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Abstract—A large number of algorithms to generate behav-
iors of game agents have been developed in recent years. Most
of them are based on artificial intelligence techniques that
need a training stage. In this context, this paper proposes
a minimal training strategy to develop autonomous virtual
players using the NEAT neuroevolutionary algorithm to evolve
an agent capable of playing the Flappy Bird game. NEAT was
used to find the simplest neural network architecture that can
perfectly play the game. The modeling of the scenarios and
the fitness function were set to ensure adequate representation
of the problem compared to the real game. The fitness
function is a weighted average based on multiple scenarios and
scenario-specific components. Coupling the minimal training
strategy, a representative fitness and NEAT, the algorithm had
a short convergence time (around 20 generations), with a low
complexity network and achieved the perfect behavior in the
game.

Keywords-artificial intelligence; autonomous agents; neu-
roevolution; flappy bird;

I. INTRODUCTION

The Neuroevolution technique is presented as a powerful
strategy to evolve Artificial Neural Networks (ANN) in
unsupervised learning problems (problems where there is no
input and output table). It offers an alternative way to find
the best configuration for an ANN without depending on a
correct output value, which is commonly used to generate an
error to optimize the networks settings through Descending
Gradient algorithms like Backpropagation. On the other
hand, the game Flappy Bird 1 shows itself as a promising
virtual testing environment to optimize agents whose goal
is to learn the behavior of nondeterministic phenomena. It
is a popular game that was initially developed for mobile
devices. Its goal is simply to keep the bird, the player, alive
as long as possible by passing through a gap between pair
of pipes without colliding with them (Fig. 1). When the
screen is touched, the bird will perform a jump, on all other
moments, it will fall gradually as a result of gravity.

In this type of problem, the agent interacts with the
environment and then it responds in such a way that the
agent’s sensors receive information about the current state
of the environment, through which it is calculated what
actions the actuators must perform, that is, there is no

1D. Nguyen, “Flappy bird,” Apple App Store, 2013.

Figure 1. Screenshot of the Flappy Bird game.

information about what action to take, or whether the action
chosen is good or bad, emphasizing a fairly probabilistic
communication between the agent and the environment. In
this context, the use of Flappy Bird as an environment
for Neuroevolution algorithms tests is an excellent study,
since the obstacle-transpose challenge finds application both
in game development and in the field of Mobile Robotics
(Smart Navigation). Neuroevolution can choose the best
configuration of an ANN without depending on a set of
correct actions within the Flappy Bird, since this strategy
requires only a value that translates agent performance at
the end of its lifetime, and through the choice of the best
performances and the combination of the best settings the
technique finds the ANN that solves the problem.

In this work we apply a Neuroevolution algorithm known
as Neuroevolution of Augmenting Topologies (NEAT) [14]
in the Flappy Bird environment, using a minimal strategy
that in addition to finding a simple agent to play the game,
finds it quickly, i.e., few generations and playing short
scenarios. The choice of NEAT is related to the fact that
it starts from simpler configuration agents (topology and
weights) and complicates this configuration over the gen-
erations, generally increasing the topology, so it is possible
to guarantee that the solution found is the simplest for the
problem.
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In Section II, we analyze works that make use of Neu-
roevolution in other games, works that use the Flappy Bird
for other purposes, and also those that couple Neuroevolu-
tion and Flappy Bird. In the Methodology Section we detail
the proposed strategy, and also the tools used. In the Results
section the scores and fitness maximization charts, with the
best topology found and the algorithm speciation chart, are
presented in order to evaluate our technique.

II. RELATED WORK

The application of Neuroevolution in games has been used
for some time with satisfactory results in the creation of
intelligent agents capable of human and even super-human
level of playing [10]. Within the scope of Neuroevolution,
NEAT is one of the most popular and promising techniques
in the context of games.

