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Abstract— Advances in cloud computing have enabled 

systems where the game logic and rendering are processed 

on a server and streamed to a thin client. Meanwhile, there 

are still many challenges to provide games through the cloud 

without latency issues. This work proposes a novel technique 

to reduce encoding times and bandwidth usage on cloud 

gaming systems. We propose LACES (LAyer Caching gamE 

Streaming), an API that separates 2D game objects into 

multiple layers and allows the cloud server to encode and 

stream only modified parts of the frame. Using our 

technique, we managed to reduce the encoding size on the 

server by 99,79% and the average streaming size to the client 

by 96%, with no changes to the video quality or resolution 

and with no noticeable user input delay. 
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I.  INTRODUCTION 

In recent years, a variety of services are becoming 
available through remote access due to advances in cloud 
computing [1]. As computer networks become more 
reliable and provide faster response rates, combined with 
larger bandwidth, multimedia applications started 
benefiting from this environment [2]. Streaming services 
started providing content directly to the user without the 
need for downloading and installing the content before it is 
consumed. Currently, many different media types are 
provided through streaming, such as movies, music and 
games [3]. 

However, there are still some challenges to provide 
these services to a wide range of users with different client 
configurations, operating systems, devices and network 
capabilities. For example, Netflix (www.netflix.com) 

stores 120 versions of the same movie to accommodate 
different screen sizes, bitrates and codecs on every device 
supported by the platform [4]. Netflix’s approach works 
because it is streaming pre-recorded video. For live video 
or real-time interactive applications, any necessary 
adaptation on the content has to be done on the fly. The 
cost for transcoding a video in real time can be very high. 
Twitch (www.twitch.tv), for example, only uses Adaptive 
Bitrate (ABR) to transcode the raw video received from 
the streamer into multiple live video streams for the top 
channels in popularity. For other less popular channels, it 
just prepares the raw video stream and delivers it to users, 
avoiding transcoding tasks costs [5]. 

Video games are resource-demanding applications, 
which often require fast processors for handling its logic, 
physics and systems, and powerful graphics processors for 
rendering. Furthermore, games are always evolving on the 
technological side, which usually makes new games more 
and more hardware demanding. On upgradeable platforms, 

such as personal computers, users have to handle higher 
requirements by upgrading their systems. On other 
platforms with shorter life cycles, such as mobile phones, 
developers may choose to drop support for older hardware 
that cannot handle all the game’s requirements. In addition, 
on game consoles that usually have longer life cycles, 
developers have to limit their games to the current 
hardware until a new platform is launched. 

Compatibility between multiple platforms is also a 
great concern in game development. On consoles, a new 
platform release usually means dropping support for the 
entire legacy library. This is a problem for user satisfaction 
but mainly from game preservation [6] [7]. As older 
platforms are harder to find in the market, games for those 
platforms become inaccessible. 

Backwards compatibility is also a great issue on 
console and PC games. Microsoft has added an Xbox 360 
emulator for Xbox One [8] and Sony is currently providing 
PS3 games through the cloud to PS4 users with the 
PlayStation Now service [9]. On PC, support for older 
games is not always available, even though solutions like 
DOSBox [10] try to solve this issue.  

In all those cases, most problems rely on the client-
side. Console manufacturers cannot release a new 
upgraded platform every year, since the user base is built 
along many years during the platform life. On mobile and 
PC clients, higher requirements can reduce the amount of 
players that are able to access the game. Most of those 
issues could be solved by offloading to a remote server 
part of the game’s processing. This way, if a game requires 
more processing power, the game provider could update its 
servers, but users would still access the platform with a 
standard device.  

Cloud computing can bring solutions to those issues. 
The process of delivering games through cloud computing 
is known as cloud gaming. These systems allow users to 
remotely access and play games without specific or 
dedicated hardware. Mobile phones, low-powered laptop 
or desktop computers, smart TVs and other devices can be 
used to access games through the network and consume 
them as a video stream that was generated in the cloud. 
Since most of the workload with this model is on the 
server-side, developers can create games with lower 
concerns about performance and compatibility on the 
client-side. This allows users to run the same game on 
devices with different processing power and operating 
systems with little, if any, changes on the server-side. The 
client device just needs to be able to connect to a server, 
receive the video stream that is displayed to the user, and 
stream the user input back to the server. 

Cloud gaming also allows new business models for 
providing games to users based on a service model, instead 
of a product. Just like music and video streaming services, 
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games can be provided on a subscription basis, where 
users pay a monthly fee to have access to a library of 
streaming games. Other non-conventional ways to deliver 
streaming content are also possible, for example, using a 
local server to stream games to airplane or ship passengers, 
or hotel guests. 

Even though cloud gaming provides ways to reduce 
compatibility issues between different platforms, allows 
users to access games on multiple devices, helps to solve 
game preservation issues and opens new business models, 
there are still some challenges to make this kind of service 
accessible and functional for all users. Games are a real-
time interactive media and, as described by Huang et al. 
[11], users expect both high-quality video and low 
interaction delay. For a good user experience, some 
requirements such as a tolerable latency, related to a short 
round-trip time for the client input to be processed by the 
server and the result be displayed to the user, and high-
quality low-delay video streaming must be met. 

On cloud gaming systems, most of the processing 
workload is on the server-side. This means that for every 
game frame that is generated and streamed to the client, 
the server needs to process the game’s logic, render its 
graphics output, encode this output using a video codec 
and stream it. Maintaining a system that is able to perform 
all of these tasks, while keeping a low response delay, is 
challenging.  

