
Terrain generation based on real world locations for military training and simulation

Peter Dam, Fernanda Duarte, Alberto Raposo
Tecgraf - Computer Graphics Technology Group

Department of Informatics / PUC-Rio
Rio de Janeiro, Brazil

{peter, fernandaduarte, abraposo}@tecgraf.puc-rio.br

Abstract—The task of recreating a real world location in
a virtual environment is never easy, and a high degree of
similarity is crucial for specialized training and simulation
sessions, which are becoming ever more employed in the
military to improve training methods. Allowing the users to
recognize the location in the virtual environment through the
use of real maps, for example, increases user engagement,
helping to increase the overall quality of the training session.
One factor that must be accounted for is the availability of data
to perform the creation of these virtual environments, especially
in locations such as areas with low population density or small
cities in South America. In this paper we present a method
to enable the creation, with limited data availability, of a very
large, high quality, and optimized environment for ground-level
simulations using Unity 3D, one of the current state of the art
game engines.

Keywords-virtual environment; real world; terrain genera-
tion; serious games; training; simulation;

I. INTRODUCTION

With the improvement in technology, both in hardware
and software, such as game engines, it has become increas-
ingly possible to perform high quality simulation in virtual
environments. Games have already reached a very high
level of realism and will most probably continue to breach
the gap, which lends favorably to the non-entertainment
domain, in which we place applications focused on training
and instruction. These are commonly categorized as serious
games, which have been increasingly used by instructors due
to the realism and immersion.

Amid those who make use of serious games, the military
is constantly making use of them for training and recruiting
purposes. Examples such as America’s Army (1) has been
used for many years now as a tool for communication,
allowing players to explore and learn about the United
States’ Army, and even for recruitment purposes. Another
tool that has been used by several armed forces is Virtual
Battlespace (2) (VBS), currently in its third version. Unlike
the first example, VBS provides an editing environment,
where instructors can design a session tailored towards their
specific training needs.

Among the different skills that might need to be devel-
oped, one is to be able to properly operate military combat
vehicles. One example of games employed toward this end is
Steel Beasts (3), which has been adopted by several armies.

Physically operating the vehicles is very costly, the vehicles
need to be moved to the location and consume fuel during
the operation, which makes repetition prohibitive. Another
factor that must be accounted for is risk, accidents may
happen, possibly incurring in injuries and financial loss,
which further limits the training possibilities. In order to
explore other possibilities one solution is making use of a
virtual environment, where the desired skills can be tested
thoroughly. Furthermore, it is possible to create situations to
explore reactions to enemies, allowing the trainees to acquire
experience in dealing with a vast array of adverse situations
before actually encountering them in reality.

One difficulty, however, is finding a simulator that suits
the needs, be it because the desired vehicle is not available,
or because the terrain is either a fictitious location or some
location that does not reflect the desired type of terrain and
obstacles. As such, we began to develop such a simulator
tailored to the specific needs of the Brazilian Marine Corps.
It was requested that the location in which to simulate be of
Votuporanga, a small city in the state of São Paulo, Brazil.
We chose to use Unity3D (4) as the underlying game engine
both because it provides great features and optimization, as
well as due our team’s familiarity with the engine. Another
interesting feature presented by the engine is the Asset Store.
All this together allows us to focus on the important part of
the simulator, leveraging the features provided by the engine
and third party assets.

The environment is the first part we worked on and
is the focus of this paper. For this part the key aspects
comprise of accurate terrain elevations and appearance,
correct placement of the roads and the presence of buildings
and housings. The last part need not be exact, but close
enough as to impose the same physical and visual obstacles
as would be encountered in the real location. Furthermore,
it is important that the sky is accurate as well, in regards to
the correct placement of the sun at any given date.

We will first evaluate related work in regards to different
solutions for generating terrain, then we will describe the
method we developed. Next we will present our results and,
finally, present our conclusion.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 524



II. RELATED WORK

There are a few different approaches to terrain generation,
which will be employed to generate one of the following:
a completely fictitious location, a real world location or a
fictitious location based on real world data. Among these ap-
proaches, we can divide them into three categories: manual
modeling, procedural generation, and real world modeling.
Even though we are working towards a real world location,
we can use techniques employed in other categories as well.