The uses of NEAT ranges from finding a Go player
agent independent on the board size [15], to use in real-
time environments such as Neuro-Evolving Robotic Op-
erative (NERO). In the latter case, it is called real-time
Neuroevolution of Augmenting Topologies (rt-NEAT) [13].
In a NERO context, NEAT is employed in the training of
groups of virtual robots capable of playing against other
teams. A very distant NEAT variation is content-generating
Neuro-Evolution of Augmenting Topologies (cg-NEAT) [4],
in which NEAT is used to generate the contents of a game
called Galatic Arms Race (GAR). It allows the game to
change during execution, increasing players’ immersion and
retaining their attention. We also call attention to NEAT’s
use in the development of playing agents for Fighting
Games, where building a consistent form of measuring
fitness is quite relevant [6].

NEAT can also be applied to the multiobjective paradigm
in certain games, where NPCs must perform more than one
task, such as Ms. Pac-Man [11]. In this game, a variation
known as Modular Multiobjective NEAT is used in which
the search types will always look for an agent with multi-
modal behavior [12].

FlappyBird is a popular game originally developed for
mobile platforms. Currently, it has rereadings in different
programming languages and has become an esteemed testing
environment for different fields of Artificial Intelligence. The
literature contains references to its use in the creation of a
T2FuzzyLogicControl (T2-FLC) [9] as it is a classic obsta-
cle avoidance problem with gravity in its implementation,
causing the game to be comparable to an autonomous flight
drone problem. Even more, FlappyBird is closely associated
with temporal differences and can be used as a video training
dataset (the frames) to construct a framework that makes
temporal predictions in the presence of uncertainties [5]. It
is also important to highlight the application of FlappyBird
in Control studies, such as constructing an artificial player
based on a Model Predictive Control (MPC) capable of
controlling the bird’s flight [17].

However, FlappyBird is mostly used as an environment
for Reinforcement Learning problems, where it can help
testing the use of Multiagent Reinforcement Learning with
variations - using Epsilon Sinusoidal Function to reduce
time [8] - or even investigating Transfer Learning [3]. In
this context, it is widely used in works involving Deep Q-
Learning, which is a paradigm that makes use of Q-Learning
[16], a traditional Reinforcement Learning algorithm, to
optimize Deep Neural Networks. This kind of work goes
from a direct application of Deep Q-Learning to Flappy-
Bird [2], to comparative studies with other approaches,
for instance, employing different memory scalability such
as Scale-Invariant Temporal History (SITH) [1], a way to
compress the past. It is also worth highlighting a work that
use Deep Q-Learning with FlappyBird emphasizing how the
AI communicates with the Learning Environment through
WebSocket [19].

III. METHODOLOGY

Three components are essential to this work: fitness func-
tion calculation, presented in Section III-A; how to expose
the scenario to the agent, presented in Section III-B; and
phenotype settings, presented in Section III-C.

A. Fitness

To compute the fitness of the agent three components are
used, called Scenario Fitness Components (SFC):

• Traveled Distance (TD): a counter that increases in each
interaction of the agent with the environment;

• Score: the number of pairs of pipes already transposed;
• Y Factor (∆Y ): the value obtained when the agent fails

on any part of the scenario, which is calculated by the
difference between the y coordinate of the agent and the
y coordinate of the midpoint of the passage between the
following pipes, defined as:

∆Y = yagent − ypassage (1)

Y Factor plays a crucial role since it enables to penalize
the performance of the agent in the fitness function with a
value that expresses how far the agent was from the objec-
tive, the passage between pipes, before failing. In Fig. 2 three
Y Factors are highlighted, ∆Y1, ∆Y2 and ∆Y3, each of them
corresponding to a different agent of the same population.
These values will only be considered when the agent fails,
defined by the collision with any part of the scenario. When
this occurs the interaction with the environment ceases and
the agent’s performance is measured.

The Y Factor is used to transmit a quality value to the
fitness calculation, since it differentiates agents that failed
in the same pair of pipes but in different heights. The goal
is to ensure that agents closer to the passage are considered
better than others further away, something that would not be
possible if the performance of the agent was based only in
TD and score.
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As shown in Fig. 2, if all agents failed at the exact same
moment, they would have the same TD and score, however
the Y Factors would be different, such that ∆Y1 < ∆Y2 <
∆Y3, showing that agent 1 is closer to the passage. Also,
the value of ∆Y is absolute since it aims to penalize the
performance of the agent based on the distance from the
passage, regardless if it was above or below the agent.

