
Ambient Sound with Signed Distance Fields and Gradient Fields

Tiago Boelter Mizdal, Cesar Tadeu Pozzer

Universidade Federal de Santa Maria

Programa de Pós-Graduação em Ciência da Computação

Santa Maria, Brazil

tiagomizdal@gmail.com, pozzer@inf.ufsm.br

Abstract— Ambient sound is an important part of any video

game. They can present the player with the world that is

beyond what is on the screen and can have a key role in

creating an immersive experience. In this paper we propose

methods to map static ambient sounds on worlds of any size

in a very efficient way and we also present a realistic way to

map the sound of static objects such as rivers. The first

method uses signed distance field and the second uses gradient

fields. This research also contains methods to save this field

into files and options that can be used to reduce the size of the

files.

Keywords-ambient sound; signed distance field; gradient

fields; compression; spatial sound;

I. INTRODUCTION

The Video Game industry is a big part of our world.
They give us the opportunity to immerse ourselves on a
different world and to experience things that we would not
be able to experience in any other way.

Sounds are very important in creating an engaging
experience. They can present a world to the player beyond
what is presented on the screen. A certain type of music can
create an atmosphere that helps to engage the player's
emotions on a determined situation. For example on a scary
game or on an intensive action packed shootout. Sound cues
can give a feedback on what is happening to the player, they
can tell when to change gear on a racing game, tell if the
player hit a certain target, can make the player aware of
enemies before they appear on screen, among many other
things. Mapping ambient sound is an important part of
sound design. It consists in playing a certain type of sound
or sounds depending on the player’s location and
surroundings.

This paper presents a method to accurately map ambient
sound on sceneries of any size and also allows different
sound effects to be mapped on different parts of the scenery.
The method uses signed distance fields to map every
location on the environment, where different distance fields
are used for different sounds. Gradient fields are used to
map sounds from static sources that occupy a large portion
of the environment, such as rivers or forests. We also
present a way to accurately calculate the origin of the sound
from static sources, so it can be implemented on a signed
distance field. The research presented on this paper can be
easily implemented on most video game engines, such as
Unreal Engine and Unity.

To the best of our knowledge, no prior researches have
considered the use of signed distance fields and gradient
fields to map ambient sound. Most of the information
regarding this topic was found on internet forums and talks

on Game Developers Conference (GDC), but no
information found resembles our research.

This paper is organized as follows: Section II presents
related works on the subjects, Section III introduces a
method to map the environment, Section IV describes a
method to give direction to the sound, Section V discusses
about saving files and how to reduce their sizes, Section VI
shows how this paper can be used on modern video game
engines, Section VII presents results and section VIII
discusses conclusion and future works.

The contributions of this paper are as follows:

 We propose a method to map different static
ambient sounds using signed distance fields and
gradient fields. The precision of the audio source is
given by the resolution of the fields.

 The signed distance fields and gradients field can
be precomputed and saved on file. This makes
finding the proper ambient audio to play on a
specific situation extremely fast.

 The solution presented can also be used to map
different sound effects on different parts of the
environment.

 Multi-resolution gradient fields and signed distance
fields can be applied to save space and accurately
map critical regions, such as buildings or other
enclosed spaces.

II. RELATED WORK

In [1] they use axis aligned bounding boxes and oriented
bounding boxes [2] to separate the environment in different
zones. Each zone has a corresponding ambient sound and a
bounding box is used to check for collisions. When the
player collides with a bounding box, that zone is triggered
and a different ambient sound is played. They also apply
different sound effects to different parts of the scenery, like
reverberation or occlusion.

The use of raytracing on [3] allows for a more precise
mapping of the player immediate surroundings, it also
present a method to accurately produce sound effects, based
on objects that are close to the player and that can interfere
with the audio in some sort. The accuracy and performance
of this method is given by the amount of rays casted per
frame.

Mapping the sound of a river according to the player’s
location can be a challenging task. The player may be
moving alongside the river and the sound must come from
a direction that allows the player to locate the river, even
when the player cannot see it. Most of the methods known
revolve around the use of multiple instances of the same

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 409

audio source placed along the course of the river and then
being blended together to simulate the correct direction. Our
method can accurately map the direction of a river without
the need of multiple audio sources.

