
A Survey of Procedural Dungeon Generation

Breno M. F. Viana and Selan R. dos Santos
Departamento de Informática e Matemática Aplicada — DIMAp

Universidade Federal do Rio Grande do Norte — UFRN
Natal, RN Brazil

bmfviana@gmail.com, selan@dimap.ufrn.br

Abstract—Procedural content generation (PCG) is a method
of content creation fully or semi-performed by computers.
PCG is widely used in game development to generate game
content, from Rogue (1998) to No Man’s Sky (2016). PCG
generates final contents, which are ready to be added to a game,
or intermediate contents, which are might work as content
sketch to be polished by human designers. In this paper we
survey the current state of procedural dungeon generation
(PDG) research, a subarea of PCG. We analyzed the works
according to the game features they generate, the solution
strategy employed and the taxonomy of procedural content
generation. Some of the relevant findings of the survey are:
(1) PDG for 3D levels has been little explored; (2) few works
supported levels with barriers, a game mechanic which blocks,
temporarily, the player progression, and; (3) and just a few
solutions relied on mixed-initiative approach, where a human
design content is combined with a computer generated level.

Keywords-survey; procedural content generation; game con-
tent generation; procedural dungeon generation;

I. INTRODUCTION

According to Togelius et al. [1], in games, Procedural
Content Generation (PCG) “refers to computer software
can create game content on its own, or together with one
or many human players or designers.” In other words,
PCG is a method of game content creation fully performed
by computers or in association with human designers or
gamers. PCG may be considered a valuable asset in game
development mainly because (1) it may bring down the high
cost of production of game features by reducing the need of
a human designer to generate content; (2) it may help human
designers to increase their creativity and productivity; (3) it
may be applied to control the game difficulty, and/or help
game balancing, and; (4) it may increase the replay value of
a game by providing unexpected contents.

PCG is usually applied to generate dungeon levels in
games. These games are often classified by the game com-
munity as rogue-like games. Some examples are: Rogue
(Troy and Wichman, 1980), the game which introduced
the rogue-like genre, Diablo (Blizzard Entertainment, 1998),
The Binding of Isaac (Edmund McMillen, 2011), Don’t
Starve (Klei Entertainment, 2013), Crypt of the NecroDancer
(Brace Yourself Games, 2015), Moonlighter (Digital Sun,
2018) and Dead Cells (Motion Twin, 2018).

Dungeon levels, according to van der Linden, Lopes and

Bidarra [2], are labyrinthine environments which consists
mostly of rewards, interrelated challenges and puzzles in
order to offer highly structured gameplay progressions. The
authors also published a survey on procedural dungeon gen-
eration (PDG), where they compared different approaches on
content generation, and tried to understand how the surveyed
methods were controlled. However, they did not attempt
to classify the methods under an unified taxonomy. This
shortcoming motivated us to produce a review exclusively
focused on PDG and, most important, target at classifying
the research under the taxonomy of PCG defined by Togelius
et al. [1]. We believe that this categorization might be
useful since it help us to better understand the approaches’
behavior, to identify shortcomings and strengths, as well as
tendencies (or lack thereof) in the recent body of research
aimed at PDG.

In this paper, we survey the current state of PDG. We se-
lected papers from ACM Digital Library, IEEE Xplore, and
Scopus. We considered only works related to generation of
dungeon or maze-like levels in the last 8 years. We focused
our review on the following categories: game dimensionality,
i.e., two- or three-dimensional; the game genre, i.e., RPG,
rogue-like, action-adventure, 2D platform, etc.; the level
structure, i.e., composed of caves, rooms, etc.; the algorithm
or solution strategies adopted by the PDGs; and, how well
they fit the taxonomy proposed by Togelius et al. [1]. Some
of the main findings of our review were: (1) few works
focused on PDG of 3D levels; (2) the generation of levels
with barriers (a game mechanic which blocks, temporarily,
the player progression), although interesting, has not been
much explored, and; (3) surprisingly few approaches relied
on mixed-initiative approach, when a human design steers
the computer content generation.

This paper is structured as follow: the Section II presents
the definitions of dungeon levels in games, defines some
game features and mechanics that we were interested in
while evaluating the papers, briefly introduces the taxonomy
of procedural generation, and provides an overview of some
of the automatic generation strategies we identified during
the survey. The Section III presents the quantitative and
qualitative results of the survey. We offer an overview of
the current state of PDG under the parameters introduced in
the Section II. We also highlight a few less explore avenues

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 391



of research associated with PDG. Finally, we conclude the
paper providing some suggestions of open challenges in the
field.

II. BACKGROUND

In this section, we define dungeon levels, and some related
game elements. We also present the taxonomy of PCG [1],
and an overview of the automatic generation algorithms
described in the surveyed papers.