A. Manual Modeling

Manual modeling of terrain is a very laborious task,
requiring a lot of time and specialized tools and personnel.
Due to the very high costs, this is currently not a common
method of terrain modeling both in the entertainment and
the serious games industries, with most developers rather
adopting a hybrid approach between procedural generation
and manual modeling (5).

B. Procedural Generation

Procedural generation of terrain models is the use of
algorithms based on randomness to generate unique content.
The advantages of this approach is that a huge amount
of data can be generated quickly (once the algorithm has
been implemented). One can alter parameters and constantly
adjust until a desirable outcome is achieved. The downside
is that some inconsistencies or unlikely features may occur,
so it is usually necessary to manually edit the outcome.
This applies not only to the terrain topography, but can
also be applied to other aspects such as road networks (6),
vegetation, housing placement and more (7).

In regards to terrain modeling, this seems to currently
be the most popular, usually employing a hybrid approach,
either between manual and procedural or between procedural
and real data. Smelik et al. (8) describe an interesting
method where the user can easily sketch a terrain with
desired features and their system will generate a terrain
matching those features. This allows instructors to create
scenarios where the terrain will suit their needs. On the
other hand there are approaches, such as the one employed
by Parberry (9), that use real world data as input to lend
greater credibility to the outcome of procedural methods.

C. Real World Modeling

Finally there is also the possibility of representing the
real world in a virtual environment. There are many different
types of data that need to be processed in order to rebuild the
location, and the availability, precision and resolution of the
data vary greatly depending on the region of interest. Wells
(10) describes a solution for real-time generation of terrain,
but this presents a problem for our case: their solution
makes use of data that is not readily available for the region
of Votuporanga, and, for that matter, the majority of the
world other than North America and Europe. Furthermore,

Figure 1. Layers of the terrain.

by generating the terrain in real-time they guarantee that
their world representation is always up to date with the latest
available data, but, on the other hand, they must waiver the
benefits of pre-processing the terrain in order to improve
performance, as well as the possibility of manually editing
the terrain to further adjust for better suitability or to remove
any flaws caused by the method or by bogus data.

III. METHOD

In this section we will describe the methods we followed
and developed to achieve the desired results. The process can
be divided into separate modules, corresponding to layers
of the terrain, as shown in Fig. 1. First we must build the
topography, upon which we will apply the ground textures.
Then we will build vegetation, roads and finally the city
elements such as housings. Most of the steps are individually
automated, but the whole terrain is not built as a single
batch process because we need to constantly evaluate the
results of each step and adjust parameters until the result is
satisfactory. At the end we still did some manual intervention
either to fix some errors or to make the terrain aesthetically
more interesting.

A. Topography

The first part in the process is to generate the terrain mesh.
To do this we must first obtain a digital elevation model
(DEM) from a provider. While some providers, especially
those using airborne measurements, may be able to provide
higher resolution data, we found that for the region of
interest the spaceborne data sets provided by the United
States Geological Survey (USGS) and National Aeronautics
and Space Administration (NASA), called the Shuttle Radar
Topography Mission (SRTM) (11), were readily available
and accurate enough (12) for our purposes, even though
there are methods of reducing errors and improving accuracy

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 525



(13). Between the different versions of the SRTM we chose
version 3.0 (SRTM Plus) (14), henceforth referred to as
SRTM.

First the correct data needs to be found, and SRTM does
not have an API, it is an organized archive of data split
into tiles, indexed by the southwestern coordinate of each
tile. The chosen coordinates for any region of interest most
probably will not match a tile of SRTM data. Depending on
the size of the region of interest it will either be contained
inside one tile or spread across two or more tiles, so we must
find the tiles that contain the data for the chosen coordinates
and extract it from the tiles in which our chosen region is
found.

This data is then is interpreted into a matrix and fed
into the terrain system of the engine. Likewise, it would
be possible to generate the mesh, in which case each point
would become a vertex of the terrain and the vertices in
between the points would be calculated via some interpola-
tion method such as a bilinear or bicubic (15) interpolation,
however this is not necessary since the engine we use has a
highly optimized built-in terrain system (16). This, however,
yields a terrain that is too smooth, so in order to improve
this we then add some randomized roughness using perlin
noise (17).

Due to the size of the designated location we chose to split
the terrain into tiles for two reasons. The first is that we are
able to obtain higher resolution data for smaller regions, so
instead of obtaining data for one large terrain, we divide the
terrain into smaller tiles. The other reason is that by doing
so, we can reduce the amount of data we must load to the
memory at run-time, as will be explained later.