Many works have proposed improvements in the 
streaming process to try to reduce delays and server 
workload [11] [12] [13] [14] [15]. There is a great focus in 
the literature on accelerating stages of the video encoding 
process, such as motion estimation, or applying techniques 
to reduce the video bitrate. Using those techniques, authors 
are trying to reduce the server encoding complexity, which 
leads to lower processing delays and amount of data sent 
through the network, reducing transmission delays. 

In this work, we propose LACES (LAyer Caching 
gamE Streaming), an API that introduces a novel 
technique applied directly on the application level that uses 
knowledge about the game to separate and group together 
data that needs to be encoded and transmitted to the client. 
Our approach focuses on using layer-caching techniques 
that can reduce both server workload and network usage. 
Using knowledge about how the game is structured, we 
propose combining game elements into different game 
layers that can be encoded and streamed separately. By 
caching each encoded layer, we can reuse this data for the 
following video frames and if a layer has not been 
modified, no new data needs to be sent to the client nor be 
encoded by the server.  

With LACES we expand our initial tests presented in 
[16] that were based on GamingAnywhere [11] and served 
as a validation for the multilayer streaming proposal. In 
this paper, we present a full game streaming architecture 
and an API to support multilayer game development and 
streaming. Also, we apply caching on the server-side and 
the possibility to stream translation updates for frames that 
were just moved on the screen. 

Because unchanged layers do not need to be encoded, 
this approach results in a workload reduction on the server-
side. In addition, the layers that have not been modified are 
also cached on the client-side to be displayed to the user, 

so they do not need to be streamed until they are changed, 
which also leads to lower network bandwidth usage. 

In this work, we also propose an API that game 
developers should use to adapt the game to benefit from 
our cache-based streaming proposal. The API core allows 
the developer to specify which game elements belong to 
which layer. Even though this API requires some work 
from the developer, his knowledge of the game is very 
important to provide a better user experience. For instance, 
the developer knows which elements are just background 
decoration and could have their encoding quality reduced 
if needed, without causing much impact to the user and the 
game. This means that the developer should specify how 
objects should be separated and prioritized, but no further 
game logic adjustments are needed. In practice, this can be 
easily implemented into any game engine, using tags to 
mark and classify these elements. 

The remainder of this paper is structured as follows. In 
Section 2, we present a related work survey and compare 
the proposed techniques found in the literature with our 
approach. In Section 3, we present an in-depth view of our 
proposed technique and API. This approach is evaluated in 
Section 4, where we present our experimental results. In 
Section 5, we present our conclusions and suggestions for 
future work. 

II. RELATED WORK 

Improvements on video streaming for cloud gaming 
have been proposed by different works in the literature, but 
the focus is usually on solutions for accelerating video 
encoding stages [14] [15], especially motion estimation, or 
to reduce the video bitrate by reducing the scene 
complexity [12]. Some older works also focus on 
streaming geometry (the game’s 3D models) [17] and 
graphics commands [13], splitting the graphics processing 
between client and server. On most cases, the goal is to 
reduce the server load, which is a major concern for cloud-
based systems with multiple users, and bandwidth usage. 

To the best of our knowledge, the idea of splitting the 
game rendering into multiple layers that are completely 
independent, using contextual information, has not been 
explored in any of previous works.   

Video games usually present rich graphics output with 
a lot of visual content to the user. When an image with 
more detail is encoded, the result is a frame with larger 
bitrate. Since not all objects presented on screen at a single 
time are crucial to the user’s experience, Hemmati et al. 
[12] propose a content adaptation method that selects and 
remove objects that are less important to the player’s 
current activity from the current frame. This results in an 
image with less detail, which is faster to encode and has 
lower bitrate.  

Hemmati et al. [12] propose to remove objects based 
on player’s activity within the game and Rahimi et al. [18] 
discuss how the object selection is done and the impact it 
has on player’s experience. The technique results in a 
significant bitrate and encoding time reduction, which can 
be even higher when considering the results for cloud 
servers with a massive number of concurrent users. 
However, there is an important setback, which consists 
that the objects selected for removal are completely deleted 
from the scene. The idea is that the developer may specify 
which elements are important for each activity. However, 
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even if an object is not important from the gameplay point-
of-view, visual elements are still important for immersion 
and having objects popping on the screen while game 
activities change can lead to odd experiences to the user. 
For instance, removing an object that is not an obstacle 
when the player is shooting will not affect the gameplay 
when the shooting activity is performed, but will result in a 
noticeable object pop in and out to the user. 

Even though most cloud gaming systems are based on 
video streaming, some works approach this problem in a 
different way. Eisert et al. [13] tries to solve the video 
encoding cost on the server by completely removing the 
video encoding from the process. Instead, graphics 
commands issued to the graphics hardware on the server 
are intercepted before they are sent to the video card and 
encoded and streamed to the client. The client application 
must decode and process these graphics commands locally 
to render the game and present the output to the user.   

That solution greatly reduces the workload on the 
server-side and can help to achieve lower interaction 
delays, because graphics commands can be streamed as 
soon as they are issued, instead of waiting for a full frame 
to be ready. With lower workload, servers could provide 
services for more concurrent users and still keep a good 
quality of service. The server can also translate graphics 
commands between APIs before sending them to the 
client. For example, if a client only supports the OpenGL 
API [19] and the game runs on Windows machines, the 
server may intercept the Windows DirectX commands and 
stream the equivalent OpenGL to the client. This helps 
solving compatibility issues between multiple platforms. 

