
An Architecture for 2D Game Streaming Using Multi-Layer Object Coding

Diego Cordeiro Barboza, Débora C. Muchaluat-Saade, Esteban Walter Gonzales Clua, Diego Gimenez Passos

Computing Institute

Universidade Federal Fluminense (UFF)

Niterói, Brazil

{dbarboza, debora, esteban, dpassos}@ic.uff.br

Abstract— Advances in cloud computing have enabled

systems where the game logic and rendering are processed

on a server and streamed to a thin client. Meanwhile, there

are still many challenges to provide games through the cloud

without latency issues. This work proposes a novel technique

to reduce encoding times and bandwidth usage on cloud

gaming systems. We propose LACES (LAyer Caching gamE

Streaming), an API that separates 2D game objects into

multiple layers and allows the cloud server to encode and

stream only modified parts of the frame. Using our

technique, we managed to reduce the encoding size on the

server by 99,79% and the average streaming size to the client

by 96%, with no changes to the video quality or resolution

and with no noticeable user input delay.

Keywords - cloud computing; streaming; game streaming;

games;

I. INTRODUCTION

In recent years, a variety of services are becoming
available through remote access due to advances in cloud
computing [1]. As computer networks become more
reliable and provide faster response rates, combined with
larger bandwidth, multimedia applications started
benefiting from this environment [2]. Streaming services
started providing content directly to the user without the
need for downloading and installing the content before it is
consumed. Currently, many different media types are
provided through streaming, such as movies, music and
games [3].

However, there are still some challenges to provide
these services to a wide range of users with different client
configurations, operating systems, devices and network
capabilities. For example, Netflix (www.netflix.com)

stores 120 versions of the same movie to accommodate
different screen sizes, bitrates and codecs on every device
supported by the platform [4]. Netflix’s approach works
because it is streaming pre-recorded video. For live video
or real-time interactive applications, any necessary
adaptation on the content has to be done on the fly. The
cost for transcoding a video in real time can be very high.
Twitch (www.twitch.tv), for example, only uses Adaptive
Bitrate (ABR) to transcode the raw video received from
the streamer into multiple live video streams for the top
channels in popularity. For other less popular channels, it
just prepares the raw video stream and delivers it to users,
avoiding transcoding tasks costs [5].

Video games are resource-demanding applications,
which often require fast processors for handling its logic,
physics and systems, and powerful graphics processors for
rendering. Furthermore, games are always evolving on the
technological side, which usually makes new games more
and more hardware demanding. On upgradeable platforms,

such as personal computers, users have to handle higher
requirements by upgrading their systems. On other
platforms with shorter life cycles, such as mobile phones,
developers may choose to drop support for older hardware
that cannot handle all the game’s requirements. In addition,
on game consoles that usually have longer life cycles,
developers have to limit their games to the current
hardware until a new platform is launched.

Compatibility between multiple platforms is also a
great concern in game development. On consoles, a new
platform release usually means dropping support for the
entire legacy library. This is a problem for user satisfaction
but mainly from game preservation [6] [7]. As older
platforms are harder to find in the market, games for those
platforms become inaccessible.

Backwards compatibility is also a great issue on
console and PC games. Microsoft has added an Xbox 360
emulator for Xbox One [8] and Sony is currently providing
PS3 games through the cloud to PS4 users with the
PlayStation Now service [9]. On PC, support for older
games is not always available, even though solutions like
DOSBox [10] try to solve this issue.

In all those cases, most problems rely on the client-
side. Console manufacturers cannot release a new
upgraded platform every year, since the user base is built
along many years during the platform life. On mobile and
PC clients, higher requirements can reduce the amount of
players that are able to access the game. Most of those
issues could be solved by offloading to a remote server
part of the game’s processing. This way, if a game requires
more processing power, the game provider could update its
servers, but users would still access the platform with a
standard device.

Cloud computing can bring solutions to those issues.
The process of delivering games through cloud computing
is known as cloud gaming. These systems allow users to
remotely access and play games without specific or
dedicated hardware. Mobile phones, low-powered laptop
or desktop computers, smart TVs and other devices can be
used to access games through the network and consume
them as a video stream that was generated in the cloud.
Since most of the workload with this model is on the
server-side, developers can create games with lower
concerns about performance and compatibility on the
client-side. This allows users to run the same game on
devices with different processing power and operating
systems with little, if any, changes on the server-side. The
client device just needs to be able to connect to a server,
receive the video stream that is displayed to the user, and
stream the user input back to the server.

Cloud gaming also allows new business models for
providing games to users based on a service model, instead
of a product. Just like music and video streaming services,

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 424

games can be provided on a subscription basis, where
users pay a monthly fee to have access to a library of
streaming games. Other non-conventional ways to deliver
streaming content are also possible, for example, using a
local server to stream games to airplane or ship passengers,
or hotel guests.

Even though cloud gaming provides ways to reduce
compatibility issues between different platforms, allows
users to access games on multiple devices, helps to solve
game preservation issues and opens new business models,
there are still some challenges to make this kind of service
accessible and functional for all users. Games are a real-
time interactive media and, as described by Huang et al.
[11], users expect both high-quality video and low
interaction delay. For a good user experience, some
requirements such as a tolerable latency, related to a short
round-trip time for the client input to be processed by the
server and the result be displayed to the user, and high-
quality low-delay video streaming must be met.

On cloud gaming systems, most of the processing
workload is on the server-side. This means that for every
game frame that is generated and streamed to the client,
the server needs to process the game’s logic, render its
graphics output, encode this output using a video codec
and stream it. Maintaining a system that is able to perform
all of these tasks, while keeping a low response delay, is
challenging.

Many works have proposed improvements in the
streaming process to try to reduce delays and server
workload [11] [12] [13] [14] [15]. There is a great focus in
the literature on accelerating stages of the video encoding
process, such as motion estimation, or applying techniques
to reduce the video bitrate. Using those techniques, authors
are trying to reduce the server encoding complexity, which
leads to lower processing delays and amount of data sent
through the network, reducing transmission delays.