The chosen size of each tile was 1 km2 in order to simplify
the detection of thresholds (which will be explained later
in this paper), resulting in a 16x16 grid. Since each tile
is processed individually, the previous process of adding a
randomized roughness causes the edges to mismatch. The
next step then is to process the edges of all the terrains to
join the neighboring vertices. Note that in this instance when
we say neighboring we mean vertices of different terrain
tiles that have the same coordinates on the horizontal plane
(in our case X and Z). There are two cases of neighboring
vertices: a point shared by two terrains and a point shared
by four terrains, which is the case of corner vertices. For all
neighboring vertices we set the new height to the average
between the two or four values of that point. Fig. 2 shows
one tile of the terrain obtained from the DEM.

One advantage of the Unity3D engine is its asset store.
Among these assets, one that is very useful for obtaining
DEMs, as described in this subsection, and satellite imagery,
as will be described in the next subsection, is called Real
World Terrain (RWT) (18). RWT is able to download and
process the DEM into multiple terrain tiles with correspond-
ing satellite images. However we still need to apply perlin
noise and adjust the edges. RWT applies the satellite image

Figure 2. One tile of a processed DEM.

as the texture of the terrain, but we will not be using the
satellite image as a texture, rather as input to the next step.

B. Satellite Imagery

Once the elevation data has been processed we now must
obtain the satellite imagery, in Fig. 3(a) is shown one tile of
the satellite image. There are a variety of providers which
offer differing resolutions and quality regarding, for instance,
shadow and cloud removal. Even the available images of
higher resolution, however, are insufficient to use as texture
for the terrain. In the case of a terrain of 1 km2 size
as mentioned in the previous section, a 4096x4096 sized
satellite image would mean each pixel in the image amounts
to approximately 25 cm. Even if managing 256 (16x16 tiles)
images with such a resolution was feasible for real time
performance, it is still not enough for high quality graphics,
especially considering applications where the camera will be
placed near the ground.

Instead, we list the different types of possible surfaces
(grass, dirt, stone, asphalt, etc.) and then process the image to
identify what type of surface is found on each point. For this
reason a clean image (one with minimal shadows and clouds)
is best. The surface values are added to a matrix called a
splat map, which is used by the engine’s terrain system to
blend different textures. This way we are able to use high
resolution textures for each surface type and tile them across
the terrain according to the surface we encountered at each
point in the satellite image, resulting in a terrain that retains
the general surface characteristics, as shown in Fig. 3(b), but
with better performance (since for all tiles we will only load
the surface textures instead of 256 high-resolution satellite
images) and graphical quality when viewed up close.

To process the image and identify the different types of
surfaces, we first convert it from RGB (Red, Green, and
Blue) to HSV (Hue, Saturation, and Value) color space.
Some studies (19) (20) have shown that the use of HSV
color space for image segmentation tasks can provide better
results when compared to RGB. By decoupling luminance
and chromaticity information, the HSV space definition gets
closer to how we perceive and experience color, making the
extraction of features based on color information more intu-
itive. Thus, by testing different thresholds, we can easily find
the range for each HSV component that best identifies each
surface type, generating masks indicating the corresponding

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 526



(a) Satellite image

(b) Retexturized terrain (c) Vegetation mask

Figure 3. Processing one tile of the satellite image.

pixel locations. For instance, for grass identification, we
chose pixels with a hue between 0.19 and 0.36, saturation
between 0.20 and 0.80, and intensity (or value) between 0.10
and 0.80.

In addition to the textures, we used the same procedure
for vegetation placement, which is the process of instancing
the 3D models of grass and trees. One mask is generated for
grass and one for the trees, these masks are encoded into a
single image, as shown in Fig. 3(c), with grass being the red
channel and trees the green channel. For the grass mask we
used the same HSV filter as the grass texture filter, however
to detect trees our thresholds are a bit more restrictive, since
the trees usually have a darker hue than the grass. For the
trees we found the best results with a hue between 0.23 and
0.36, saturation between 0.1 and 1.0 and intensity between
0.10 and 0.27. These masks are then fed into a process which
randomly spawns the grass and the trees based on a set of
rules in order to generate some variety.