On the other hand, Eisert et al.’s approach [13] offloads 
a large portion of the processing to the client. The game’s 
logic still runs in the server, but the client is responsible for 
processing the graphics commands and, ultimately, 
rendering the frame that is displayed to the user. This 
increases the hardware requirements in the client and 
makes this solution not feasible on low-powered devices. 
In addition, all the game’s geometry, game objects and 
textures need to be transferred to the client before the 
rendering starts. This can result in high bitrates while these 
objects are being loaded and bitrate peaks during the game 
while new objects need to be loaded or the number of 
graphics commands varies. With the video streaming 
approach, the bitrate variation depends only on the frame 
complexity. 

Li et al. [17] present a similar geometry streaming 
approach for online multiplayer games. The engine 
proposed by the authors enables progressive game 
download where the game content is downloaded as 
necessary, based on player’s location within the game’s 
world. This approach also allows game objects to be 
prioritized based on their importance and available 
bandwidth.   

Noimark et al. [14] propose a technique to reduce the 
complexity of streaming remote walkthroughs to handheld 
devices. This technique is based on segmenting objects 
into background and foreground layers and varying 
quantization levels for each layer. To represent the 
background information, Noimark et al. use an MPEG-4 
feature that allows representing an image as a mosaic that 
is reconstructed at the client. Modified parts are updated 
using global motion compensation data sent by the server. 

When these transformations are not enough to represent 
the necessary camera operations, such as zoom, a new full 
image is encoded and streamed from the server to the 
client. 

The motion estimation stage of MPEG-4’s encoding is 
very costly. To avoid this, Cheng et al. [15] propose an 
algorithm to replace the usual motion estimation process 
and calculate motion vectors directly from data collected 
from the scene. Using pixel position, depth buffer 
information and camera projection matrix, the algorithm is 
able to acquire the motion vectors by un-projecting a pixel 
in 2D space back to the 3D space and re-projecting this 3D 
point to the 2D space using the camera configurations from 
the previous frame. This enables the acquisition of a 
motion vector for a pixel between two consecutive frames. 

Cheng et al.’s method can present a great speed up on 
motion vector acquisition and fails only at some specific 
cases, such as pixel occlusion. The algorithm can only be 
used on static scenes, where interactivity comes only from 
camera movement. If the camera is static and objects are 
moved, the algorithm will not be able to detect the pixel 
movement. While this technique can present good results 
for visualization applications, it is not suitable for most 
games, due the massive presence of dynamic objects with 
constant changes on shape, color, position, scale and 
rotation. 

Some works instead of tackling a specific game 
streaming issue, present a complete streaming system that 
could be used by developers and researchers to experiment 
with cloud-based game streaming systems. The most 
prominent example of this kind of system is 
GamingAnywhere, an open source cloud gaming platform 
proposed by Huang et al. [11]. GamingAnywhere provides 
a communication infrastructure between client and server 
using network standards and is designed for extensibility, 
where other researchers could easily plug in new 
techniques or replace parts of the original streaming 
process. As a cloud-based game streaming system, all of 
the game’s processing is executed at GamingAnywhere’s 
servers and the video output is captured and streamed to 
the client that needs to decode and display the video stream 
to the user. Even though GamingAnywhere presents some 
good results, it does not implement methods for content 
adaptation based on system capabilities, game content 
information or ways to reduce server workload and 
network usage.  

In this work, we propose a cloud gaming streaming 
architecture based on layer caching. The core of this 
method consists on separate game elements into different 
variable-size layers that are encoded and streamed 
separately. Therefore, instead of encoding a full resolution 
video frame, the server checks which layers were changed 
since the last update and encodes only those ones. This 
allows the system to prioritize elements that are more 
important in the game, such as the main character. It also 
enables reuse of previously encoded data between multiple 
users. Moreover, it is possible to vary quality settings for 
each layer separately when it is necessary, instead of 
changing settings for the whole image. While the 
constraint of developer dependence exists, since he/she has 
to mark or tag layers and elements, the optimization 
practice is very common in game development. 
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Programmers and designers are always trying to optimize 
models, illumination processes and draw calls.  

Techniques such as those proposed by Eisert et al. [13] 
and Cheng et al. [15] have been proved to work under 
specific circumstances but do not really fit for a cloud 
gaming system providing multiple and different games as a 
service. Cheng et al.’s method, even with great speed up 
results, only works with static scenes where the only 
movement comes from the camera. Any other movement 
in this context would invalidate the results. Eisert et al.’s 
way relies too much on offloading the rendering stages to 
the client. This could work on some more powerful 
systems that are able to process the necessary graphics 
commands, but would also create some compatibility 
issues (the server would have to stream different 
commands for different architectures) and could be too 
demanding for low-powered devices. In our work, we use 
a similar approach to Eisert et al.’s for updating cache on 
the client, when it is not completely invalidated. In these 
scenarios, when a layer is moved, rotated or scaled, for 
example, but aside from this the original image remains 
unchanged, we stream commands to the client to apply a 
transformation (which may be a simple translation or a 
complex image warping) locally. However, different from 
the Eisert et al.’s graphics commands, these 
transformations are much less frequent and are processed 
directly from the client application, instead of issuing 
graphics commands for the graphics hardware.  

 Our approach allows the server to prioritize content 
that is more important as proposed by Hemmati et al. [12], 
but without removing the lower priority objects from the 
final rendering. Instead, these objects could be encoded 
with lower quality and spatial/temporal resolution.  

Instead of relying on the games’ depth buffer to 

segment the scene into separate layers, as proposed by 

Noimark et a.l [14], we introduce an API that allows the 

developer to specify and control which objects belong to 

each layer, how many layers should be in the game 

(instead of Noimark’s background/foreground proposal), 

how the objects should be combined together and which 

layers should be prioritized. We also extend Noimark’s 

proposal by allowing dynamic adjustments of spatial and 

temporal resolution, instead of only controlling 

quantization levels. 