A. Dungeon

A dungeon is a maze-like environment that is mostly
composed by three main game features: rewards, challenges
and puzzles [2]. This kind of environment is used by several
game genres. In this review, we identified three types of
level structures: (1) top-down mansion-like (Fig. 1a), e.g.
The Legend of Zelda’s dungeons; (2) top-down cavern-like
(Fig. 1b), e.g. Pokémon’s dungeons, and; (3) side-scrolling
(Fig. 1c), e.g. Spelunky’s dungeons. These types of level
structures may be the same for 2D and 3D level’s sketches.
However, the scenario’s structure in 3D are totally different
from 2D games.

B. Game Features and Mechanics

In this section, we present the definitions of some game
elements (features and mechanics). Some of the definitions
presented here were taken from [2].

1) Room: is a large area a level connected with another
rooms by doors or corridors. The Fig. 1a presents an
example of this game feature.

2) Item: is a game element that enables the player to
get some gameplay benefit. For example, a first aid kit that
recovers the player’s health.

3) Skill: is a game element similar to an item; the
difference between them is basically semantics (how they
are used in a game).

4) Barrier: is a feature that blocks, temporarily, the
player to reach some region of a level. The barriers usually
need one or multiple items or some special skill to be
unblocked.

5) Challenge: is an obstacle that hinders the player’s
progression. In the dungeon context, challenges are usually
treated as battle challenges.

6) Reward: is either an item, skill, or points the player
may just pick up along the way or earn after accomplishing
some difficult challenge.

7) Puzzle: is a certain type of obstacle that requires
from the player a certain level of reasoning to solve it. For
example, certain puzzles involve sorting items in a specific
order to unblock a barrier.

(a) Top-down mansion-like dungeon (Source: [3]).

(b) Top-down cavern-like dungeon (Source: [4]).

(c) Side-scrolling dungeon (Source: [5]).

Figure 1. Three main types of dungeon structures found in the survey.

C. Taxonomy of Procedural Content Generation

In this section, we present the taxonomy of PCG defined
by Togelius et al. [1]. We renamed each title of the clas-
sifications to simplify the reading. The taxonomy defines
7 axes that are used to classify approaches of procedural
generation:

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 392



1) Content Need: defines if a content generated by an
approach is necessary for the game to work (for instance,
the levels of a game) of it optional (for instance, to create
several types of weapons in a first-person shooter).

2) Generation Time: defines when the content is gener-
ated. An approach is offline when it generates the content
before the gameplay. Or it is online when it generates the
content during the gameplay.

3) Generation Control: defines how the approaches can
be parameterized and the dimensions of control. The control
of an approach is made by random seeds that allows
only one dimension of control. Or it is made by a set of
parameters that allows more dimensions of control.

4) Generality: defines the audience that the content is
being generated to. An approach is generic when the content
is generated for several players. Or it is adaptive when the
content is generated for a specific player.

5) Random Choice: defines the way that decisions are
made while the generation algorithm runs. The determinis-
tic approach generates the same content given the same set
of parameters, whereas the stochastic approach generates
different contents for the same set of parameters each time
the algorithm runs.

6) Generation Method: defines how the generation can
be performed. The constructive option generates a content
in only one pass, while the generate-and-test alternates the
generation and the consistency test of the content.

7) Content Authorship: defines the degree of the designer
interference. In the automatic generation only the computer
generates the content, whereas in the mixed-initiative the
designer has a thinner control over content (not only by
parameters) that is being generated.

D. Solution Strategies

We identified only two main solution strategies: construc-
tive or search-based.

1) Constructive Algorithms: These algorithms are often
quite different from each other, even if they are designed to
generate the same content type. Most of them are based on
random positioning and/or are based on algorithms created
for other purposes, such as Cellular Automata and Genera-
tive Grammars. A Cellular Automaton (CA) is, according to
Adams and Louis [6], “a two-dimensional grid of cell and
set of rules specifying cell-state transitions based on cells’
neighbors.” In PCG, this approach is commonly employed
to create the level’s spatial structure. Generative Grammars
are systems of grammatical rules that generates words [7].
Based on Generative Grammars (GG), other kind of gram-
mars have been developed, e.g. Graph Grammars [8]. The
graphs generated by Graph Grammars support the creation
of levels organized in rooms which may contain rewards,
and challenges [3], [9].