In this work, we propose LACES (LAyer Caching
gamE Streaming), an API that introduces a novel
technique applied directly on the application level that uses
knowledge about the game to separate and group together
data that needs to be encoded and transmitted to the client.
Our approach focuses on using layer-caching techniques
that can reduce both server workload and network usage.
Using knowledge about how the game is structured, we
propose combining game elements into different game
layers that can be encoded and streamed separately. By
caching each encoded layer, we can reuse this data for the
following video frames and if a layer has not been
modified, no new data needs to be sent to the client nor be
encoded by the server.

With LACES we expand our initial tests presented in
[16] that were based on GamingAnywhere [11] and served
as a validation for the multilayer streaming proposal. In
this paper, we present a full game streaming architecture
and an API to support multilayer game development and
streaming. Also, we apply caching on the server-side and
the possibility to stream translation updates for frames that
were just moved on the screen.

Because unchanged layers do not need to be encoded,
this approach results in a workload reduction on the server-
side. In addition, the layers that have not been modified are
also cached on the client-side to be displayed to the user,

so they do not need to be streamed until they are changed,
which also leads to lower network bandwidth usage.

In this work, we also propose an API that game
developers should use to adapt the game to benefit from
our cache-based streaming proposal. The API core allows
the developer to specify which game elements belong to
which layer. Even though this API requires some work
from the developer, his knowledge of the game is very
important to provide a better user experience. For instance,
the developer knows which elements are just background
decoration and could have their encoding quality reduced
if needed, without causing much impact to the user and the
game. This means that the developer should specify how
objects should be separated and prioritized, but no further
game logic adjustments are needed. In practice, this can be
easily implemented into any game engine, using tags to
mark and classify these elements.

The remainder of this paper is structured as follows. In
Section 2, we present a related work survey and compare
the proposed techniques found in the literature with our
approach. In Section 3, we present an in-depth view of our
proposed technique and API. This approach is evaluated in
Section 4, where we present our experimental results. In
Section 5, we present our conclusions and suggestions for
future work.

II. RELATED WORK

Improvements on video streaming for cloud gaming
have been proposed by different works in the literature, but
the focus is usually on solutions for accelerating video
encoding stages [14] [15], especially motion estimation, or
to reduce the video bitrate by reducing the scene
complexity [12]. Some older works also focus on
streaming geometry (the game’s 3D models) [17] and
graphics commands [13], splitting the graphics processing
between client and server. On most cases, the goal is to
reduce the server load, which is a major concern for cloud-
based systems with multiple users, and bandwidth usage.

To the best of our knowledge, the idea of splitting the
game rendering into multiple layers that are completely
independent, using contextual information, has not been
explored in any of previous works.

Video games usually present rich graphics output with
a lot of visual content to the user. When an image with
more detail is encoded, the result is a frame with larger
bitrate. Since not all objects presented on screen at a single
time are crucial to the user’s experience, Hemmati et al.
[12] propose a content adaptation method that selects and
remove objects that are less important to the player’s
current activity from the current frame. This results in an
image with less detail, which is faster to encode and has
lower bitrate.

Hemmati et al. [12] propose to remove objects based
on player’s activity within the game and Rahimi et al. [18]
discuss how the object selection is done and the impact it
has on player’s experience. The technique results in a
significant bitrate and encoding time reduction, which can
be even higher when considering the results for cloud
servers with a massive number of concurrent users.
However, there is an important setback, which consists
that the objects selected for removal are completely deleted
from the scene. The idea is that the developer may specify
which elements are important for each activity. However,

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 425

even if an object is not important from the gameplay point-
of-view, visual elements are still important for immersion
and having objects popping on the screen while game
activities change can lead to odd experiences to the user.
For instance, removing an object that is not an obstacle
when the player is shooting will not affect the gameplay
when the shooting activity is performed, but will result in a
noticeable object pop in and out to the user.

Even though most cloud gaming systems are based on
video streaming, some works approach this problem in a
different way. Eisert et al. [13] tries to solve the video
encoding cost on the server by completely removing the
video encoding from the process. Instead, graphics
commands issued to the graphics hardware on the server
are intercepted before they are sent to the video card and
encoded and streamed to the client. The client application
must decode and process these graphics commands locally
to render the game and present the output to the user.

That solution greatly reduces the workload on the
server-side and can help to achieve lower interaction
delays, because graphics commands can be streamed as
soon as they are issued, instead of waiting for a full frame
to be ready. With lower workload, servers could provide
services for more concurrent users and still keep a good
quality of service. The server can also translate graphics
commands between APIs before sending them to the
client. For example, if a client only supports the OpenGL
API [19] and the game runs on Windows machines, the
server may intercept the Windows DirectX commands and
stream the equivalent OpenGL to the client. This helps
solving compatibility issues between multiple platforms.

On the other hand, Eisert et al.’s approach [13] offloads
a large portion of the processing to the client. The game’s
logic still runs in the server, but the client is responsible for
processing the graphics commands and, ultimately,
rendering the frame that is displayed to the user. This
increases the hardware requirements in the client and
makes this solution not feasible on low-powered devices.
In addition, all the game’s geometry, game objects and
textures need to be transferred to the client before the
rendering starts. This can result in high bitrates while these
objects are being loaded and bitrate peaks during the game
while new objects need to be loaded or the number of
graphics commands varies. With the video streaming
approach, the bitrate variation depends only on the frame
complexity.

Li et al. [17] present a similar geometry streaming
approach for online multiplayer games. The engine
proposed by the authors enables progressive game
download where the game content is downloaded as
necessary, based on player’s location within the game’s
world. This approach also allows game objects to be
prioritized based on their importance and available
bandwidth.

Noimark et al. [14] propose a technique to reduce the
complexity of streaming remote walkthroughs to handheld
devices. This technique is based on segmenting objects
into background and foreground layers and varying
quantization levels for each layer. To represent the
background information, Noimark et al. use an MPEG-4
feature that allows representing an image as a mosaic that
is reconstructed at the client. Modified parts are updated
using global motion compensation data sent by the server.