III. LAYER CACHING GAME STREAMING API 

A typical cloud gaming system is usually composed by 
two main components, which are the server and client 
modules, as presented by Shea et al. [20]. Most of the 
overall workload is on the server-side. This component is 
responsible for processing user input, handling game logic, 
rendering video output, encoding this output and streaming 
video to the client. The client component needs to decode 
and present the video received through the network, and 
capture user input to send it to the server. Client tasks are 
less demanding, which allow low-powered devices to run 
client applications and receive the result of complex high-
end games from the network. 

Both client and server applications need to perform 

some tasks to make the cloud gaming system work. These 

tasks form a loop that organizes and connects all the sub-

systems to be perceived by the user as a single system that 

is working to provide the game that is being consumed at 

runtime. These tasks are outlined in Fig. 1. At the client-

side, user input and network feedback data are gathered 

and the received video decoded and presented to the user. 

At the server-side, user input updates the game’s logic and 

network feedback is used to make necessary quality 

adjustments. The game is then rendered and its output is 

encoded and streamed to a client. 

 

 
Figure 1.  Tasks processed on client and server to provide a cloud-based 

game. 

Based on this common architecture, our work proposes 
using the concept of layers to handle the game content 
separately, instead of always streaming a full video frame. 
We use knowledge about the game to combine different 
objects into these layers and handle them as needed. Less 
important layers may use a lower bitrate or be updated less 
frequently, while other layers containing relevant game 
elements can be prioritized. This is specified by the game 
developer. 

The core idea about using game layers is that not all 
content is updated at the same time within a game and not 
all content has the same importance. A game background 
could be static for several frames while the player 
character may change its animation at every update. If the 
background has not changed and the game has means to 
detect it, we could employ some technique to avoid this 
image from being encoded and sent to the client. This 
greatly reduces the encoding tasks at the server and the 
streaming size sent to the user. 

This way, instead of transmitting a single video stream 
with fixed size and quality parameters, we apply multiple 
streams, each with its own spatial/temporal resolution and 
quality parameters. This allows the video streamer to 
prioritize objects that are more important and handle them 
separately.  

For example, in some games, the main character 
controlled by the player occupies only a fraction of the 
screen. However, when using the conventional streaming 
method, the character’s region on the video cannot have 
better quality or be updated more frequently than the rest 
of the video. Using layers, a video stream with the size just 
large enough to enclosure the player character can be set 
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up and allow the player to be updated on the client without 
streaming the full resolution video. 

Fig. 2 presents an overview of how a game scene could 

be split into multiple separate layers. It is up to the 

developer to specify which objects should be combined 

together using its knowledge about the game. In this 

example, we have identified four layers: background (A), 

foreground (B), player (C), and enemies and objects (D). 

Background and foreground represent large static elements 

that will be updated less frequently, but can not be placed 

on the same layer because some other elements appear 

between them. The enemies and objects will be updated 

more frequently but they use less screen space. And since 

this layer is composed by small elements, its quality 

parameters could be reduced without causing much impact 

on player experience, if needed. Finally, the player layer is 

where the main character is. This layer usually has the user 

focus all the time and should keep the highest possible 

quality. On the other hand, the player character is only a 

small element on the screen, which means that, even if at a 

high frame rate, updating this layer should be a lot cheaper 

than updating the whole screen at every frame. 

 

 
Figure 2.  The game objects are separated into different layers that are 

handled separetely and can be updated and streamed with no dependency 

of the others (this example is based on Unity Tower Bridge game). 

Another advantage of this layer technique is removing 
motion estimation from the process. As seen before, 
motion estimation is a very costly stage on video encoding 
[15]. However, instead of relying on the generic motion 
estimation algorithms that are designed to work with any 
kind of video, we use the streaming API to detect when 
objects within the scene have changed and need to be 
updated. This usually happens when objects have been 
added or removed from a layer, have moved, rotated or 
scaled, or have changed any visual property, such as an 
animation frame or its color. Using our proposed API, all 
these changes are detected when the commands to change 
any of these properties are issued and the streaming server 
is able to react accordingly, by re-encoding and updating 
the cache for that specific layer. Then again, even if we are 
on a complex scene with many elements on the screen, 
only the layers containing the changed objects will need to 
be updated. 

In Fig. 3 we outline how a typical cloud gaming 
architecture could be modified to work with the proposed 
layer technique. At the cloud server, changes are made 
starting from the rendering stage. Instead of the regular 
graphical output, this component outputs multiple separate 

layers with the game elements. The video encoder then 
processes each layer separately as needed (layers that have 
not been updated do not need to be encoded again) and the 
video streamer sends the encoded layers to the client. At 
the client side, the video decoder needs the handle of each 
layer on its own and combine the data received from the 
network with the previous layers that have been already 
cached to create the final image that is displayed to the 
user.  

Instead of just decoding and presenting the video, in 

some cases, the client has to decode multiple videos and 

store at least the last frame for each layer on a local cache. 

Therefore, client system processing and memory 

requirements are slightly increased on this architecture. On 

the other hand, streamed videos within this architecture 

will usually have a lower resolution, since they represent 

only part of the whole game. 

 

 
Figure 3.  Typical cloud gaming architecture adapted for layered 

streaming. 

We also propose a simple API that works as a basic 
scene graph and allows the developer to add objects and 
specify game layers. By using this, any updates to the 
game objects must go through the API, which allows the 
streaming application to detect changes that have happened 
and any new layer that needs encoding. 