2) Search-based Algorithms: Solutions in this category
are usually based on metaheuristics [10]. Unlike the con-
structive algorithms, the search-based ones always test
the generated content to ensure consistency. Search-based
algorithms works by generating and keeping track of a
population of candidate contents, which are then evaluated
according to some quality (fitness) function; the content with
the highest score is the final result. Note that the fitness
function value might work both to indicate whether a content
is valid or not, but also to reflect the content overall quality.
Most of search-based approaches we reviewed are based on
Genetic Algorithms (GA) [6] [11] [12] [5] [13] [4] [14]
[15] [16]. The GA is a metaheuristic algorithms based on
neo-Darwinian theory of evolution. Some approaches use
GA to evolve CA rules that create maze-like levels. Other
approaches try to represent the content generation process
in such a way that it is possible to apply Answer Set
Programming (ASP) to generate content. ASP, according to
[17], “is a declarative logic programming approach aimed
at modeling constrained combinatorial search problems.”

III. SURVEY

We selected the papers for this review from the ACM
Digital Library, IEEE Xplore, and Scopus. The keywords
of the search query were “dungeon”, “labyrinth”, “maze”,
“PCG”, “game”, and variations thereof. We chose these
keywords because dungeons levels are often modeled as
a maze-like structure. We selected only paper that stated
clearly either in the title or the abstract that their focused
on automatic dungeon level generation. For each selected
paper we collected information regarding the game features
presented in Section II-B, and the design strategy described
in Section II-D.

We found a total of 26 articles that presented solutions for
dungeon generation. The Table I and Table II summarize the
data collected from these papers. Because two of the papers
presented more than one PCG algorithms (for comparison
purposes), we end up with a total of 31 approaches.

To simplify the view presented in Table I we abbreviated
the solution strategy approaches and we assigned IDs to the
taxonomy classes. The abbreviations of the solution strate-
gies are: Evolutionary Algorithm (EA), Genetic Algorithm
(GA), Genetic Programming (GP) Answer Set Programming
(ASP), Generative Grammars (GG), Cellular Automata
(CA) and Constructive Approach (CO). The IDs of the
taxonomy are: Generation Time (T1); Generation Control
(T2); Generality (T3); Random Choice (T4); Generation
Method (T5); and Content Authorship (T6). T1: offline (Off)
or online (On). T2: Random Seeds (RS) or Set of Parameters
(P). T3: Generic (G) or Adaptive (A). T4: Deterministic (D)
or Stochastic (S). T5: Constructive (C) or Generate-and-Test
(GT). T6: Automatic Generation (AG) or Mixed-Initiative
(MI).

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 393



TABLE I. COLLECTED DATA FROM ARTICLES I

Work Dimension Genre Solution Strategy Taxonomy
T1 T2 T3 T4 T5 T6

[18] 2D - GA Off P G S GT AG
[19] 2D - GA Off P G S GT AG
[20] 2D - GA Off P G S GT AG
[11] 2D - GA Off P G S GT AG
[21] 2D Rogue-like EA/ASP Off P G S GT AG
[9] 3D Adventure RPG GG Off P G S C AG

[22] 2D - GA Off P G S GT AG
[23] 2D/3D - CO Off P G D C AG
[24] 2D Rogue-like ASP Off P G S GT AG
[12] 2D - GA/CA Off P G S GT AG
[25] 2D - GA/CA Off P G S GT AG
[5] 2D 2D Plataform GA Off P G S GT AG

[13] 2D - GA/CA Off P G S GT AG
[26] - Rogue-like CO Off P G S C AG
[3] 2D Action-Adventure GG Off P G S C AG

[27] - - CO Off P G S C AG
[4] 2D - GA Off P G S GT AG

[15] 2D - GA Off P G S GT MI
[14] 2D - GA Off P G S GT MI

[28] (5) 2D/3D - CO Off P G 2D/3S C AG
[29] (2) 2D - CO Off P G S C AG

[30] 3D Adventure RPG GA Off P G S C AG
[17] - - ASP Off RS G S C AG
[16] 2D - GA Off P A S GT MI
[31] 2D - CO Off RS G D C AG
[32] 2D - GP Off P G S GT AG

To simplify the view of the data of the Table II we
provided aliases for each general type of dungeon spa-
tial structure: Top-down mansion-like (TDML); Top-down
cavern-like (TDCL); and Side-scrolling dungeon (SS).

A. Quantitative Analysis

Regarding the dungeon level dimensionality, 19 (out of
26) presented solutions target at 2D dungeon level genera-
tion. The Fig. 1a, Fig. 1b and Fig. 1c present examples of 2D
dungeon levels generated by Lavender and Thompson [3],
Liapis [4] and Baghdadu et al. [5], respectively. Only the
works from van der Linden, Lopes and Bidarra in [9], and
Karavolos, Liapis and Yannakakis in [30] proposed solutions
that generated 3D dungeon levels. Note, however, that these
two works in fact did not generated a true 3D structure.
Rather, they laid out 2D generic structures (called sketches)
and then connected 3D chunks (rooms) previously created
by a human designer based on these sketches. Both works
generated levels for Dwarf Quest (Wild Card Games, 2013).
Fig. 2 present examples from each paper.