When these transformations are not enough to represent
the necessary camera operations, such as zoom, a new full
image is encoded and streamed from the server to the
client.

The motion estimation stage of MPEG-4’s encoding is
very costly. To avoid this, Cheng et al. [15] propose an
algorithm to replace the usual motion estimation process
and calculate motion vectors directly from data collected
from the scene. Using pixel position, depth buffer
information and camera projection matrix, the algorithm is
able to acquire the motion vectors by un-projecting a pixel
in 2D space back to the 3D space and re-projecting this 3D
point to the 2D space using the camera configurations from
the previous frame. This enables the acquisition of a
motion vector for a pixel between two consecutive frames.

Cheng et al.’s method can present a great speed up on
motion vector acquisition and fails only at some specific
cases, such as pixel occlusion. The algorithm can only be
used on static scenes, where interactivity comes only from
camera movement. If the camera is static and objects are
moved, the algorithm will not be able to detect the pixel
movement. While this technique can present good results
for visualization applications, it is not suitable for most
games, due the massive presence of dynamic objects with
constant changes on shape, color, position, scale and
rotation.

Some works instead of tackling a specific game
streaming issue, present a complete streaming system that
could be used by developers and researchers to experiment
with cloud-based game streaming systems. The most
prominent example of this kind of system is
GamingAnywhere, an open source cloud gaming platform
proposed by Huang et al. [11]. GamingAnywhere provides
a communication infrastructure between client and server
using network standards and is designed for extensibility,
where other researchers could easily plug in new
techniques or replace parts of the original streaming
process. As a cloud-based game streaming system, all of
the game’s processing is executed at GamingAnywhere’s
servers and the video output is captured and streamed to
the client that needs to decode and display the video stream
to the user. Even though GamingAnywhere presents some
good results, it does not implement methods for content
adaptation based on system capabilities, game content
information or ways to reduce server workload and
network usage.

In this work, we propose a cloud gaming streaming
architecture based on layer caching. The core of this
method consists on separate game elements into different
variable-size layers that are encoded and streamed
separately. Therefore, instead of encoding a full resolution
video frame, the server checks which layers were changed
since the last update and encodes only those ones. This
allows the system to prioritize elements that are more
important in the game, such as the main character. It also
enables reuse of previously encoded data between multiple
users. Moreover, it is possible to vary quality settings for
each layer separately when it is necessary, instead of
changing settings for the whole image. While the
constraint of developer dependence exists, since he/she has
to mark or tag layers and elements, the optimization
practice is very common in game development.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 426

Programmers and designers are always trying to optimize
models, illumination processes and draw calls.

Techniques such as those proposed by Eisert et al. [13]
and Cheng et al. [15] have been proved to work under
specific circumstances but do not really fit for a cloud
gaming system providing multiple and different games as a
service. Cheng et al.’s method, even with great speed up
results, only works with static scenes where the only
movement comes from the camera. Any other movement
in this context would invalidate the results. Eisert et al.’s
way relies too much on offloading the rendering stages to
the client. This could work on some more powerful
systems that are able to process the necessary graphics
commands, but would also create some compatibility
issues (the server would have to stream different
commands for different architectures) and could be too
demanding for low-powered devices. In our work, we use
a similar approach to Eisert et al.’s for updating cache on
the client, when it is not completely invalidated. In these
scenarios, when a layer is moved, rotated or scaled, for
example, but aside from this the original image remains
unchanged, we stream commands to the client to apply a
transformation (which may be a simple translation or a
complex image warping) locally. However, different from
the Eisert et al.’s graphics commands, these
transformations are much less frequent and are processed
directly from the client application, instead of issuing
graphics commands for the graphics hardware.

 Our approach allows the server to prioritize content
that is more important as proposed by Hemmati et al. [12],
but without removing the lower priority objects from the
final rendering. Instead, these objects could be encoded
with lower quality and spatial/temporal resolution.

Instead of relying on the games’ depth buffer to

segment the scene into separate layers, as proposed by

Noimark et a.l [14], we introduce an API that allows the

developer to specify and control which objects belong to

each layer, how many layers should be in the game

(instead of Noimark’s background/foreground proposal),

how the objects should be combined together and which

layers should be prioritized. We also extend Noimark’s

proposal by allowing dynamic adjustments of spatial and

temporal resolution, instead of only controlling

quantization levels.

III. LAYER CACHING GAME STREAMING API

A typical cloud gaming system is usually composed by
two main components, which are the server and client
modules, as presented by Shea et al. [20]. Most of the
overall workload is on the server-side. This component is
responsible for processing user input, handling game logic,
rendering video output, encoding this output and streaming
video to the client. The client component needs to decode
and present the video received through the network, and
capture user input to send it to the server. Client tasks are
less demanding, which allow low-powered devices to run
client applications and receive the result of complex high-
end games from the network.

Both client and server applications need to perform

some tasks to make the cloud gaming system work. These

tasks form a loop that organizes and connects all the sub-

systems to be perceived by the user as a single system that

is working to provide the game that is being consumed at

runtime. These tasks are outlined in Fig. 1. At the client-

side, user input and network feedback data are gathered

and the received video decoded and presented to the user.

At the server-side, user input updates the game’s logic and

network feedback is used to make necessary quality

adjustments. The game is then rendered and its output is

encoded and streamed to a client.

Figure 1. Tasks processed on client and server to provide a cloud-based

game.

Based on this common architecture, our work proposes
using the concept of layers to handle the game content
separately, instead of always streaming a full video frame.
We use knowledge about the game to combine different
objects into these layers and handle them as needed. Less
important layers may use a lower bitrate or be updated less
frequently, while other layers containing relevant game
elements can be prioritized. This is specified by the game
developer.