Figure 2. Y factor difference between three agents with the same TD and
score.

These three SFCs were combined in a single expression,
called scenario fitness function (SFF):

SFF = α× TDS + β × ScoresS − γ ×∆YS (2)

This expression shows that the scenario fitness of an
agent is a linear combination of SFCs and three constant
weights, α, β, and γ, which regulate the importance of each
SFC in fitness. The goal of the agent is then to travel the
maximum possible distance, obtaining the highest score and
stay closer to the passages. The S subscript corresponds to
the standardized version of the component:

• TDS = TD/TDmax, where TDmax is the TD when
transposing the maximum number of pairs of pipes in
a scenario.

• ScoresS = Scores/Scoresmax, where Scoresmax is
the maximum score possible in a scenario.

• ∆YS = ∆Y/Wh, where Wh is the height of the game
window, that is, the largest value of the y coordinate.

Obtaining SFFs from the game and combining them into
an agent fitness function (AFF) evaluates how fitted an agent
is:

AFF =

MS∑
i=1

(ki × SFFi)

MS∑
i=1

ki

(3)

Thus, (3) shows that the fitness of an agent in a specific
generation is given by a weighted average based on the
fitness that this agent obtained on every scenario, which
means that some scenarios will have more importance than
others. MS is the total number of scenarios, which have
different aspects.

B. Scenarios

The main objective regarding the way the scenario is
exposed to the agent during training is to reduce the number
of pipes while still preserving the ability of the algorithm
to converge in a short time. Three scenarios with a specific
variation of the gap between the passages were presented to
the agent as shown in the example of Fig. 3. Therefore, the
total number of scenarios is only three, i.e. Ms = 3.

The gaps were chosen strategically as 0 pixels, and ap-
proximately 80 pixels and 160 pixels. These values provide
a great gap versatility since 0 and 160 pixels are close to the
vertical limits of the screen and 80 pixels being the midpoint
of them. An agent that dominates its performance completely
in scenarios with these gaps will be able to handle any kind
of passage variations, since it learned how to transpose the
small gaps, medium gaps, and large gaps, mastering the
game’s gaps domain.

Since the number of pipe pairs in each scenario equals
three, Scoresmax = 3 and TDmax = 195, such that 195 is
the TD for the agent that transposes three pairs of pipes. The
reason why there are three scenarios and not two (”smaller”
and ”larger”) is supported by the fact that a second scenario
allows a faster and smoother convergence, since, while the
agent is solving the intermediate challenge, he is getting
parameters to solve the more complex challenge (”larger”),
leading to less abrupt and less time-consuming convergence.

In the context of the constituents of each scenario, three
pairs of pipes were chosen as shown in Fig. 3. Items (a)
and (b) show a flat gap; (c) and (e) present fall gaps; (d)
and (f) show climb gaps. These types of gaps comprise the
summary of the movements that an agent could execute in
a large scenario, composed of thousands of pipe pairs with
different gaps between them.

C. Network Phenotype, Parameters and Tools

The agent’s phenotype is represented by an ANN that has
three input neurons, one output neuron and with an internal
structure that will only be defined after the training by the
evolutionary algorithm, as shown in Fig. 4. The output of
the network is the probability of performing a jump. Fig. 5
shows all inputs in a frame, which are:

• Ay: Agent’s y coordinate y;
• By: Y coordinate of the tip of the bottom pipe ahead;
• Cy: Y coordinate of the center of the passage between

the pair of pipes ahead.
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(a) (b) (c) (d)

(e) (f)

Figure 3. The three types of scenarios used in learning.

Figure 4. Network architecture with an initially unknown internal structure.

When the agent receives the information given by the
environment (Ay, By and Cy), it is processed by the net-
work, generating a probability of executing a jump. This
probability will determine the action to execute according
to the rule: Action = Jump if (Out ≥ b) else None, where b
was 0.4.