III. MAPPING THE ENVIROMENT

A signed distance field (SDF) is a way of mapping the
virtual world according to a distance relative to a specific
area or object. On this paper positive distances means that
we are outside the area or object, while negative distances
means that we are inside.

Using a signed distance field, allows us to map different
audio for different regions of our world, it also allows us to
give a different volume to the sound, based on the player’s
position in the world. A SDF does not allow us to map the
direction from where the sound is coming, but in many
situations, there is no need for the sound to have a specific
source. For example, when the player enters a house, there
could be some ambient audio there, like a music to help put
the player on a specific mood, but it does not need to come
from a specific spot. Another example is wind, we can hear
the wind on a determined region, but do not hear the
direction it is coming from.

To map the environment and give a direction from
where the sound is actually coming from, we use gradient
fields. Which is similar to a SDF, but instead of only saving
the distances, we save a vector that points to the sound
source.

Since the SDF can only map a distance, we have to use
a different SDF for every audio that we want to map. We
begin by separating our environment into equally sized
cells. The resolution of the cells depends on the accuracy
required by the target application. The smaller the cell size
the more accurate the sound is, but on the other hand, the
overall size of the SDF will be larger. Fig. 1 shows an
example of an environment with its cells and possible SDF.

Figure 1. In green the region to be mapped. The numbers

represent the distance from that cell to the region.

For each cell, we calculate the distance from the cell
center position to the closest point in the area that we are
evaluating. Then, based on the distance we can set the
volume of the audio for that region.

To avoid playing audio when we are too far away from
the area, we can set a threshold for the distance, and if the
distance is larger than our threshold, no audio will be
played.

IV. GIVING A DIRECTION TO THE SOUND

A SDF maps the environment by storing a distance, thus
it can only map the places where a sound must be played
and the intensity in which it is supposed to be played. To
map the sound origin position and give it a direction we can
use a gradient field.

A gradient field is similar to an SDF, but instead of
saving the distances between every position on the world to
a determined area, we save a vector. This vector will have a
direction that points to where the sound is coming from and
the volume of the sound is relative to the vector’s
magnitude.

To calculate this vector we developed an equation that
takes in consideration the fact that the volume in which
humans perceive a sound is squared relative to the intensity
in which the sound is played. This vector points in the
overall direction given by multiples audio sources near the
player.

Given a maximum distance that we can hear the sound,
we calculate a vector for those positions that are closer than
the maximum distance to a river or other static object that
we want to map.

Figure 2. A resulting gradient field by mapping a set of rivers.

Given a situation where we want to map the sound of a
river. By getting close to the river, the sound of the river will
be coming from multiple points. We developed an equation
that allows us to take in consideration every point that act as
a sound source and calculate the overall direction from
where the sound should be coming from.

𝑉 =

∑
(𝑜𝑛 − 𝑝)
|𝑜𝑛 − 𝑝|2

𝑛
1

𝑛

First, we calculate a set of vectors that are given from a

defined position to all points closer than the maximum

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 410

distance from our target area or object. Then we calculate
the average of the sum of all the vectors in the set divided
by their respective magnitudes squared. As can be seen on
equation 1. Where 𝑉 is the resulting vector, 𝑝 is the player
position, 𝑛 is the number of samples from our object and 𝑜𝑛
is the position on our object.

Fig. 2 shows an example of a gradient field that maps
the sound of multiple rivers, on this example the maximum
distance to play a sound is 75 meters. Fig. 3 shows resulting
vectors from the equation.

Figure 3. The number represent the Cartesian coordinates. In red

the static objects to be mapped. In blue the player positions. In

green the resulting vectors.

V. MAPPING DIFFERENT SOUND EFFECTS

By using something similar to a SDF and a gradient
field, we can map sound effects to different areas. For
example, we can map the environment with values that
correspond to the amount of reverberation under a bridge or
inside a tunnel.

Another way to do this is by pre-defining different sound
effects, such as distortion, reverberation, echo and many
others. For each sound effect we can specify a number and
create a table, thus we can map different sound effects at
once. Considering that a byte contains eight bits, we can set
each bit to a different sound effect. Making it possible to
map eight different sound effects at the same time while
using a single byte of memory for each cell. However this
way we cannot save the accordingly intensity of the sound
effect, only if it is occurring or not.