The papers from Santamaria-Ibirika et al. [23], and Baron
[28] described solutions that worked both for 2D and 3D.
The Santamaria-Ibirika’s work is based on Voronoi Diagram
and Delaunay Triangulation which enables a less artificial
level generation. The Fig. 3 presents an example of a level
generated with their approach. The Baron’s work, however,
does not generate a true 3D level. Instead, it generates a
2D text-based sketch which undergoes a extrusion process
to become a 3D level (see Fig. 4).

Finally, the last 3 papers only generated a high level

(a) Level generated by van der Linden, Lopes and Bidarra [9].

(b) Level generated by Karavolos, Liapis and Yannakakis [30].

Figure 2. Generated levels for the Dwarf Quest.

representation for a dungeon level that could neither be
classified as 2D nor as 3D.

In terms of game genre only 7 (out of 26) papers men-
tioned the game genre their solution were designed for [3]

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 394



Figure 3. Slice of a cave generated by Santamaria-Ibirika et al. [23].

(a) 2D Level generated by Baron’s work [28].

(b) 3D Level generated by Baron’s work [28]

Figure 4. 2D and 3D Levels generated by Baron’s work [28].

[5] [9] [21] [24] [26] [30], and 5 of them specified the
game the solutions were developed for. This means that
most works prefer to provide solutions that are game genre
agnostic.

In terms of solution strategy 18 papers described an evo-
lutionary based approach. From these, 14 papers relied on
genetic algorithms or derivations, 2 applied ASP algorithms
to generate dungeon levels ([24] and [17]); 1 used genetic
programming [32], and; the last one involved an variation
of evolutionary algorithms combined with ASP [21].

The remaining 8 papers described constructive ap-
proaches, derived from different strategies. Lavender and

Thompson [3] and van der Linden, Lopes and Bidarra [9]
developed solutions based on generative grammar approach
that creates a missions’ graph which aims to build the level.
Santamaria-Ibirika et al. [23], as we already said, is based
on Voronoi Diagram and Delaunay Triangulation. Forsyth
[26] developed a algorithm that generates level sketches by
simply placing rooms randomly. Hell, Clay and ElAarag [27]
developed a algorithm that generates level sketches from
the expansion of a tree which represents the level sketch.
Baron [28] presented five different algorithms which are
combinations of Room-Generation and Corridor-Generating
algorithms, they are: Random Room Placement and Random
Point Connect; Random Room Placement and Drunkard’s
Walk; BSP Room Placement and Random Point Connect;
BSP Room Placement and Drunkard’s Walk; and SP Room
Placement and BSP Corridors. Hilliard, Salis and ElAarag
[29] introduced two algorithms: Span* that generates a set of
of random points which becomes rooms and connect them
with Prim’s algorithm [33]; and Growth that generates a
level by a set of points which becomes rooms and new
random rooms are connected with them. Sampaio et al.
[31] presented a solution to level generation based only on
Random Room Placement.

Only 4 papers employed hybrid approaches to generate
dungeon levels. Ashlock [25] and Pech et al. [12] [13] used
GA to evolve CA rules. More specifically, CA rules gener-
ates the maze-like dungeons levels, while the GA evolved
the CA rules to satisfy some level’s constraints. Togelius,
Justinussen and Hartzen [21] presented a combination of
EA-ASP, with each of them having different responsibilities.
While the ASP is responsible to ensure the level viabil-
ity (well-formedness, playability and winnability), the EA
evolves the level in order to optimize the challenge and skill
differentiation.

The division of responsibility is a common feature in
constructive approaches. However, due to the high number of
contents or the representation of the level, one search-based
algorithm rely on this feature to facilitate its the development
and to improve its results. Liapis [4] introduced two similar
search-based algorithms: the first one generates the dungeon
sketch and the second one generates the rest of the dungeon.

Next, we analyze the papers in terms of the Togelius’s
taxonomy. We begin with the Generation Time (T1). All
papers presented offline generation. This result was also
found by van der Linden, Lopes and Bidarra [2]. Clearly we
need to begin to explore online solutions, since it has the
advantage of saving memory and the content is generated
while the player is progressing.