The core idea about using game layers is that not all
content is updated at the same time within a game and not
all content has the same importance. A game background
could be static for several frames while the player
character may change its animation at every update. If the
background has not changed and the game has means to
detect it, we could employ some technique to avoid this
image from being encoded and sent to the client. This
greatly reduces the encoding tasks at the server and the
streaming size sent to the user.

This way, instead of transmitting a single video stream
with fixed size and quality parameters, we apply multiple
streams, each with its own spatial/temporal resolution and
quality parameters. This allows the video streamer to
prioritize objects that are more important and handle them
separately.

For example, in some games, the main character
controlled by the player occupies only a fraction of the
screen. However, when using the conventional streaming
method, the character’s region on the video cannot have
better quality or be updated more frequently than the rest
of the video. Using layers, a video stream with the size just
large enough to enclosure the player character can be set

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 427

up and allow the player to be updated on the client without
streaming the full resolution video.

Fig. 2 presents an overview of how a game scene could

be split into multiple separate layers. It is up to the

developer to specify which objects should be combined

together using its knowledge about the game. In this

example, we have identified four layers: background (A),

foreground (B), player (C), and enemies and objects (D).

Background and foreground represent large static elements

that will be updated less frequently, but can not be placed

on the same layer because some other elements appear

between them. The enemies and objects will be updated

more frequently but they use less screen space. And since

this layer is composed by small elements, its quality

parameters could be reduced without causing much impact

on player experience, if needed. Finally, the player layer is

where the main character is. This layer usually has the user

focus all the time and should keep the highest possible

quality. On the other hand, the player character is only a

small element on the screen, which means that, even if at a

high frame rate, updating this layer should be a lot cheaper

than updating the whole screen at every frame.

Figure 2. The game objects are separated into different layers that are

handled separetely and can be updated and streamed with no dependency

of the others (this example is based on Unity Tower Bridge game).

Another advantage of this layer technique is removing
motion estimation from the process. As seen before,
motion estimation is a very costly stage on video encoding
[15]. However, instead of relying on the generic motion
estimation algorithms that are designed to work with any
kind of video, we use the streaming API to detect when
objects within the scene have changed and need to be
updated. This usually happens when objects have been
added or removed from a layer, have moved, rotated or
scaled, or have changed any visual property, such as an
animation frame or its color. Using our proposed API, all
these changes are detected when the commands to change
any of these properties are issued and the streaming server
is able to react accordingly, by re-encoding and updating
the cache for that specific layer. Then again, even if we are
on a complex scene with many elements on the screen,
only the layers containing the changed objects will need to
be updated.

In Fig. 3 we outline how a typical cloud gaming
architecture could be modified to work with the proposed
layer technique. At the cloud server, changes are made
starting from the rendering stage. Instead of the regular
graphical output, this component outputs multiple separate

layers with the game elements. The video encoder then
processes each layer separately as needed (layers that have
not been updated do not need to be encoded again) and the
video streamer sends the encoded layers to the client. At
the client side, the video decoder needs the handle of each
layer on its own and combine the data received from the
network with the previous layers that have been already
cached to create the final image that is displayed to the
user.

Instead of just decoding and presenting the video, in

some cases, the client has to decode multiple videos and

store at least the last frame for each layer on a local cache.

Therefore, client system processing and memory

requirements are slightly increased on this architecture. On

the other hand, streamed videos within this architecture

will usually have a lower resolution, since they represent

only part of the whole game.

Figure 3. Typical cloud gaming architecture adapted for layered

streaming.

We also propose a simple API that works as a basic
scene graph and allows the developer to add objects and
specify game layers. By using this, any updates to the
game objects must go through the API, which allows the
streaming application to detect changes that have happened
and any new layer that needs encoding.

The proposed LACES API works as follows: an
Application component is responsible for managing the
whole game. The developer should extend this class and
create his own application (MyApplication), which will
load game resources, create game objects and specify its
layers. Each application has one or more Layers that
combine a group of game objects. When a game object is
changed, its layer is marked and will be encoded and
streamed. Game Objects typically contain the game logic.
These entities are usually added to a game to encapsulate a
specific behavior, but in our context, game objects should
always be attached to elements that have a visual
representation. At this point, our API focus only on 2D
games, so these Game Objects represent sprites in the
screen. Elements that are behavior-only, such as a timer,
do not need to belong to a layer, since they will not be
streamed to the client.

At the rendering stage, each layer renders its game
objects into an individual buffer. The result of a render
pass are N image buffers ready for cache check, encoding
and streaming, where n is the number of layers in the
game. Before encoding and streaming an image buffer to a
client, the server first checks if changes were made to that
layer. If no changes happened, the current image buffer on

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 428

the server should be the same as the local cache at the
client and no retransmission is needed. If anything changed
within a layer, it needs to be updated at the client. Two
issues are important for this process: how to check if the
layer cache has changed and how to update it at the client
level.

Within LACES, every drawable object belongs to a
layer, as illustrated in Fig. 2. An object is invalidated and
needs to be redrawn in two specific scenarios: it has
suffered a transformation (translation, rotation or scale) or
it has changed its image (updated its animation frame, for
instance). Whenever these situations happen, the game
object informs to its layer through the API which type of
modification happened. After all objects of a layer have
been updated, the layer has enough knowledge to decide
whether it needs a complete redraw or it is enough to just
send some transformation operations to the client to update
its local cache.

If the combined changes for all objects within a layer
could be expressed as a series of transformation
operations, then the server does not need to encode and
stream a new image to the client. Instead, it just sends the
transformation operations that will be applied at the client.
For example, if all objects within a layer have moved, the
server may send a translation command to the client
instead of encoding and streaming a new video frame. If
these objects have also been scaled, the server will send a
scale command and so on.

After determining which layers need encoding, the
server must send the updated data to the client. For layers
that were invalidated, new frames will be encoded and
streamed. The client will receive these frames, store them
on a local cache and display them to the user. For the
layers that were updated but not redrawn, the server will
send the transformation operation to the client, which will
process and apply these transformations to its local cache
and update the final image displayed to the user.