VI. MULTI-RESOLUTION FIELDS

There are certain scenarios where a fixed resolution for
the SDF and the gradient field can cause some errors. For
example, given a world that contains a house where a
specific audio must be played. The house may not be a
perfect fit for our SDF, and so one or more edges may rest
in the middle of a cell. Therefore, when the players get near
the house, we may evaluate a cell and consider it to be inside
the house and play the sound. But in reality the player is
outside the house, but on a cell that contains it.

To solve this problem we propose the use of multiples
SDF or gradient fields, each with a different resolution. One
resolution for the overall world and a higher resolution for
the house. We create the SDF or gradient field for the house
using a resolution the closely fits the model, thus avoiding
any errors that may occur. Then we define a specific value
for the field, the value tells us that on that cell we must find

the other SDF or gradient field. Thus sampling the higher
resolution.

Fig. 4 shows an example of the error that can occur, and
Fig. 5 present multiple resolution that can solve the
problem.

Figure 4. The blue square is the house or object we want to map

and the red cells are considered to be inside the house.

Figure 5. Multiple resolutions, the blue square is the house or

object to be mapped, and the multiple resolution solves the

problem from Fig. 4.

VII. SAVING TO A FILE

Both the SDF and the gradient field can be precomputed
and saved into files. Since the SDF is consisted only by
distances, we can save it as an integer or a float. However,
the gradient field consists of vectors and should be saved as
two or three floats per vector, depending on a 2D or 3D
approach. For the following we will consider a 2D
approach.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 411

Considering that, a float is two bytes and an integer is
one. The size of the files can be quite large in a raw state.
For example, given a world of 500 by 500 meters and a
resolution for the SDF and gradient field of 10 centimeters.
The fields would have 25 million entries, which would be
from 100 to 200 megabytes of storage for the SDF and 400
megabytes for the gradient field. For larger worlds with
better resolutions, the size of the files can reach several
gigabytes.

To shrink the file sizes we explored two options. The
first one is based on [4], where they precompute a
determined number of vectors and use those vectors as an
approximation of the real ones. The second option is to use
compression methods, in this paper we focused on LZ4 and
deflate because they are both lossless and can greatly
compress files that have a contain an single entry multiple
times.

Quake 2 precomputes 162 normal vectors to be used
later as an approximation to calculate the lighting of the
scene. In our research, we decided that saving the entries
from the gradient field as an unsigned short, which provides
an excellent precision and the resulting file size is one eighth
of the original one, which contain two floats per entry.

An unsigned short has two bytes, which can represent
up to 65535 distinct numbers. This gives us enough
information to represent up to 360 different vectors with 181
different magnitudes. We precompute all this different
vectors and associate each one of them as a number from
zero to 65160 on a table. For each vector on the gradient
field, we find the most similar vector that was precomputed,
and substitute them by the number on the table. By doing
this we lose some precision, but the size of the file is greatly
diminished.

To compress the files, we must first set a no data value.
This no data value is a determined number, which will
represent the entries, that no sound is played. For example,
if the maximum distance is 100, the no data value can be
101.

Since in the majority of cases, most of our SDFs and
gradient fields will represent sound only in a certain portion
of the entire scenery. By setting a no data value, we ensure
that a large portion of the SDFs and the gradient fields will
have the exact same value, which will greatly increase the
compression rate of LZ4 [5] and deflate [6].

In the most common cases LZ4 was able to compress
the files an average of 900% and deflate was able to
compress an average of 800%. Both compression
algorithms have very similar decompression times.

On the worst cases, where we did not set a no data value
and the entire SDFs and gradient fields were created without
a maximum distance, we were still able to reduce the size of
the files by 50% to 60%.

We can also combine both options to get even better
results.

VIII. USAGE ON MODERN VIDEO GAME ENGINES

Most modern video game engines have an audio

listener, which is usually on the camera, and an audio

source. The audio listener is used to receive the audio from

the audio sources. The audio sources are position on the

world that will emit sound. The engines calculate the way

that the sound is perceived based on all the audio sources

available and the position of the listener.

To implement our method on most video game engines

using SDF, we can set the audio source as non-spatial or

2D or we can place the audio source at the same position as

the listener. Therefore, when we play the audio, the sound

does not come from a specific location, it does not have a

direction. Moreover, we can adjust the volume of that

specific sound based on the values of the SDF.