C. Road Data

Roads are another crucial aspect of the terrain. To build
the road network we access Open Street Maps (OSM) (21), a
crowd sourced database, which means all data is submitted
by users. OSM has an API which provides data in JSON
format as a list of nodes and a list of roads that refer to those
nodes. Nodes with only one reference are normal members
of a road, and nodes with more than one reference are
an intersection node. The nodes, however, contain only 2D
information (latitude and longitude), which means the height
is not informed. To obtain the height we cast a ray from
each 2D point downwards towards the terrain to discover
the height for the nodes.

OSM data also contains certain parameters that define
characteristics of a road, of which, for our application, the
two most important are road width and surface type. One key
issue with OSM data is that, due to being crowd sourced, not
all data might be present, and when present, might not be
accurate. The road width, when not supplied, is defaulted to
according to the legislation of the region of interest, whereas
the surface type defaults to asphalt. An improvement we
would like to implement is to use the satellite image in these
cases to attempt to assess the surface type.

Once the road width and surface type are defined we
build the road mesh. To build the road mesh, because the
OSM nodes are not evenly spaced, we first subdivide the
list of nodes into an evenly spaced list of points. This also
allows us to define a spacing value that will avoid the road
cutting into the terrain at certain points, since the default
distance can be large between nodes, of which we detected
the height casting rays downwards on the terrain, and thus
the terrain in between nodes might contain slight peaks and
slopes. Reducing the distance between each point minimizes
the chance of these peaks appearing through the road, but
instead the road respecting these variations. With this new
list of points, for each point we detect the direction based
on the next point and obtain the perpendicular vector, which
we will call side vector, by doing the cross-product of the
direction vector and the upwards vector. Based on the road
width we move half that width from the center point to
each side and do a new ray cast to get the height of each
of the two vertices to ensure any variation of the terrain is
accounted for.

After all the road meshes have been created, we then
slightly depress the terrain beneath all roads so that they
sit neatly on the terrain without producing any artifacts due
to potential Z-fighting, a phenomenon well described in (22).
We currently do not treat intersections, so the roads currently
overlap. With the road mesh created we are able to use
another set of high definition textures for the road material,
as well as detect when the user is on a road or not, via
collision detection.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 527



(a) Satellite as texture (b) Retexturized

(c) Roads (d) Final

Figure 4. Ground-level views.

D. City Elements

Finally, the last part of the automated process is inserting
the city elements, such as houses and roadside objects. While
OSM is also prepared to store this kind of data, the area
we chose lacks this information, so we had to choose a
different approach. For this part we used the road network
as a basis for instancing the city elements. This last part
is actually not a fully automated process because we must
choose portions of the map in which we would like to
instantiate the elements.

For this task we once again resort to the engine’s asset
system, finding an asset called CityGen3D (23), which,
among a couple of other features we did not use, is capable
of randomly instancing elements along the roads. We built a
set of 5 different houses that match the style of the location
and fed them into the system, which instantiates these houses
randomly following the road network using the same OSM
data we parsed in the previous step. Some abnormalities do
occur since the road network for the chosen location is not
as organized as most locations in the northern hemisphere,
and these issues we had to manually adjust.

IV. RESULTS

In Fig. 4 the different steps of the automated process are
shown, where in Fig. 4(a) we see the terrain with the satellite
image applied as texture. In Fig. 4(b) the image has been
replaced by surface textures based on the automatic filtering.
Afterwards, in Fig. 4(c) the roads have been placed and
finally the city elements are placed, as seen in Fig. 4(d).

The layer that took longest to solve was the city layer.
After many attempts at obtaining or extracting real world
data from multiple sources, we decided to use a procedural
generation tool to instantiate these elements. The result of
this generation is satisfactory for our needs, even if it is still
not fail proof and requires a more hands-on approach than
the rest of the layers.

(a) Real world

(b) Real time rendered

Figure 5. Comparison of real and virtual environments.

The final terrain is satisfactory for our use, which is
for terrestrial locomotion. The high quality textures of the
surfaces, complemented by the vegetation and roads allow
us to have a great render quality and a recognizable terrain,
meaning that subjects have been able to successfully navi-
gate the terrain based on real maps, as well as encounter the
obstacles and elevations that they would if performing the
same actions in the real world. In Fig. 5 it is possible to see a
photo of a location and a frame of the real time render of the
same location in the virtual environment, in which the only
manual intervention was the insertion of the football goals,
the fences and the warehouse-like constructions visible on
the left-hand side of the image.