In the configuration of the NEAT parameters, the fol-
lowing values were established, which can then be used to
reproduce this work:

• Population: a population of 30 individuals is used. It is
not a big population, which enables a faster execution,
and it is large enough to allow a genomic diversity.

• Elitism: an elitism of 18 individuals was chosen, a value
that compared to the previous parameter is equivalent

Figure 5. Inputs.

to 60% of the population. This value allows the preser-
vation of innovations and it is small enough to not incur
in stagnation or the absence of innovations.

• Compatibility threshold: the value given to this term is
3.0, which is large enough to not create many species
initially and is small enough to not completely prevent
the formation of species within the population. It is
interesting to note that a large number of species in a
population can generate intersections between species
which can lead to problems in optimization especially
when the population is small.

• Mutation rate: this parameter has a value of 0.05, which
causes the connections to not activate immediately as
the topology increases, they are activated gradually.
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• Weight and Bias: the average initial generation of
weights and bias were 0 and 0.01, respectively, with
a standard deviation of 1.3 in both. These values allow
a slightly more varied distribution when the weights are
generated, thus getting closer to the topologies of better
performance.

• Probabilities to add or remove connections: the like-
lihood of adding connections and the likelihood of
removing connections were set to 0.7 and 0.2, re-
spectively. These values symbolize a greater affection
for a robust topology through connection creation, a
proposal aimed at solving complex problems. If the
topology does not increase, but the optimization finds
good individuals it is because a simpler topology was
sufficient for the problem, since NEAT starts from less
complex to more complex topologies.

• Probabilities to add or remove nodes: the probability
of adding nodes was set to 0.7 and the probability
of removing nodes was set to 0.2, as in the above
parameters, and they have a similar explanation.

The algorithm ran for 100 generations using as the activa-
tion function a Sigmoid. Given the simplicity of the agent’s
decision and since Descending Gradient is not part of the
process, this function uses all of its logistical power without
drawbacks.

With respect to the parameters used in the calculations of
the SFFs and the AFF the following values were used:

• SFF (α = 1.0, β = 1.0, γ = 0.08): Note that the weight
of the Y Factor is very low compared to the others. This
was established for two reasons: (i) the Y Factor before
being normalized gets a small value when compared to
the other parameters during the generations and when
the normalization is done this distance is lost, so a
small value of γ allows a reduction of the DeltaY
magnitude; and (ii) at the beginning of the generations
the Y Factor has very high values, which is the opposite
of its primary function of being a differentiation of
similar fitness when performing fine adjustments in
their scores, which can harm the convergence speed.

• AFF (k1 = 1.0, k2 = 2.0, k3 = 6.0): SFFs weights for
more complex scenarios were given a higher value to
strengthen good performances in more difficult environ-
ments. This is the reason why Scenario 2 has a slightly
greater weight than Scenario 1 (easy) and Scenario 3
(hard) has a much greater weight than Scenario 2. This
strategy allows a faster convergence of the algorithm
since the agent finds the best performance faster.

This work was constructed using NEAT-Python [7] and
PyGame Learning Environment (PLE) [18]. PLE is the
library of the agent’s interaction environment, which is
triggered when calculating its fitness is needed, making it
communicate with the environment through his sensors and
actuators. This relationship is best explained by Fig. 6.

Figure 6. Relationship between NEAT and PLE.

To execute the steps discussed in Sections III-A and
III-B, some modifications were made to the PLE to allow
the definition of the structure of the scenario before the
beginning of the optimization. The changes are needed to
construct the three types of scenarios with different gaps
between the pairs of pipes. These modifications in the code
and a video showing how the best phenotype works are
available online 2

IV. RESULTS

The results of fitness and scores are presented in Section
IV-A. The speciation chart is shown in Section IV-B. Finally,
the final network topology is presented in Section IV-C.

A. Fitness and Scores

Fig. 7 presents the fitness results. The x-axis of the chart
corresponds to generations, from the beginning going up to
100, while the y-axis corresponds to the average fitness (blue
line) and the best fitness (red line) on every generation. It
can be seen that in about generation 20 the fitness stabilizes
until the end of the tests. The algorithm is able to achieve
an optimal score since the first generations, showing the
robustness of the applied strategy.