In the case of gradient fields, we have to set the audio

sources as spatial or 3D and place the audio source in a

certain direction from the listener, this direction is based on

the vector from the gradient field. Fig. 6 presents an

example from Fig. 3. The magnitude of the vector represent

the intensity of the sound played.

Figure 6. The wood boxes are the static objects and the green

box represents the audio source. The player contains the listener.

IX. RESULTS

The methods presented on this paper were implemented

on Unity Engine and Unreal Engine 4.22.3. In both engines

we were able to precisely map ambient sounds in different

environments.

Utilizing signed distance field we were able to easily

map regions with wind and forests. In addition, different

types of audio can be played at the same time where

different regions overlap.

The use of gradient field presented the best results. The

ability to precisely map static ambient sounds on the world

can make a huge difference on the player’s immersion. By

mapping a river course through a scenery, we were able to

follow the river course without noticing any kind of flaws

and always having the correct direction from the sound

source.

Both the SDFs and gradient fields were computed using

compute shaders, in order to accelerate the process. The

fields were saved into textures and then into images.

Computing SDFs and gradient field, with resolutions of

8192 by 8192 took from two to five seconds to compute,

depending on the amount of object that needed to be

analyzed. When we mapped rivers and forests on a terrain

with 60 by 90 kilometers and resolution of half a meter, the

whole process took 20 minutes for the SDF and close to

one hour for the gradient field.

When reading the SDF and the gradient field from files,

we used a method that allows the file to be read in smaller

blocks. Reading a single block based on the players

location had zero impact in performance. A block contains

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 412

a small portion of the map, so another block will only be

read when the player moved a certain distance.

On the most common cases, the size of the files ranged

from 200 megabytes to 1 gigabyte. However, the after

applying our options to shrink the files, we were able to

diminish the files to one to five megabytes. On our most

extreme test, where the file had 16 gigabytes, after applying

both the table with precomputed vectors and compressing

it with deflate the resulting file had only 80 megabytes.

Implementing the methods proposed on this paper is

easy on most modern video game engines, since the

majority of engines present audio listeners and audio

sources.

X. CONCLUSION AND FUTURE WORKS

The research is new and presents a precise way to map

ambient sounds on worlds of any size. The use of gradient

fields present a better way to add static ambient sound to

our worlds. The method proposed to map the sound of a

river has a better result than any other method that we could

find.

By precomputing the SDFs and gradient field and

saving them into files, we have a precise way of mapping

the scenery and still has zero impact on performance. This

paper also presents options to reduce the final size of the

files.

On procedural generated worlds, every time a new part

of the world would be generated we would also need to

generate all corresponding SDFs and gradient fields for that

part. Depending on the case, calculating all fields can take

a toll of performance, however, once the sounds are

mapped the performance would increase. A solution to

avoid performance loss is to calculate the SDFs and

gradient field in an asynchronous way, and only using them

once they are done.

Another option to improve the size of the files is by

using multiples resolutions on the same SDF or gradient

field. This would allow for smaller files and lower

computing times.

Wind can change the distances from which we perceive

a sound. Another point of future research is to apply wind

when reading from a SDF or gradient field, to hear sounds

that would not be possible before on determined position.

ACKNOWLEDGMENT

We thank the Brazilian army for the support through the
SIS-ASTROS project.

REFERENCES

[1] Rockstar Games, “The Sound of Grand Theft Auto V,” Game

Developers Conference 2014. Accessed on July, 15, 2019.
https://www.youtube.com/watch?v=L4GuM15QOFE.

[2] C. Ericson, “Real Time Collisiong Detection”, Morgan Kauffman
Publishers, 2005.

[3] Platinum Games, “An Interactive Sound Dystopia: Real-Time
Audio Processing in NieR:Automata.,” Game Developers
Conference 2018. Accessed on July, 15, 2019.
https://www.youtube.com/watch?v=BrUQdd96qzk.

[4] Id Software, “Quake 2 Source Code,” Accessed on July, 15, 2019.
https://github.com/id-Software/Quake-2.

[5] LZ4, “LZ4,” Accessed on July, 15, 2019. https://github.com/lz4

[6] L. Peter Deutsch, “DEFLATE Compressed Data Format
Specification version 1.3,” 1996.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 413