In terms of Generation Control (T2), only 2 papers
presented solutions with random seeds as generation control
[17] [31]. The solutions of the remaining papers were
controlled by a set of parameters. The overwhelming choice
for set of parameters makes sense since they enable the
human designer to have a finer control over the results.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 395



Considering the Generality (T3), all but one presented
solutions for generic level generation. Only the paper from
Alvarez et al. [16] were adaptive in the sense that an human
designer is responsible for selecting levels to be “evolved”
by the automatic process. Ultimately, the human designer
decides when the generation process stops. However, the
existence of only one paper on adaptive approach does not
mean that the generic approach generates perfect solutions.
There are still some game features that influence the level
structure and, therefore, might be generated in conjunction
with the dungeon level.

In terms of Random Choice (T4), only 3 papers were
deterministic [23] [28] [31]. The remaining papers were
have stochastic approaches. Again, this result is somehow
expected since it is more interesting to generate different
contents to increase the replayability of the game.

Regarding the Generation Method (T5), we have 16
search-based solutions, which fall under the category
generate-and-test (GT). This result indicates that ensuring
the consistency of levels is a hard task for PCG since
it is necessary to perform consistency tests to validate
the generated level. That is why this approach is often
much more computationally expensive than constructive
approaches. The remaining papers are Constructive based
(C).

In terms of Content Authorship (T6), automatic generation
dominates over mixed-initiative. Only the two algorithms
introduced in [14] [15] and one presented in [16] are mixed-
initiative. These 3 papers are all from the same research
group. Their work enables the human designer to (1) edit
a level which was automatically generated, (2) observe this
level evolve into a set of possible levels, (3) choose the
best one, and, if necessary, (4) repeat the evolutionary cycle
until he or she is satisfied. The Fig. 5 presents the tool
(Eddy - Evolutionary Dungeon Designer) developed by their
research group.

Next we list some quantitative results that accounts for
the presence of the game elements described earlier in
Section II-B.

Recall that a dungeon is ideally composed by rewards,
challenges and puzzles. However, the results show us that
most works do not present solutions that generate levels
with all these game features simultaneously. Only 2 works
generated dungeons with rewards [3] [27]. Only 3 papers
generated dungeons with challenges [9] [17] [21]. Only 6
works presented levels with rewards and challenges [5] [4]
[14] [15] [16] [31]. Finally, only [30] presented levels with
all three elements, i.e. rewards, challenges and puzzles.

Only 8 works presented solutions that consider the level
difficulty as an input information while generating a level [5]
[9] [14] [15] [16] [26] [27] [31]. All these works allow the
control over the level’s difficulty by setting a difficulty value.
As the player progresses through the levels, the difficult
value also increases, which makes the generator create more

Figure 5. The mixed-initiative Baldwin et al. [15].

complex (hard) levels.
Few papers presented a level generator that supports the

mechanic of barriers. There were two types of barriers: (1)
a barrier that needs only one key to be unlocked; and (2)
several barriers that are opened by a single key. The first
kind of barrier was presented as a door (a barrier) that needs
only one key to be unlocked in [3] [9] [32]. Lavender and
Thompson [3] and van der Linden, Lopes and Bidarra [9]
did not focused on mechanic of barriers per si. Instead, they
treated it together with other kind of contents such as mis-
sions. Thus, some interesting characteristics of this mechanic
could not be proper explored. Pereira, Prado and Toledo [32],
however, present a solution that generates dungeon levels
with barriers that are opened with corresponding keys, as
depicted in Fig. 6 by the color association between doors
and keys.

In contrast, Smith, Padget and Vidler [17] generated both
the first and the second kind of barrier. For the second one,
the player needs to take a bow (a weapon that works as a
key) to defeat enemies (they work as barriers).

Barriers are clearly a promising research topic because
they play an important role in engaging the player: overcom-
ing barriers requires skill (to acquire the keys) and planning
(to figure it out the sequence of keys that open up the
barriers).

Most works presented solutions for generation of TDCL
dungeons (16 out of 26). Only 6 works presented solutions
that generate TDML dungeons [3] [9] [11] [24] [30] [32].
Only one work presented a solution for generation of SS
dungeons. This means that there are still much to explore
in the TDML dungeons and SS dungeons level generation
researches.