Furthermore, we were able to keep the system optimized
enough as to run adequately on lower-end systems based
on the current standards. We have been able to achieve a
sustainable 40 fps running at 720p resolution on computers
with GPUs such as nVidia 720 with 8 GB of RAM. Some
compromises were made in order to be able to maintain
a good frame rate on sub-optimal computers. In Fig. 6
it is possible to see another real world and virtual world
comparison. In this case, the vegetation density, on the right-
hand side of the image, is lower in the virtual world in order
to improve frame rates.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 528



(a) Real world

(b) Real time rendered

Figure 6. Comparison of real and virtual environments.

(a) (b)

Figure 7. Manual detection of features in a satellite image.

A. Manual Intervention

Due to the lack of data on some types of elements, once
the automated process was completed, we still needed to per-
form some manual intervention to insert specific elements,
such as walls, fences and bodies of water. In Fig. 7 an exam-
ple is shown of a tile containing a creek and fences. In purple
we annotated the fences and in blue the course of a creek,
found via photos of the location and complementary maps.
The automatic detection of these elements is very difficult,
and extracting any further information, such as the depth
of the creek, is not possible only from satellite imagery,
therefore these elements have been inserted manually.

Figure 8. Spike in physics processing due to floating origin trigger.

B. Floating origin

Because of the size of the requested area (256 km2), we
will eventually run into a numeric precision issue, since we
will need too many bytes to represent the position of objects
in the world. In order to avoid this issue, we adopted a
solution very similar to the “floating origin” described in
(24). Unlike that solution, however, we allow traditional
navigation to occur and only update the origin at specific
thresholds because moving the world is a costly operation
and thus not viable on a frame-by-frame basis. In Fig. 8 it
is possible to see a spike in the physics processing due to
updating all the physics once a floating origin is triggered.
Instead we established a threshold and every time the player
reaches that threshold we move the whole world, including
the player, back to the origin, creating an offset. This process
is only done locally, the server still tracks all objects in their
original position, however the client applies a local offset to
all objects.

C. Dynamic loading

Another issue that arises due to the very large size of the
virtual environment is memory, CPU and GPU demand. In
order to keep the system optimized and able to execute on
standard computers with reduced loading times, we chose
to not have the whole terrain loaded at all times. Instead,
the system will always keep the current and neighboring
terrain tiles loaded, to minimum a distance of 2 km in
any direction, reading and constructing each new tile and
unloading the unused ones, as illustrated in Fig. 9. This
way we drastically reduced the initial loading time by about
1500%. Furthermore, due to the whole environment not
being loaded in memory, we reduced memory consumption
from approximately 13 GB to short of 7 GB, as well as a
noticeable improvement in frame rates. This optimization
comes at the cost of slight “hiccups” when transitioning

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 529



(a) (b)

Figure 9. Dynamic loading of terrain tiles.

between tiles due to the loading of a few new tiles, as can
be seen in Fig. 10.

We tested three different approaches to the management
of terrain tiles, based on the options available to us in
the chosen engine. The first approach we attempted was
saving each terrain as its own scene (25). A scene, in
Unity3D, is a native data structure that has an API that
allows us, in run-time, to easily perform asynchronous load
and unload operations. The performance of this approach
was satisfactory, however one issue was that it drastically
increased build time. This is not an issue for the end-user, but
it was a nuisance for the development team. We then decided
to attempt creating prefabs (26), another of the engine’s
features. Prefabs are reusable objects that the developers
create during development in order to store the complete
state of an object and easily instantiate it during run-
time. With this approach we were able to reduce the build
time, but we had to implement a management system that
would pseudo-asynchronously, by means of a feature called
Coroutines (27), instantiate the tile prefabs. We felt we could
still improve upon once we realised that Unity3D stores
terrain data in a very similar was as it does with prefabs.
Furthermore, the terrain system has a method that allows
us to instantiate a terrain based on these native terrain data
files. Using the aforementioned pseudo-asynchronous load-
ing method, instead of instantiating prefabs, we constructed
the terrain directly from the terrain data. This is a very slight
optimization, reducing final build time and file size, but with
virtually no difference in run-time performance.