The score chart (Fig. 8) is very similar. The blue line is
the average score and the red line is the best score achieved
on every generation. The stabilization of the scores occurs
again around the 20th generation, agreeing with the fitness.

In both figures the mean values stabilize in values that
represent around 2/3 of the maximum values in each chart.
The maximum score in the fitness chart is equal to 2.0, the
value when all SFFs are equal to 2.0, which occurs when
TD = 195, scores = 3 and ∆Y = 0. This means that the
agent was able to pass through all three pairs of pipes and
did not shock into anything. This implies that the SFF =
α+β = 1.0 + 1.0 = 2.0, leading to a AFF = [(1.0×2.0 +
2.0×2.0+6.0×2.0)/(1.0+2.0+6.0)] = (18.0/9.0) = 2.0,
since k1 = 1.0, k2 = 2.0 and k3 = 6.0. On the other

2https://github.com/matheus123deimos/Papers
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Figure 7. Agent fitness chart.

Figure 8. Agent scores chart.

hand, the maximum score possible is equal to three, which
corresponds to transpose three pairs of pipes.

When put to play the real game with random types of
obstacles, an agent is able to transpose all pipes indefinitely.
This can be seen in Fig. 9, in which an agent achieved
a score greater than ten thousand and is still playing the
game. This shows that the minimal training strategy was
very successfully to generate agents with optimal behaviors.

B. Speciation

Fig. 10 shows the Speciation Chart, in which the x-axis
informs the generations and the y-axis informs the size of
the species that is at most 30. Since only a single species
was enough to converge and solve the game, only a single
color is shown.

C. Topology

The phenotype of the best agent of the last generation is
shown in Fig. 11. It is interesting to note that this phenotype
is a perceptron, a very simple model of an artificial neural
network. The network weights computed for each input are:

• W Ay: 0.6285.

Figure 9. Example of an agent playing the full game, achieving a score of
more than ten thousand and still alive.

Figure 10. Speciation Chart.

• W By: -1.5107.
• W Cy: 1.6638.
• Bias Node: -1.0770.
The weight of the input Ay ensures that when the agent

is with a small value of the y coordinate, i.e. the agent is
far above the passage, the sigmoid function will result in a
very low jump probability. This implies that the agent will
tend to go down by the action of gravity. However, when the
agent has a high value of the y coordinate, i.e. the agent is
far below the passage, the sigmoid function will tend result
in a very big jump probability, which will lead the agent
goes up.

Figure 11. Topology found by NEAT.
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Evaluating all of the three results together it can be seen
that, our methodology turned the game into a problem simple
to solve by the algorithm. Those results show that training
agents using a very restricted training environment, only
three types of obstacles, can lead to optimal behaviors.

V. CONCLUSION

In this work, the authors propose a minimal training
strategy to generate agents capable of achieving optimal
scores in the game Flappy Bird. By using scenarios with
only three different types of obstacles to train the agents,
they evolved a neural network to stay alive indefinitely in an
environment with endless pair of pipes with random heights.
The fitness calculation used ensured that the objective of an
agent in a reduced environment represented its goal in a real
run of the game.

Because the obstacles used have gaps near the envi-
ronment borders and an intermediate one, when the agent
manages to maximize its result in these three cases it
then masters all possible variations within these limits.
Considering that NEAT always searches for the simplest
solution to a problem and that the fitness presented together
with the division into three scenarios help the NEAT find a
perceptron network architecture using a single species, this
solution is the simplest. The techniques discussed in this
work helped the algorithm to find this solution in a short
time, thus proving its effectiveness.

Using a population of only 30 individuals, the evolution-
ary algorithm was able to converge to an optimal behavior
after about twenty generations. At this point, an agent is able
to play the game indefinitely. This shows that this strategy
can find optimal solutions in a short number of generations.
As future works, this minimal training strategy can be tested
in simple platform games that show some kind of action
repetition through their stages, and also with different types
of learning algorithms.
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