Only 6 works presented solutions that perform area or
room distinction to control what kind of content (e.g. en-
emies, rewards, etc.) will appear in the respective area or

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 396



TABLE II. COLLECTED DATA FROM ARTICLES II (LEVEL STRUCTURES: TOP-DOWN MANSION-LIKE OR TDML; TOP-DOWN CAVERN-LIKE OR TDCL;
AND SIDE-SCROLLING DUNGEON OR SS)

Work Reward Challenge Puzzle Barrier Difficulty Area/Room distinction Level Structure
[18] - - - - - - TDCL
[19] - - - - - - TDCL
[20] - - - - - - TDCL
[11] - - - - - × TDML
[21] - × - - - - TDCL
[9] - × - × × - TDML

[22] - - - - - × TDCL
[23] - - - - - - TDCL
[24] - - - - - - TDML
[12] - - - - - - TDCL
[25] - - - - - × TDCL
[5] × × - - × × SS

[13] - - - - - - TDCL
[26] - - - - × - -
[3] × - - × - - TDML

[27] × - - - × - -
[4] × × - - - × TDCL

[15] × × - - × - TDCL
[14] × × - - × - TDCL
[28] - - - - - - TDCL
[29] - - - - - - TDCL
[30] × × × - - - TDML
[17] - × - × - × -
[16] × × - - × - TDCL
[31] × × - - × - TDCL
[32] - - - × - - TDML

(a) Level without door distinction. (b) Level with door distinction

Figure 6. Examples of sketches generated by Pereira, Prado and Toledo
[32].

room. The works presented different ways to do the area or
room distinction. Valtchanov and Brown [11] (Fig. 8) pre-
sented a solution that is designed to identify the entrance and
event rooms. Smith, Padget and Vidler [17] (Fig. 7) present
a solution that only differentiates the entrance and the boss’
room from the other (they only generates the dungeon level
sketch). Ashlock and McGuinness [22] (Fig. 9) presented a
solution that assigns areas to the level’s components such
as the entrance, armory, and enemies location (goblins and
magical beings). Ashlock [25] (Fig. 10) presented a solution
that generates levels with different types of terrains, e.g.
a level with ground, water, and lava. Baghdadi et al. [5]
(Fig. 11) presented a solution that detects the type of room
and uses this information to evolve the levels. The rooms
in their work can become an ambush area (only enemies

Figure 7. Examples of sketch generated by Smith, Padget and Vidler [17].

in a dead-end), a guard chamber (only enemies), a treasure
chamber (only treasure), or a heavily guarded treasure cham-
ber (a room full with enemies and treasure). And, finally,
Liapis [4] presented a solution that may create 8 types of
rooms (which he called segments): wall segment (blocked
for the player); empty segment (just an empty room, with no
monsters or treasures); simple segment (special room with
few monsters and treasures); exit segment (a room with
the level’s exit); sparse challenge segment (contains more
monsters than rewards); sparse reward segment (contains
more rewards than monsters); high challenge segment (ops,
only monsters here!); and high reward segment (bingo! just
rewards). Liapis also distinguishes rooms based on the type
of connection they support (see Fig. 12).

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 397



Figure 8. Level generated by Valtchanov and Brown [11].

Figure 9. Level generated by Ashlock and McGuinness [22].

Figure 10. Level generated by Ashlock and McGuinness [25].

Figure 11. Level patterns of a level generated Baldwin et al. [15].

Figure 12. Some results by room type with four different kind of connec-
tions of Liapis’ work (Source: [4]).

B. Unexplored Research Topics

When we tried to match the data from both tables we
identified a few interesting points, highlighted in this section.
The work purposed by Santamaria-Ibirika et al. [23], for
instance, is the only one that generates the level sketch and
the 3D dungeon environment. Their work generate levels
with enemies and treasures. However, they do not support
other game features, such as puzzles or barriers.

Alvarez et al. [16] were the only authors that presented a
solution for adaptive dungeon generation. Their work used
area/room distinction and geometric patterns to help with the
adaptive generation. However, there are some game features
they do not generate in their approach that are interesting
to explore. Some of the game features could be used are
several types of puzzles or mechanic of barriers. Besides,
the Alvarez et al. work only generates TDCL dungeons.
Therefore, we might explore alternatives to generate TDML
and SS adaptive dungeons.

Alvarez et al. [16] work also presented a solution for
mixed-initiative approach. Therefore, another unexplored

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 398



topic is the association of mixed-initiative approach with the
puzzles and mechanic of barriers features and the TDML and
SS dungeons.

Surprisingly, only 4 papers (from the total of 26 papers
reviewed) presented dungeons with barriers [3] [9] [17] [32],
exclusively focused on TDML dungeon generation. Again,
new solutions that support barriers for TDCL or SS dungeon
levels might be promising.

C. Analysis Summary

The follow list summarizes the analysis of our survey:
• Interesting characteristics:

– Most dungeon level generators favors solutions that
are game genre agnostic;

– The search-based approach is predominant;
– Few works presented combination of approaches;
– It may be useful to separate the generation process

in steps, even for the search-based algorithms;
– It might be helpful to differentiate rooms during

the generation process, so that the method might
assign different purpose and/or content to rooms.