Figure 4. Overall update and render flow for a single layer within the

game using LACES.

The flow for updating a single layer is demonstrated in
Fig. 4. The same process is repeated for each layer in a
game using our API. For every update, we iterate on all
game objects within a layer and render them. The render
result may update the layer state, if the image has changed
(and the layer needs a complete redraw) or if an object has
been transformed. If nothing happened, the layer does not
requires an update. After all objects are rendered, the
current layer state will determine if it needs to be redrawn
or not. If the layer needs to be redrawn, the server will use
the layer output, encode it and send it to the client.
Otherwise, the server will check if the layer needs to be
transformed and send the necessary transformation
operations to the client. After that, a new loop starts.

IV. EVALUATION

Our proposed API and test application were developed
in C++ using FFmpeg [21], Allegro [22] and Simple and
Fast Multimedia Library (SFML) [23]. Allegro is used to
handle multimedia assets, to detect user input and display
graphics output to the client. SFML is used to handle
network communications and FFmpeg provides
functionality for video encoding at server-side and
decoding at client-side.

A core element for LACES is how game layers are
defined and used. Grouping together a large amount of
objects in a single layer would probably cause this layer to
be updated more frequently. Then it would be streamed
more frequently, therefore, reducing overall cache usage.
On the other hand, having too many layers could also
impact the performance, because in this case, the server
would process and encode multiple separate layers that the
client needs to receive from the network, decode and
present to the user.

We have run our tests in different scenarios to
demonstrate how the system behaves with different setups,
ranging from a single layer – a regular video stream – to
each object within its own layer in a game with a few
dozens of visual objects.

The test application is a Breakout game (Fig. 5) with
the following elements: background image, ball, player’s
paddle and target bricks, with a resolution of 800x600. In
this game, the player controls a paddle in the bottom of the
screen and has to hit the ball and destroy the bricks in the
top. Each of these elements can be included in a separate
layer or combined in the same layer. For the tests
presented in this paper, four different scenarios were used:

 (a) one layer: all objects in the same layer
(without using cache, this represents a regular video stream
analogous to other game streaming solutions)

 (b) three layers: (1) background and bricks, (2)
ball, (3) player

 (c) four layers: (1) background, (2) bricks, (3)
ball, (4) player

 (d) n layers: (1) background, (2) ball, (3) player,
and (27) each brick on its own layer

The first scenario (a) will update the image layer every

time an object is changed, which in this case should be

every frame the ball moves, for instance. Scenario (b) will

update layer 2, if the ball is changed, layer 3, if the player

is changed, and layer 1, if a brick is changed. Scenario (c)

will update layer 3, if the ball is changed, layer 4, if the

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 429

player is changed, and layer 2, if a brick is changed. Layer

1 (background) is static in this game and will not be

updated. Finally, scenario (d) allocates a separate layer for

each game object, including each separate brick. This

means that when a brick is changed, only that small

portion of the screen needs to be updated. However, this

also means that client and server are now handling

multiple low-resolution videos instead of a few larger

ones.

Figure 5. The Breakout game used as test application.

We ran the application on these different scenarios for
one minute of gameplay and collected data to compare
how the application behaves with several layers and using
the cache technique or not. Our metrics for these tests are:
total video encoded size on the server and number of
encoded frames, total streamed size and number of
streamed frames, number of translation frames, and
encoding time.

Using LACES cache technique, we expect a great
reduction in encoding and transmission. Each layer frame
is stored after its initial encoding and, on the next time it is
needed, we first check if it exists in the cache to avoid
encoding it again. If a layer has an animated object (a
character walking, for example), each animation frame is
encoded the first time it should be presented and, on the
next time, the cache is used. If caching is ignored, each
time the layer changes, it needs to be encoded again.

When cache for a layer exists and it has just been
moved on screen, we can send a translation frame to
update that layer’s position in the client, instead of sending
the entire encoded layer frame. This packet contains just a
few bytes identifying the layer and specifying the new
layer position. We measure this information to show how
many times the cache technique allows the application to
skip frame encoding and streaming.

The number of layers and the size of each layer have an
impact on how much time the server application spends
encoding each frame. In the single layer scenario (a), this
is the total time to encode each frame that is sent to the
client. In the other scenarios (b), (c) and (d), this time is
the accumulated time for encoding all layers. If cache for a
specific frame exits, it is not necessary to encode it,
therefore, the total encoding time is greatly reduced.

We run the Breakout game for one minute for each test
simulating a gameplay session. To avoid differences
caused by user input, the player’s paddle has been
programmed to follow the ball position instead of waiting
the player’s input to move.

A. Test scenarios with static game objects

Table I presets the results for test case (a) where all
objects are placed in the same layer. This is the worst case
for this proposal, since it does not provide the opportunity
to reuse previous frame cache. This way, the results for
using or not using cache are very close and we could
consider them equal within an error margin (less than 3%
encoded bitrate difference).

TABLE I. TEST CASE (A): ALL OBJECTS IN THE SAME LAYER

 Using Cache Not Using Cache

Encoded Frames 4694 4850

Encoded and Streamed Size 749243 Kb 769891 Kb

Average Encoded bitrate 12486.6 Kbps 12829.5 Kbps

Streamed Frames 4694 4850

Encoding Time 38.6 s 39.8 s

Better results with our LACES proposal start to appear

when we separate objects into multiple layers, each with
its own video stream. In scenario (b), we create three
layers: (1) background and bricks, (2) ball and (3) player.
Background and bricks are static elements, so they are
placed in the same layer. Layer 1 will change only when a
brick is destroyed. The ball and the player’s paddle will
move around separately, so each gets its own layer.

In the scenario presented in Table II, we are actually
handling three separate video streams, one for each layer.
But each video is large enough only to cover all objects
within the layer, which means the video for the ball object,
for example, is only 24x24 pixels. In addition, these video
layers are not being encoded and streamed all the time. If
the objects in a layer have not changed their visual state
between frames, that layer does not need to be updated
and, if the objects have just moved, we can issue a
translation command to update the layer position in the
client.