The proposed LACES API works as follows: an 
Application component is responsible for managing the 
whole game. The developer should extend this class and 
create his own application (MyApplication), which will 
load game resources, create game objects and specify its 
layers. Each application has one or more Layers that 
combine a group of game objects. When a game object is 
changed, its layer is marked and will be encoded and 
streamed. Game Objects typically contain the game logic. 
These entities are usually added to a game to encapsulate a 
specific behavior, but in our context, game objects should 
always be attached to elements that have a visual 
representation. At this point, our API focus only on 2D 
games, so these Game Objects represent sprites in the 
screen. Elements that are behavior-only, such as a timer, 
do not need to belong to a layer, since they will not be 
streamed to the client. 

At the rendering stage, each layer renders its game 
objects into an individual buffer. The result of a render 
pass are N image buffers ready for cache check, encoding 
and streaming, where n is the number of layers in the 
game. Before encoding and streaming an image buffer to a 
client, the server first checks if changes were made to that 
layer. If no changes happened, the current image buffer on 
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the server should be the same as the local cache at the 
client and no retransmission is needed. If anything changed 
within a layer, it needs to be updated at the client. Two 
issues are important for this process: how to check if the 
layer cache has changed and how to update it at the client 
level. 

Within LACES, every drawable object belongs to a 
layer, as illustrated in Fig. 2. An object is invalidated and 
needs to be redrawn in two specific scenarios: it has 
suffered a transformation (translation, rotation or scale) or 
it has changed its image (updated its animation frame, for 
instance). Whenever these situations happen, the game 
object informs to its layer through the API which type of 
modification happened. After all objects of a layer have 
been updated, the layer has enough knowledge to decide 
whether it needs a complete redraw or it is enough to just 
send some transformation operations to the client to update 
its local cache.  

If the combined changes for all objects within a layer 
could be expressed as a series of transformation 
operations, then the server does not need to encode and 
stream a new image to the client. Instead, it just sends the 
transformation operations that will be applied at the client. 
For example, if all objects within a layer have moved, the 
server may send a translation command to the client 
instead of encoding and streaming a new video frame. If 
these objects have also been scaled, the server will send a 
scale command and so on. 

After determining which layers need encoding, the 
server must send the updated data to the client. For layers 
that were invalidated, new frames will be encoded and 
streamed. The client will receive these frames, store them 
on a local cache and display them to the user. For the 
layers that were updated but not redrawn, the server will 
send the transformation operation to the client, which will 
process and apply these transformations to its local cache 
and update the final image displayed to the user. 

 

 
Figure 4.  Overall update and render flow for a single layer within the 

game using LACES. 

The flow for updating a single layer is demonstrated in 
Fig. 4. The same process is repeated for each layer in a 
game using our API. For every update, we iterate on all 
game objects within a layer and render them. The render 
result may update the layer state, if the image has changed 
(and the layer needs a complete redraw) or if an object has 
been transformed. If nothing happened, the layer does not 
requires an update.  After all objects are rendered, the 
current layer state will determine if it needs to be redrawn 
or not. If the layer needs to be redrawn, the server will use 
the layer output, encode it and send it to the client. 
Otherwise, the server will check if the layer needs to be 
transformed and send the necessary transformation 
operations to the client. After that, a new loop starts. 

IV. EVALUATION 

Our proposed API and test application were developed 
in C++ using FFmpeg [21], Allegro [22] and Simple and 
Fast Multimedia Library (SFML) [23]. Allegro is used to 
handle multimedia assets, to detect user input and display 
graphics output to the client. SFML is used to handle 
network communications and FFmpeg provides 
functionality for video encoding at server-side and 
decoding at client-side. 

A core element for LACES is how game layers are 
defined and used. Grouping together a large amount of 
objects in a single layer would probably cause this layer to 
be updated more frequently. Then it would be streamed 
more frequently, therefore, reducing overall cache usage. 
On the other hand, having too many layers could also 
impact the performance, because in this case, the server 
would process and encode multiple separate layers that the 
client needs to receive from the network, decode and 
present to the user.  

We have run our tests in different scenarios to 
demonstrate how the system behaves with different setups, 
ranging from a single layer – a regular video stream – to 
each object within its own layer in a game with a few 
dozens of visual objects. 

The test application is a Breakout game (Fig. 5) with 
the following elements: background image, ball, player’s 
paddle and target bricks, with a resolution of 800x600. In 
this game, the player controls a paddle in the bottom of the 
screen and has to hit the ball and destroy the bricks in the 
top. Each of these elements can be included in a separate 
layer or combined in the same layer. For the tests 
presented in this paper, four different scenarios were used:  

 (a) one layer: all objects in the same layer 
(without using cache, this represents a regular video stream 
analogous to other game streaming solutions) 

 (b) three layers: (1) background and bricks, (2) 
ball, (3) player 

 (c) four layers: (1) background, (2) bricks, (3) 
ball, (4) player 

 (d) n layers: (1) background, (2) ball, (3) player, 
and (27) each brick on its own layer  

 
The first scenario (a) will update the image layer every 

time an object is changed, which in this case should be 

every frame the ball moves, for instance. Scenario (b) will 

update layer 2, if the ball is changed, layer 3, if the player 

is changed, and layer 1, if a brick is changed. Scenario (c) 

will update layer 3, if the ball is changed, layer 4, if the 
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player is changed, and layer 2, if a brick is changed. Layer 

1 (background) is static in this game and will not be 

updated. Finally, scenario (d) allocates a separate layer for 

each game object, including each separate brick. This 

means that when a brick is changed, only that small 

portion of the screen needs to be updated. However, this 

also means that client and server are now handling 

multiple low-resolution videos instead of a few larger 

ones. 

