of research
on teaching. Boston, USA: Houghton Mifflin Company, pages
1–71, 1963.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Short Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 626