• The found major problems:
– Few works presented solutions for PDG of truly

3D levels;
– Just one work presented a solution for Platform 2D

dungeons;
– Not a single paper supported the balancing of the

level’s difficulty;
– Few works considered barriers;
– Few works distinguished areas and/or room;
– Only one work presented a solution for dungeon

level generation as defined by van der Linden,
Lopes and Bidarra [2];

– Not a single paper supported online generation;
– Only one work supported adaptive generation;
– Few works presented were mixed-initiative ap-

proaches.

IV. CONCLUSION

In this paper, we surveyed peer-reviewed research papers
on procedural dungeon generation. Our review pointed out
that there is a clear preference for search-based algorithms.
This behavior probably happens due to the high number of
constraints that are involved in dungeon level generation.
Most works disassociate the level generation from the game
genre. However, we believe that it might be important to
define the game genre a priori because it, in turn, might
narrow down the contents and constraints involved in the
level generation process.

From the overview analysis, we identified nine open
problems and, some unexplored research topics related to
PDG. In terms of open problems we highlight: (1) few works
presented solutions for PDG of 3D levels; (2) few works

presented solutions for levels with the mechanic of barriers;
and (3) few works presented solutions for mixed-initiative
approach. In terms of research topics we underline the lack
of more PDG solutions that support barriers and all the
complexities that comes with it, specially when applied to
top-down mansion-like, and side-scrolling dungeons. Also,
we need to further explore adaptive and mixed-initiatives
approaches, because they present the potential to generate
complex and challenging levels.

We conclude that the procedural generation of dungeons
still remains a complex problem. We have suggested a few
research problems to investigate. Some works were difficult
to evaluate due to the lack of information. To avoid these
problems in the future we suggest that published papers
should: (1) define the game genre or the specific game which
the level will be generated for; (2) define the level structure
(TDML, TDCL, SS, or any other); (3) classify the solution
based on the Togelius’s PCG taxonomy, and; (4) define the
generation problem mathematically, if it is possible. These
suggestions will hopefully improve the overall understanding
of the field, as well as help us keep track of open problems
and map important avenues of research.

REFERENCES

[1] J. Togelius, N. Shaker, and M. J. Nelson, “Introduction,” in
Procedural Content Generation in Games: A Textbook and
an Overview of Current Research, N. Shaker, J. Togelius, and
M. J. Nelson, Eds. Springer, 2016, pp. 1–15.

[2] R. van der Linden, R. Lopes, and R. Bidarra, “Procedural gen-
eration of dungeons,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 6, no. 1, pp. 78–89, 2014.

[3] T. Thompson and B. Lavender, “A generative grammar ap-
proach for action-adventure map generation in the legend of
zelda,” in Artificial Intelligence Simulation and Behaviour.
https://arro.anglia.ac.uk/700077/, 2016.

[4] A. Liapis, “Multi-segment evolution of dungeon game levels,”
in Proceedings of the Genetic and Evolutionary Computation
Conference. ACM, 2017, pp. 203–210.

[5] W. Baghdadi, F. S. Eddin, R. Al-Omari, Z. Alhalawani,
M. Shaker, and N. Shaker, “A procedural method for auto-
matic generation of spelunky levels,” in European Conference
on the Applications of Evolutionary Computation. Springer,
2015, pp. 305–317.

[6] C. Adams and S. Louis, “Procedural maze level generation
with evolutionary cellular automata,” in Computational Intel-
ligence (SSCI), 2017 IEEE Symposium Series on. IEEE,
2017, pp. 1–8.

[7] N. Chomsky, Language and mind. Cambridge University
Press, 2006.

[8] G. Rozenberg, Handbook of Graph Grammars and Comp.
World scientific, 1997, vol. 1.

[9] R. Van der Linden, R. Lopes, and R. Bidarra, “Designing
procedurally generated levels,” in Proceedings of the the sec-
ond workshop on Artificial Intelligence in the Game Design
Process, 2013.

[10] F. W. Glover and G. A. Kochenberger, Handbook of meta-
heuristics. Springer Science & Business Media, 2006,
vol. 57.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 399



[11] V. Valtchanov and J. A. Brown, “Evolving dungeon crawler
levels with relative placement,” in Proceedings of the Fifth
International C* Conference on Computer Science and Soft-
ware Engineering. ACM, 2012, pp. 27–35.

[12] A. Pech, P. Hingston, M. Masek, and C. P. Lam, “Evolv-
ing cellular automata for maze generation,” in Australasian
Conference on Artificial Life and Computational Intelligence.
Springer, 2015, pp. 112–124.

[13] A. Pech, M. Masek, C.-P. Lam, and P. Hingston, “Game
level layout generation using evolved cellular automata,”
Connection Science, vol. 28, no. 1, pp. 63–82, 2016.