 

 
Figure 5.  The Breakout game used as test application. 

We ran the application on these different scenarios for 
one minute of gameplay and collected data to compare 
how the application behaves with several layers and using 
the cache technique or not. Our metrics for these tests are: 
total video encoded size on the server and number of 
encoded frames, total streamed size and number of 
streamed frames, number of translation frames, and 
encoding time. 

Using LACES cache technique, we expect a great 
reduction in encoding and transmission. Each layer frame 
is stored after its initial encoding and, on the next time it is 
needed, we first check if it exists in the cache to avoid 
encoding it again. If a layer has an animated object (a 
character walking, for example), each animation frame is 
encoded the first time it should be presented and, on the 
next time, the cache is used. If caching is ignored, each 
time the layer changes, it needs to be encoded again. 

When cache for a layer exists and it has just been 
moved on screen, we can send a translation frame to 
update that layer’s position in the client, instead of sending 
the entire encoded layer frame. This packet contains just a 
few bytes identifying the layer and specifying the new 
layer position. We measure this information to show how 
many times the cache technique allows the application to 
skip frame encoding and streaming. 

The number of layers and the size of each layer have an 
impact on how much time the server application spends 
encoding each frame. In the single layer scenario (a), this 
is the total time to encode each frame that is sent to the 
client. In the other scenarios (b), (c) and (d), this time is 
the accumulated time for encoding all layers. If cache for a 
specific frame exits, it is not necessary to encode it, 
therefore, the total encoding time is greatly reduced. 

We run the Breakout game for one minute for each test 
simulating a gameplay session. To avoid differences 
caused by user input, the player’s paddle has been 
programmed to follow the ball position instead of waiting 
the player’s input to move. 

A. Test scenarios with static game objects 

Table I presets the results for test case (a) where all 
objects are placed in the same layer. This is the worst case 
for this proposal, since it does not provide the opportunity 
to reuse previous frame cache. This way, the results for 
using or not using cache are very close and we could 
consider them equal within an error margin (less than 3% 
encoded bitrate difference).  

TABLE I.  TEST CASE (A): ALL OBJECTS IN THE SAME LAYER 

 Using Cache Not Using Cache 

Encoded Frames 4694 4850 

Encoded and Streamed Size 749243 Kb 769891 Kb 

Average Encoded bitrate 12486.6 Kbps 12829.5 Kbps 

Streamed Frames 4694 4850 

Encoding Time 38.6 s 39.8 s 

 
Better results with our LACES proposal start to appear 

when we separate objects into multiple layers, each with 
its own video stream. In scenario (b), we create three 
layers: (1) background and bricks, (2) ball and (3) player. 
Background and bricks are static elements, so they are 
placed in the same layer. Layer 1 will change only when a 
brick is destroyed. The ball and the player’s paddle will 
move around separately, so each gets its own layer.  

In the scenario presented in Table II, we are actually 
handling three separate video streams, one for each layer. 
But each video is large enough only to cover all objects 
within the layer, which means the video for the ball object, 
for example, is only 24x24 pixels. In addition, these video 
layers are not being encoded and streamed all the time. If 
the objects in a layer have not changed their visual state 
between frames, that layer does not need to be updated 
and, if the objects have just moved, we can issue a 
translation command to update the layer position in the 
client. 

Using cache in scenario (b), the server needed to 
encode only 17 frames (one for the ball, another for the 
player and the remaining 15 for each time a brick is 
destroyed). This greatly reduces the encoding and 
streaming size and bitrate. Notice that, since most of the 
time the player’s paddle and the ball are just moving on 
screen, without actually changing their images, the server 
is able to send a translation update to the client without 
encoding or streaming a new frame. 

TABLE II.  TEST CASE (B): THREE SEPARATE LAYERS FOR 

BACKGROUND AND BRICKS, BALL, AND PLAYER PADDLE 

 Using Cache Not Using Cache 

Encoded Frames 17 11604 

Encoded Size 2279 Kb 674303 Kb 

Average Encoded bitrate 37.9 Kbps 11236 Kbps 

Streamed Frames 17 11604 

Stream Size 2279 Kb 674303 Kb 

Average Stream bitrate 37.9 Kbps 11236 Kbps 

Streamed Translations 13884 0 

Encoding Time 0.12 s 33.4 s 

 
Of course, not using cache in scenario (b) has a huge 

impact on performance, because the server would encode 
and stream three separate video layers for every game 
frame. This is not a recommended scenario for our 
technique. Results when “Not Using Cache” are presented 
in the tables just for comparison reasons. 
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A better comparison though would be scenario (b) 
using cache and scenario (a) not using cache. This way, we 
can see how our technique compares to a standard video 
stream. Using three layers and storing separate caches for 
them, we managed to reduce the encoding size on the 
server 99.7% (from 769891 Kb to 2279 Kb) and the 
average stream size 99.7% (from 12829.5 Kbps to 37.9 
Kbps). This has a large impact not only on the network 
usage and necessary bandwidth, but also on the server 
load. Encoding so many frames reduced the total encoding 
time 99.6% (from around 39.8 seconds to less than 1 
second). 