V. CONCLUSION

It is possible to find some methods to load real world
data as a terrain in the virtual world, but we believe that
one key step to improve the quality of the final application
was processing the satellite image into different masks,
allowing us to use high resolution textures instead of the
satellite image as the floor texture, as well as placing the
3D vegetation with higher accuracy. One notable feature of
the region we built is that, in spite of having hills, it is
not mountainous, which might require a special treatment
for our texturization method. Our greatest challenge was
the placement of the city elements, especially housings and
buildings, because in the Votuporanga area there was no

Figure 10. Spike when dynamically loading terrain tiles.

such data available. Our current solution for placing the city
elements is where we expect to improve next, because even
though the results are acceptable, we feel we can improve
the method by increasing the algorithm’s autonomy and
obtaining better results.

Another step that we hope to improve is the creation of
the road network, where we currently have two different
improvements to introduce. By using the satellite image
we can possibly assess lacking information from the data
sources, namely the width of the road and the surface
type. Also, we still intend to improve the intersections. We
currently are able to cut the mesh of the roads that intersect,
but we still haven’t developed the method to rebuild the
intersection mesh considering every possible entry angle and
blend the potentially different surface types.

The use of a special case of the floating origin method and
even more importantly splitting the terrain into tiles in order
to dynamically load and unload them was key to enabling
us to build a very large environment all while keeping it
running at a good frame rate. We were surprised to note that
we were able to run a session, as seen in Fig. 11, with 16
computers at low specs by today’s standards (GeForce 760
GPU and 8 GB RAM) with such a complex environment
and with high graphical quality. It is possible that we can
reduce the “hiccups” when loading terrain tiles by using a
new suite of features recently made available by the game
engine, such as the C# Job System, the Entity Component
System and Burst Compiler (28).

Overall, we believe the method explained in this paper
is very suitable, especially when using open or free data
sources in regions with poor data availability, such as those
in less populated regions of South America. It is important
to keep in mind that some degree of manual editing will still
be necessary with our current methods, but for large terrains
in particular it is crucial to build these automated processes
in order to reduce the amount of manual labor and be able

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 530



Figure 11. Multiplayer session with 16 trainees.

to quickly create the virtual environment.
The task of creating a virtual environment that truly

represents the real world is by no means an easy one. In
regions such as the one we worked on, with missing, sparse,
and untrustworthy data, the task is even more difficult. On
the other hand, technology has evolved very much: gaming
engines and third party assets have greatly improved the
workflow and possibilities of what can be created, allowing
us to reach a very satisfactory result. The results we achieved
in the amount of time and size of development team would
be unfathomable a few years ago.

ACKNOWLEDGMENT

We would like to thank the Brazilian Marine Corps
for the support and for promptly providing the necessary
information to successfully develop our research.

This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil
(CAPES) - Finance Code 001.

Alberto Raposo would like to thank CNPq for the support
granted to this research.

REFERENCES

[1] “America’s Army,” https://www.americasarmy.com/,
2019, [Online; accessed 08-July-2019].

[2] “Virtual Battlespace,” https://bisimulations.com/
products/virtual-battlespace, 2019, [Online; accessed
08-July-2019].

[3] “eSim Games,” https://www.army-technology.com/
contractors/training/esim-games/, 2019, [Online; ac-
cessed 08-July-2019].

[4] “Unity Real-Time Development Platform,” https://
unity.com/, 2019, [Online; accessed 08-July-2019].

[5] R. Smelik, T. Tutenel, K. J. de Kraker, and R. Bidarra,
“Integrating procedural generation and manual editing
of virtual worlds,” in Proceedings of the 2010 Work-
shop on Procedural Content Generation in Games.
ACM, 2010, p. 2.

[6] P. B. Germano, “Geração de Malhas Rodoviárias na
GPU,” Ph.D. dissertation, PUC-Rio, 2014.

[7] R. M. Smelik, T. Tutenel, R. Bidarra, and B. Benes,
“A survey on procedural modelling for virtual worlds,”
in Computer Graphics Forum, vol. 33, no. 6. Wiley
Online Library, 2014, pp. 31–50.

[8] R. M. Smelik, T. Tutenel, K. J. De Kraker, and
R. Bidarra, “Declarative terrain modeling for military
training games,” International journal of computer
games technology, vol. 2010, p. 2, 2010.