[14] A. Baldwin, S. Dahlskog, J. M. Font, and J. Holmberg,
“Towards pattern-based mixed-initiative dungeon generation,”
in Proceedings of the 12th International Conference on the
Foundations of Digital Games. ACM, 2017, p. 74.

[15] ——, “Mixed-initiative procedural generation of dungeons
using game design patterns,” in Computational Intelligence
and Games (CIG), 2017 IEEE Conference on. IEEE, 2017,
pp. 25–32.

[16] A. Alvarez, S. Dahlskog, J. Font, J. Holmberg, and S. Jo-
hansson, “Assessing aesthetic criteria in the evolutionary
dungeon designer,” in Proceedings of the 13th International
Conference on the Foundations of Digital Games. ACM,
2018, p. 44.

[17] T. Smith, J. Padget, and A. Vidler, “Graph-based generation
of action-adventure dungeon levels using answer set program-
ming,” in Proceedings of the 13th International Conference
on the Foundations of Digital Games. ACM, 2018, p. 52.

[18] D. Ashlock, C. Lee, and C. McGuinness, “Search-based
procedural generation of maze-like levels,” IEEE Transactions
on Computational Intelligence and AI in Games, vol. 3, no. 3,
pp. 260–273, 2011.

[19] C. McGuinness and D. Ashlock, “Decomposing the level
generation problem with tiles,” in Evolutionary Computation
(CEC), 2011 IEEE Congress on. IEEE, 2011, pp. 849–856.

[20] D. Ashlock, C. Lee, and C. McGuinness, “Simultaneous dual
level creation for games,” IEEE Computational Intelligence
Magazine, vol. 6, no. 2, pp. 26–37, 2011.

[21] J. Togelius, T. Justinussen, and A. Hartzen, “Compositional
procedural content generation,” in Proceedings of the The
third workshop on Procedural Content Generation in Games.
ACM, 2012, p. 16.

[22] D. Ashlock and C. McGuinness, “Automatic generation of
fantasy role-playing modules,” in Computational Intelligence
and Games (CIG), 2014 IEEE Conference on. IEEE, 2014,
pp. 1–8.

[23] A. Santamaria-Ibirika, X. Cantero, S. Huerta, I. Santos, and
P. G. Bringas, “Procedural playable cave systems based on
voronoi diagram and delaunay triangulation,” in Cyberworlds
(CW), 2014 International Conference on. IEEE, 2014, pp.
15–22.

[24] A. J. Smith and J. J. Bryson, “A logical approach to building
dungeons: Answer set programming for hierarchical procedu-
ral content generation in roguelike games,” in Proceedings of
the 50th Anniversary Convention of the AISB, 2014.

[25] D. Ashlock, “Evolvable fashion-based cellular automata for
generating cavern systems,” in Computational Intelligence
and Games (CIG), 2015 IEEE Conference on. IEEE, 2015,
pp. 306–313.

[26] W. Forsyth, “Globalized random procedural content for dun-
geon generation,” Journal of Computing Sciences in Colleges,
vol. 32, no. 2, pp. 192–201, 2016.

[27] J. Hell, M. Clay, and H. ELAarag, “Hierarchical dungeon
procedural generation and optimal path finding based on user
input,” Journal of Computing Sciences in Colleges, vol. 33,
no. 1, pp. 175–183, 2017.

[28] J. R. Baron, “Procedural dungeon generation analysis and
adaptation,” in Proceedings of the SouthEast Conference.
ACM, 2017, pp. 168–171.

[29] N. Hilliard, J. Salis, and H. ELAarag, “Algorithms for pro-
cedural dungeon generation,” Journal of Computing Sciences
in Colleges, vol. 33, no. 1, pp. 166–174, 2017.

[30] D. Karavolos, A. Liapis, and G. N. Yannakakis, “Evolving
missions for dwarf quest dungeons,” in 2016 IEEE Confer-
ence on Computational Intelligence and Games (CIG), Sept
2016, pp. 1–2.

[31] P. Sampaio, A. Baffa, B. Feijó, and M. Lana, “A fast ap-
proach for automatic generation of populated maps with seed
and difficulty control,” in 2017 16th Brazilian Symposium
on Computer Games and Digital Entertainment (SBGames).
IEEE, 2017, pp. 10–18.

[32] L. T. Pereira, P. V. Prado, and C. Toledo, “Evolving dungeon
maps with locked door missions,” in 2018 IEEE Congress on
Evolutionary Computation (CEC). IEEE, 2018, pp. 1–8.

[33] R. C. Prim, “Shortest connection networks and some gener-
alizations,” The Bell System Technical Journal, vol. 36, no. 6,
pp. 1389–1401, 1957.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 400