A key element of our proposal is fine-grained 
streaming where only the necessary parts of the image are 
encoded and sent to the client. If all game objects are 
placed in the same layer, this means that any change makes 
the whole frame invalid and the server needs to encode a 
new frame. If objects are separated into multiple layers, 
only the layers that have modified objects will need re-
encoding. In Table III, we show the effects of adding more 
layers to the game. Scenario (b) has three layers and every 
time a brick is removed, a new frame of the remaining 
bricks and the background is encoded. In scenario (c), 
bricks are combined in a different layer from the 
background and when a brick is changed, the background 
does not need to be re-encoded. Finally, in scenario (d), 
each brick is independent from the others and when brick 
is changed, nothing happens to the other bricks’ layers. 

TABLE III.  COMPARISON BETWEEN THE SCENARIOS WITH 3 (B), 4 

(C) AND N (D) LAYERS 

 (b) (c) (d) 

Encoded Frames 17 16 39 

Encoded Size 2279 Kb 2007.2 Kb 330.7 Kb 

Average Encoded bitrate 37.9 Kbps 33.4 Kbps 5.5 Kbps 

Streamed Frames 17 16 39 

Stream Size 2279 Kb 2007.2 Kb 330.7 Kb 

Average Stream Size 37.9 Kbps 33.4 Kbps 5.5 Kbps 

Streamed Translations 13884 12460 10578 

Encoding Time 0.12 s 0.05 s 0.01 s 

 
The number of frames in scenario (d) is larger because 

each brick is encoded separately at least once and there are 
27 bricks in the scene. Whenever a brick is destroyed, a 
new frame is created to represent this new state. The other 
frames correspond to the background, ball and player, each 
encoded one time and updated with a translation command 
when necessary.  

Separating bricks in different layers makes it possible 
to modify a brick without any effect to the other bricks or 
any other element in the scene. These results in a bitrate as 
low as 5.5 Kbps, because the only thing that is streamed 
after the initial state is the removal of each brick’s layer 
when they are destroyed. 

B. Test scenarios with animated game objects 

The previous scenarios work well as a benchmark for 
our technique and allows us to test how it behaves 
compared to a standard video stream with different number 
of layers, but they do not reproduce the behavior of an 
actual game. We also developed another scenario that is 
closer to the expected behavior of a typical 2D game. 
Usually, each game object in a 2D game is composed of 
some discrete frames that are looped to create the illusion 
of animation and movement, as illustrated in Fig. 6. We 

modified the Breakout game from the previous tests and 
added animations to the player’s paddle, the ball and the 
bricks. These animations are played at different speeds and 
updated separately. Using our cache technique, the goal is 
to encode each frame just once and when it is needed 
again, the stored cache is used. 

 

 
Figure 6.  A character in a 2D game is made of multiple animation 

frames to create the illution of animation and movement. 

In Table IV, we compare the standard single-layer 
video stream with no cache (a), with the cached video 
stream with three (b), four (c) and several layers (d) as we 
made in the previous tests, but now using animated game 
objects. 

TABLE IV.  COMPARISON BETWEEN STANDARD VIDEO (A) AND THE 

SCENARIOS WITH 3 (B), 4 (C) AND N (D) LAYERS WITH ANIMATED 

OBJECTS 

 (a) (b) (c) (d) 

Encoded Frames 4554 96 95 245 

Encoded Size 
726964 

Kb 
13871.9 

Kb 
13009.6 

Kb 
1503.4 

Kb 

Average 
Encoded bitrate 

12115.1 
Kbps 

231.1 
Kbps 

216.8 
Kbps 

25 Kbps 

Streamed Frames 4554 1070 1072 7264 

Stream Size 
726964 

Kb 
44165.7 

Kb 
43079.4 

Kb 
28849.8 

Kb 

Average Stream 
bitrate 

12115.1 
Kbps 

736 Kbps 
717.9 
Kbps 

480.7 
Kbps 

Streamed 
Translations 

0 12885 12239 9566 

Cache Hit/Miss 0/4554 974/96 977/95 7019/245 

Encoding Time 38 s 0.72 s 0.3 s 0.05 s 

 
In these scenarios, each layer is updated whenever a 

child game object changes its current animation frame. 
Here we introduce a new metric: cache hit and miss. When 
the server needs to send a new frame to the client, first it 
checks if that frame was previously encoded and is stored 
on the server cache. If the cache exists, it is a cache hit. 
This means that the server does not need to encode it 
again. The data retrieved from the cache is sent directly to 
the client.  

This has the potential for greatly reducing encoding 
time on the server. For example, in these tests, the player’s 
paddle has four animation frames. After the fourth frame, 
the server would not need to encode anything else for this 
game object, it just reuses the cache. In addition, if the 
server is providing a service for multiple users, the cache 
created for the first user could be reused for new players, 
which can bring huge performance gains in cloud-based 
systems that usually work with massive amount of users. 

In our tests, we observed that using more layers leads 
to better results. With each object separated in its own 
layer (d), we managed to reduce the average encoded size 
99,79% (from 12115.1 Kbps to 25 Kbps) and the average 
streamed size 96% (from 12115.1 Kbps to 480 Kbps), 
compared with the regular video stream (a). We streamed a 
total of 7264 frames (the sum of all layers during the test) 
but only 245 of those were actually encoded. The 
remaining 7019 frames were successfully fetched from the 
cache.  
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Also, notice that for moving objects, such as the ball 
and the player’s paddle, sometimes their positions change, 
but the animation frame stays the same. In these cases, the 
server sends just a translation frame with the new position 
for that layer. This reduces the amount of data that is sent 
to the client. On our tests, this happened 9566 times. 