Using cache in scenario (b), the server needed to
encode only 17 frames (one for the ball, another for the
player and the remaining 15 for each time a brick is
destroyed). This greatly reduces the encoding and
streaming size and bitrate. Notice that, since most of the
time the player’s paddle and the ball are just moving on
screen, without actually changing their images, the server
is able to send a translation update to the client without
encoding or streaming a new frame.

TABLE II. TEST CASE (B): THREE SEPARATE LAYERS FOR

BACKGROUND AND BRICKS, BALL, AND PLAYER PADDLE

 Using Cache Not Using Cache

Encoded Frames 17 11604

Encoded Size 2279 Kb 674303 Kb

Average Encoded bitrate 37.9 Kbps 11236 Kbps

Streamed Frames 17 11604

Stream Size 2279 Kb 674303 Kb

Average Stream bitrate 37.9 Kbps 11236 Kbps

Streamed Translations 13884 0

Encoding Time 0.12 s 33.4 s

Of course, not using cache in scenario (b) has a huge

impact on performance, because the server would encode
and stream three separate video layers for every game
frame. This is not a recommended scenario for our
technique. Results when “Not Using Cache” are presented
in the tables just for comparison reasons.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 430

A better comparison though would be scenario (b)
using cache and scenario (a) not using cache. This way, we
can see how our technique compares to a standard video
stream. Using three layers and storing separate caches for
them, we managed to reduce the encoding size on the
server 99.7% (from 769891 Kb to 2279 Kb) and the
average stream size 99.7% (from 12829.5 Kbps to 37.9
Kbps). This has a large impact not only on the network
usage and necessary bandwidth, but also on the server
load. Encoding so many frames reduced the total encoding
time 99.6% (from around 39.8 seconds to less than 1
second).

A key element of our proposal is fine-grained
streaming where only the necessary parts of the image are
encoded and sent to the client. If all game objects are
placed in the same layer, this means that any change makes
the whole frame invalid and the server needs to encode a
new frame. If objects are separated into multiple layers,
only the layers that have modified objects will need re-
encoding. In Table III, we show the effects of adding more
layers to the game. Scenario (b) has three layers and every
time a brick is removed, a new frame of the remaining
bricks and the background is encoded. In scenario (c),
bricks are combined in a different layer from the
background and when a brick is changed, the background
does not need to be re-encoded. Finally, in scenario (d),
each brick is independent from the others and when brick
is changed, nothing happens to the other bricks’ layers.

TABLE III. COMPARISON BETWEEN THE SCENARIOS WITH 3 (B), 4

(C) AND N (D) LAYERS

 (b) (c) (d)

Encoded Frames 17 16 39

Encoded Size 2279 Kb 2007.2 Kb 330.7 Kb

Average Encoded bitrate 37.9 Kbps 33.4 Kbps 5.5 Kbps

Streamed Frames 17 16 39

Stream Size 2279 Kb 2007.2 Kb 330.7 Kb

Average Stream Size 37.9 Kbps 33.4 Kbps 5.5 Kbps

Streamed Translations 13884 12460 10578

Encoding Time 0.12 s 0.05 s 0.01 s

The number of frames in scenario (d) is larger because

each brick is encoded separately at least once and there are
27 bricks in the scene. Whenever a brick is destroyed, a
new frame is created to represent this new state. The other
frames correspond to the background, ball and player, each
encoded one time and updated with a translation command
when necessary.

Separating bricks in different layers makes it possible
to modify a brick without any effect to the other bricks or
any other element in the scene. These results in a bitrate as
low as 5.5 Kbps, because the only thing that is streamed
after the initial state is the removal of each brick’s layer
when they are destroyed.

B. Test scenarios with animated game objects

The previous scenarios work well as a benchmark for
our technique and allows us to test how it behaves
compared to a standard video stream with different number
of layers, but they do not reproduce the behavior of an
actual game. We also developed another scenario that is
closer to the expected behavior of a typical 2D game.
Usually, each game object in a 2D game is composed of
some discrete frames that are looped to create the illusion
of animation and movement, as illustrated in Fig. 6. We

modified the Breakout game from the previous tests and
added animations to the player’s paddle, the ball and the
bricks. These animations are played at different speeds and
updated separately. Using our cache technique, the goal is
to encode each frame just once and when it is needed
again, the stored cache is used.

Figure 6. A character in a 2D game is made of multiple animation

frames to create the illution of animation and movement.

In Table IV, we compare the standard single-layer
video stream with no cache (a), with the cached video
stream with three (b), four (c) and several layers (d) as we
made in the previous tests, but now using animated game
objects.

TABLE IV. COMPARISON BETWEEN STANDARD VIDEO (A) AND THE

SCENARIOS WITH 3 (B), 4 (C) AND N (D) LAYERS WITH ANIMATED

OBJECTS

 (a) (b) (c) (d)

Encoded Frames 4554 96 95 245

Encoded Size
726964

Kb
13871.9

Kb
13009.6

Kb
1503.4

Kb

Average
Encoded bitrate

12115.1
Kbps

231.1
Kbps

216.8
Kbps

25 Kbps

Streamed Frames 4554 1070 1072 7264

Stream Size
726964

Kb
44165.7

Kb
43079.4

Kb
28849.8

Kb

Average Stream
bitrate

12115.1
Kbps

736 Kbps
717.9
Kbps

480.7
Kbps

Streamed
Translations

0 12885 12239 9566

Cache Hit/Miss 0/4554 974/96 977/95 7019/245

Encoding Time 38 s 0.72 s 0.3 s 0.05 s

In these scenarios, each layer is updated whenever a

child game object changes its current animation frame.
Here we introduce a new metric: cache hit and miss. When
the server needs to send a new frame to the client, first it
checks if that frame was previously encoded and is stored
on the server cache. If the cache exists, it is a cache hit.
This means that the server does not need to encode it
again. The data retrieved from the cache is sent directly to
the client.