[9] I. Parberry, “Designer worlds: Procedural generation of
infinite terrain from real-world elevation data,” Journal
of Computer Graphics Techniques, vol. 3, no. 1, 2014.

[10] W. D. Wells, “Generating enhanced natural environ-
ments and terrain for interactive combat simulations
(genetics),” in Proceedings of the ACM symposium on
Virtual reality software and technology. ACM, 2005,
pp. 184–191.

[11] J. J. Van Zyl, “The Shuttle Radar Topography Mission
(SRTM): a breakthrough in remote sensing of topogra-
phy,” Acta Astronautica, vol. 48, no. 5-12, pp. 559–565,
2001.

[12] M. Rexer and C. Hirt, “Comparison of free high reso-
lution digital elevation data sets (aster gdem2, srtm v2.
1/v4. 1) and validation against accurate heights from
the australian national gravity database,” Australian
Journal of Earth Sciences, vol. 61, no. 2, pp. 213–226,
2014.

[13] D. Yamazaki, D. Ikeshima, R. Tawatari, T. Yamaguchi,
F. O’Loughlin, J. C. Neal, C. C. Sampson, S. Kanae,
and P. D. Bates, “A high-accuracy map of global terrain
elevations,” Geophysical Research Letters, vol. 44,
no. 11, pp. 5844–5853, 2017.

[14] “NASA Shuttle Radar Topography Mission (SRTM)
Version 3.0 (SRTM Plus) Product Release,” https:
//lpdaac.usgs.gov/news/nasa-shuttle-radar-topography-
mission-srtm-version-30-srtm-plus-product-release/,
2013, [Online; accessed 28-June-2019].

[15] R. E. Carlson and F. N. Fritsch, “Monotone piece-
wise bicubic interpolation,” SIAM journal on numerical
analysis, vol. 22, no. 2, pp. 386–400, 1985.

[16] C. Tchou, “2018.3 Terrain Update: Getting Started,”
https://blogs.unity3d.com/2018/10/10/2018-3-terrain-
update-getting-started/, 2018, [Online; accessed
28-June-2019].

[17] K. Perlin, “An image synthesizer,” ACM Siggraph
Computer Graphics, vol. 19, no. 3, pp. 287–296, 1985.

[18] “Real World Terrain,” http://infinity-code.com/en/
products/real-world-terrain, 2019, [Online; accessed
28-June-2019].

[19] S. Sural, G. Qian, and S. Pramanik, “Segmentation
and histogram generation using the hsv color space for
image retrieval,” in Proceedings. International Confer-
ence on Image Processing, vol. 2. IEEE, 2002, pp.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 531



II–II.
[20] F. Garcia-Lamont, J. Cervantes, A. López, and L. Ro-

driguez, “Segmentation of images by color features: A
survey,” Neurocomputing, vol. 292, pp. 1–27, 2018.

[21] M. Haklay and P. Weber, “Openstreetmap: User-
generated street maps,” IEEE Pervasive Computing,
vol. 7, no. 4, pp. 12–18, 2008.

[22] A.-A. Vasilakis and I. Fudos, “Depth-fighting aware
methods for multifragment rendering,” IEEE Transac-
tions on Visualization and Computer Graphics, vol. 19,
no. 6, pp. 967–977, 2012.

[23] “CityGen3D,” https://www.citygen3d.com/, 2019, [On-
line; accessed 29-June-2019].

[24] C. Thome, “Using a floating origin to improve fidelity
and performance of large, distributed virtual worlds,”
in 2005 International Conference on Cyberworlds
(CW’05). IEEE, 2005, pp. 8–pp.

[25] “Unity - Manual: Scenes,” https://docs.unity3d.com/
Manual/CreatingScenes.html, 2019, [Online; accessed
09-July-2019].

[26] “Unity - Manual: Prefabs,” https://docs.unity3d.com/
Manual/Prefabs.html, 2019, [Online; accessed 09-July-
2019].

[27] “Unity - Manual: Coroutines,” https://
docs.unity3d.com/Manual/Coroutines.htmlCoroutines,
2019, [Online; accessed 09-July-2019].

[28] “DOTS - Unity’s new multithreaded Data-Oriented
Technology Stack,” https://unity.com/dots, 2019, [On-
line; accessed 09-July-2019].

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 532