In Fig. 7 and Fig. 8, we present a comparison of 
average bitrate for scenarios (b), (c) and (d). With static 
game objects, the server is encoding every frame that 
needs to be sent to the client, so encoded and stream bitrate 
are the same. With animated objects, when a frame that 
was previously encoded is needed, the cache data is used 
and that frame is not encoded again and the server 
workload is greatly reduced. Fig. 8 shows in more detail 
how a large amount of data that is sent to the client is 
reused and do not need to be encoded more than once. 

 

 
Figure 7.  In the scenarios with static objects, everytime a frame is sent 

to the client, it is also encoded. So, there is no cache reuse from previous 

frames. 

 
Figure 8.  In the scenarios with animated objects, when a frame is sent 

to the client, the cache will be used if it exits and no new encoding will 
be necessary. This way, the server is able to encode less data than what 

is actually streamed. 

C. Input delay 

 
Using multiple layers and the cache technique 

proposed in our work might introduce some new 
complexity in a game streaming system that could result in 
a larger input delay that could ruin the user experience. 
The total input delay is the total response time between a 
key press at the client-side, its processing at the server-
side, network round-trip time and the result presented to 
the player. Since we are testing the input delay added by 
our technique, we made the tests locally on a same 
machine. This way, network delays, which would apply to 
any streaming service, were disregarded. 

In our tests, we have stored a timestamp for each user 
input on the client and sent an id with the input message to 
the server. The server then adds the latest id whenever a 
new frame is sent to the client. When the client receives a 

new frame, which will update the game’s state from the 
player’s point-of-view, it uses that id to compare the 
temporal difference between when the input was sent and a 
frame generated by that input was received.  

In Table V we compared average, minimum and 
maximum input delay for scenarios with no cache (a), with 
the cached video stream with three (b), four (c) and n 
layers (d) using animated game objects. We tested some 
intermediary cases using n layers (with 12 and 21, in 
addition to 30), to measure how the delay grows compared 
to a larger amount of layers. Since in our previous tests 
each line of blocks has 9 blocks, we removed one line at a 
time for this test. We also present the standard deviation as 
a measure of how spread these values are. We ran the 
application in each scenario and collected 1000 inputs that 
were entered in the client, sent to the server and received 
back in the client to compare the timestamp difference. 

TABLE V.  INPUT DELAY COMPARISON BETWEEN STANDARD VIDEO 

WITH NO CACHE (A) AND THE SCENARIOS WITH 3 (B), 4 (C) AND N (D) 

LAYERS WITH ANIMATED OBJECTS 

 
(a) (b) (c) 

(d) 

12 21 30 

Average 
delay 

39 ms 10 ms 11 ms 10 ms 
13 
ms 

15 ms 

Min delay 29 ms 5 ms 6 ms 6 ms 7 ms 8 ms 

Max delay 46 ms 55 ms 46 ms 36 ms 
56 
ms 

88 ms 

Standard 
deviation 

2,6 4,9 3,7 2,5 4,6 8,8 

 
The average input delay for the scenarios using cache 

is around 10-15 milliseconds with peaks around 90 
milliseconds in some cases. Compared with the standard 
video with no cache, which in average presented a 39 
milliseconds delay, we believe the multi-layer and cache 
processing should not add a significant input delay to the 
overall streaming system, in fact, the delay average delay 
is much lower using cache, as seen in Fig. 9.  

 

 
Figure 9.  Input delay for the tested scenarios. Notice that the average 

delay is much lower in all the cases that are using our cache techinique 

(with 3 or more layers) compared to the standard video (with a single 

layer). 

V. CONCLUSIONS 

In this work we presented LACES, an API that allows 
a cloud game server to split game objects into multiple 
video layers and handle them separately, resulting in great 
performance improvements when compared to a standard 
video stream. 

With our technique, we were able to reduce the average 
encoding size on the server 99.79% (from 12115 Kbps to 
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just 25 Kbps). This reduction comes from the reuse of 
previously encoded frames that were stored on the server 
cache. In cloud gaming systems that usually have a large 
amount of concurrent users, the combination with a much 
lower encoding time and the reuse of encoded frames 
between different users can result in a major performance 
boost. 

We also applied our technique to identify when 
elements within a layer were just moved but were not 
redrawn. When this happens, that layer can be moved in 
the client with a simple translation message, instead of 
encoding and sending a new frame. This allows a great 
reduction on network bandwidth usage between server and 
client. With a standard video stream, everything that is 
encoded is sent to the client. With our layer-cached stream, 
we send new frames only when needed. This way, we 
managed to reduce the average streaming size to the client 
96% (from 12115 Kbps to 480 Kbps). 

As future work, we intend to reuse data generated for 
one user to others. This would gradually increase the cache 
size and cache hits would become more constant, reducing 
even more the amount of data the server needs to encode to 
provide its service to a specific user. 

We also intend to propose dynamic video quality 

encoding adjustments to keep a good user experience. 

Since game elements are already separated into layers, our 

idea is to prioritize layers with more important objects 

(such as the player character) and adjust the quality of the 

other layers as needed. This way, if we need to use less 

network bandwidth, for example, we could reduce the 

background resolution or the frame rate of enemy 

animations. 

Moving LACES to a game engine, such as Unity, 

Unreal or GODOT is an approach that would greatly 

improve its usage, since it would reduce the amount of 

work need to adapt games intended to run on this proposed 

cloud environment.  

It would also be possible to apply these techniques to 

stream layered outputs for emulated older consoles that 

already work with multiple object layers for their sprites, 

backgrounds and other elements.  

Finally, using machine learning, we believe it would be 

possible to estimate which layers and frames a user will 

most likely need given the current game state and stream 

them using the available bandwidth. Using this strategy, it 

would be possible to further improve input delay, reduce 

network peaks and increase client-side cache hits. 
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