This has the potential for greatly reducing encoding
time on the server. For example, in these tests, the player’s
paddle has four animation frames. After the fourth frame,
the server would not need to encode anything else for this
game object, it just reuses the cache. In addition, if the
server is providing a service for multiple users, the cache
created for the first user could be reused for new players,
which can bring huge performance gains in cloud-based
systems that usually work with massive amount of users.

In our tests, we observed that using more layers leads
to better results. With each object separated in its own
layer (d), we managed to reduce the average encoded size
99,79% (from 12115.1 Kbps to 25 Kbps) and the average
streamed size 96% (from 12115.1 Kbps to 480 Kbps),
compared with the regular video stream (a). We streamed a
total of 7264 frames (the sum of all layers during the test)
but only 245 of those were actually encoded. The
remaining 7019 frames were successfully fetched from the
cache.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 431

Also, notice that for moving objects, such as the ball
and the player’s paddle, sometimes their positions change,
but the animation frame stays the same. In these cases, the
server sends just a translation frame with the new position
for that layer. This reduces the amount of data that is sent
to the client. On our tests, this happened 9566 times.

In Fig. 7 and Fig. 8, we present a comparison of
average bitrate for scenarios (b), (c) and (d). With static
game objects, the server is encoding every frame that
needs to be sent to the client, so encoded and stream bitrate
are the same. With animated objects, when a frame that
was previously encoded is needed, the cache data is used
and that frame is not encoded again and the server
workload is greatly reduced. Fig. 8 shows in more detail
how a large amount of data that is sent to the client is
reused and do not need to be encoded more than once.

Figure 7. In the scenarios with static objects, everytime a frame is sent

to the client, it is also encoded. So, there is no cache reuse from previous

frames.

Figure 8. In the scenarios with animated objects, when a frame is sent

to the client, the cache will be used if it exits and no new encoding will
be necessary. This way, the server is able to encode less data than what

is actually streamed.

C. Input delay

Using multiple layers and the cache technique

proposed in our work might introduce some new
complexity in a game streaming system that could result in
a larger input delay that could ruin the user experience.
The total input delay is the total response time between a
key press at the client-side, its processing at the server-
side, network round-trip time and the result presented to
the player. Since we are testing the input delay added by
our technique, we made the tests locally on a same
machine. This way, network delays, which would apply to
any streaming service, were disregarded.

In our tests, we have stored a timestamp for each user
input on the client and sent an id with the input message to
the server. The server then adds the latest id whenever a
new frame is sent to the client. When the client receives a

new frame, which will update the game’s state from the
player’s point-of-view, it uses that id to compare the
temporal difference between when the input was sent and a
frame generated by that input was received.

In Table V we compared average, minimum and
maximum input delay for scenarios with no cache (a), with
the cached video stream with three (b), four (c) and n
layers (d) using animated game objects. We tested some
intermediary cases using n layers (with 12 and 21, in
addition to 30), to measure how the delay grows compared
to a larger amount of layers. Since in our previous tests
each line of blocks has 9 blocks, we removed one line at a
time for this test. We also present the standard deviation as
a measure of how spread these values are. We ran the
application in each scenario and collected 1000 inputs that
were entered in the client, sent to the server and received
back in the client to compare the timestamp difference.

TABLE V. INPUT DELAY COMPARISON BETWEEN STANDARD VIDEO

WITH NO CACHE (A) AND THE SCENARIOS WITH 3 (B), 4 (C) AND N (D)

LAYERS WITH ANIMATED OBJECTS

(a) (b) (c)

(d)

12 21 30

Average
delay

39 ms 10 ms 11 ms 10 ms
13
ms

15 ms

Min delay 29 ms 5 ms 6 ms 6 ms 7 ms 8 ms

Max delay 46 ms 55 ms 46 ms 36 ms
56
ms

88 ms

Standard
deviation

2,6 4,9 3,7 2,5 4,6 8,8

The average input delay for the scenarios using cache

is around 10-15 milliseconds with peaks around 90
milliseconds in some cases. Compared with the standard
video with no cache, which in average presented a 39
milliseconds delay, we believe the multi-layer and cache
processing should not add a significant input delay to the
overall streaming system, in fact, the delay average delay
is much lower using cache, as seen in Fig. 9.

Figure 9. Input delay for the tested scenarios. Notice that the average

delay is much lower in all the cases that are using our cache techinique

(with 3 or more layers) compared to the standard video (with a single

layer).

V. CONCLUSIONS

In this work we presented LACES, an API that allows
a cloud game server to split game objects into multiple
video layers and handle them separately, resulting in great
performance improvements when compared to a standard
video stream.

With our technique, we were able to reduce the average
encoding size on the server 99.79% (from 12115 Kbps to

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 432

just 25 Kbps). This reduction comes from the reuse of
previously encoded frames that were stored on the server
cache. In cloud gaming systems that usually have a large
amount of concurrent users, the combination with a much
lower encoding time and the reuse of encoded frames
between different users can result in a major performance
boost.

We also applied our technique to identify when
elements within a layer were just moved but were not
redrawn. When this happens, that layer can be moved in
the client with a simple translation message, instead of
encoding and sending a new frame. This allows a great
reduction on network bandwidth usage between server and
client. With a standard video stream, everything that is
encoded is sent to the client. With our layer-cached stream,
we send new frames only when needed. This way, we
managed to reduce the average streaming size to the client
96% (from 12115 Kbps to 480 Kbps).

As future work, we intend to reuse data generated for
one user to others. This would gradually increase the cache
size and cache hits would become more constant, reducing
even more the amount of data the server needs to encode to
provide its service to a specific user.

We also intend to propose dynamic video quality

encoding adjustments to keep a good user experience.

Since game elements are already separated into layers, our

idea is to prioritize layers with more important objects

(such as the player character) and adjust the quality of the

other layers as needed. This way, if we need to use less

network bandwidth, for example, we could reduce the

background resolution or the frame rate of enemy

animations.

Moving LACES to a game engine, such as Unity,

Unreal or GODOT is an approach that would greatly

improve its usage, since it would reduce the amount of

work need to adapt games intended to run on this proposed

cloud environment.

It would also be possible to apply these techniques to

stream layered outputs for emulated older consoles that

already work with multiple object layers for their sprites,

backgrounds and other elements.

Finally, using machine learning, we believe it would be

possible to estimate which layers and frames a user will

most likely need given the current game state and stream

them using the available bandwidth. Using this strategy, it

would be possible to further improve input delay, reduce

network peaks and increase client-side cache hits.

ACKNOWLEDGMENT

This work was supported by CAPES, CNPq and
FAPERJ.

REFERENCES

[1] A. Fox et al., “Above the clouds: A Berkeley view of cloud
computing,” Dept Electr. Eng Comput Sci. Univ. Calif. Berkeley
Rep UCBEECS, vol. 28, p. 13, 2009.

[2] M. Jarschel, D. Schlosser, S. Scheuring, and T. Hoßfeld, “Gaming
in the clouds: QoE and the users’ perspective,” Math. Comput.
Model., vol. 57, no. 11–12, pp. 2883–2894, Jun. 2013.

[3] W. Zhu, C. Luo, J. Wang, and S. Li, “Multimedia Cloud
Computing,” IEEE Signal Process. Mag., vol. 28, no. 3, pp. 59–69,
May 2011.

[4] Netflix, “Complexity In The Digital Supply Chain,” 2012.
[Online]. Available:
http://techblog.netflix.com/2012/12/complexity-in-digital-supply-
chain.html. [Accessed: 13-Jul-2019].

[5] K. Pires and G. Simon, “DASH in Twitch: Adaptive Bitrate
Streaming in Live Game Streaming Platforms,” 2014, pp. 13–18.

[6] P. Gooding and M. Terras, “‘Grand Theft Archive’: A Quantitative
Analysis of the State of Computer Game Preservation,” Int. J.
Digit. Curation, vol. 3, no. 2, pp. 19–41, Dec. 2008.

[7] National Library of Australia, Guidelines for the preservation of
digital heritage. 2003.

[8] Microsoft, “Xbox One Backward Compatibility,” 2019. [Online].
Available: http://www.xbox.com/en-us/xbox-one/backward-
compatibility. [Accessed: 13-Jul-2019].

[9] Sony, “Playstation Now,” 2019. [Online]. Available:
https://www.playstation.com/en-us/explore/playstation-now/.
[Accessed: 13-Jul-2019].

[10] DOSBox, “DOSBox,” 2019. [Online]. Available:
http://www.dosbox.com. [Accessed: 13-Jul-2019].

[11] C.-Y. Huang, C.-H. Hsu, Y.-C. Chang, and K.-T. Chen,
“GamingAnywhere: an open cloud gaming system,” in Proceedings
of the 4th ACM Multimedia Systems Conference (MMSys), 2013,
pp. 36–47.

[12] M. Hemmati, A. Javadtalab, A. A. Nazari Shirehjini, S.
Shirmohammadi, and T. Arici, “Game as video: bit rate reduction
through adaptive object encoding,” in Proceeding of the 23rd ACM
Workshop on Network and Operating Systems Support for Digital
Audio and Video (NOSSDAV), 2013, pp. 7–12.

[13] P. Eisert and P. Fechteler, “Low delay streaming of computer
graphics,” in 15th IEEE International Conference on Image
Processing (ICIP), 2008, pp. 2704–2707.

[14] Y. Noimark and D. Cohen-Or, “Streaming scenes to MPEG-4
video-enabled devices,” IEEE Comput. Graph. Appl., vol. 23, no.
1, pp. 58–64, Jan. 2003.

[15] L. Cheng, A. Bhushan, R. Pajarola, and M. El Zarki, “Real-time
3D graphics streaming using MPEG-4,” in Proceedings of the
IEEE/ACM Workshop on Broadband Wireless Services and
Applications (BroadWise’04), 2004, pp. 1–16.

[16] D. C. Barboza, D. C. Muchaluat-Saade, and E. W. G. Clua, “A
real-time game streaming optimization technique based on layer
caching,” in Consumer Communications and Networking
Conference (CCNC), 2015 12th Annual IEEE, Las Vegas, NV,
2015, pp. 714–719.

[17] F. W. B. Li, R. W. H. Lau, D. Kilis, and L. W. F. Li, “Game-on-
demand:: An online game engine based on geometry streaming,”
ACM Trans. Multimed. Comput. Commun. Appl., vol. 7, no. 3, pp.
1–22, Aug. 2011.

[18] H. Rahimi, A. A. N. Shirehjini, and S. Shirmohammadi, “Context-
aware prioritized game streaming,” in IEEE International
Conference on Multimedia and Expo (ICME), 2011, pp. 1–6.

[19] D. Shreiner, G. Sellers, J. M. Kessenich, and B. M. Licea-Kane,
OpenGL Programming Guide: The Official Guide to Learning
OpenGL, Version 4.3, 8th ed. Addison-Wesley Professional, 2013.

[20] R. Shea, Jiangchuan Liu, E. C.-H. Ngai, and Yong Cui, “Cloud
gaming: architecture and performance,” IEEE Netw., vol. 27, no. 4,
pp. 16–21, 2013.

[21] FFmpeg, “FFmpeg Libraries for developers,” 2019. [Online].
Available: https://www.ffmpeg.org/. [Accessed: 13-Jul-2019].

[22] Allegro, “Allegro - A game programming library,” 2019. [Online].
Available: http://liballeg.org/. [Accessed: 13-Jul-2019].

[23] L. Gomila, “Simple and Fast Multimedia Library (SFML),” 2019.
[Online]. Available: http://www.sfml-dev.org/. [Accessed: 13-Jul-
2019].

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 433

