
GPU-Based Rendering and Collision Simulation of Ground Vegetation
in Large-Scale Virtual Scenarios

Flavio Paulus Franzin, Cesar Tadeu Pozzer, Bruno Torres do Nascimento
Universidade Federal de Santa Maria

Programa de Pós-graduação em Ciência da Computação
Santa Maria, Brazil

{ffranzin, pozzer, brunotn}@inf.ufsm.br

Figure 1. An example of the rendering and collision results. The long-lasting collision generated by the solution is visible at the trail on the ground.

Abstract—The user’s immersion is highly related to the
visual aspects of virtual scenarios. Thus, it is imperative for
such applications the rendering of ground vegetation with
high fidelity. However, the representation of these elements
requires a high storage and graphics processing, which are the
bottleneck of the other approaches. We present a GPU-based
solution for handling dense ground vegetation on large-scale
scenarios. Our proposal includes an architecture to distribute,
render, and, to deal collisions with dynamic objects. The plants
are placed in the scenario based on positions computed in real-
time. Collisions are encoded in vector fields, which store the
deformations to be applied to the plants during the rendering.
These collisions may result in temporary or permanent defor-
mation on the plants. The rendering performance is optimized
through LOD and Instancing techniques, and the memory cost
is reduced compressing the vector fields. The results show
that the proposed approach is capable of handling ground
vegetation for large-scale scenarios, ensuring a pleasant visual
with low processing and storage costs.

Keywords-Grass; Ground Vegetation; Collision Simulation;
GPU-Based; GPU-Instancing; Real-Time; Large-Scale;

I. INTRODUCTION

The graphics media industry, such as games, simulators,
and movies, increasingly demand virtual scenarios with a
high level of realism in order to maximize the immersion of
its users. Natural environments are examples of virtual sce-
narios, which are characterized by vegetation and generally
have large extensions. Ground vegetation, such as grass or

small shrubs, are elements of these environments that can
be easily represented by simple geometries. However, these
plants must be replicated massively to achieve a consider-
able level of realism, requiring high demands of graphics
processing.

Some proposals, such as [1] [2], address the rendering
of individual grass blade using geometry-based approaches,
ensuring great visual results. However, these approaches re-
quire a high computational cost. [3] [4] use image-based ap-
proaches, where plants are represented by textures projected
on quads. In this way, these approaches are characterized as
being of low computational cost and are mostly employed
by real-time applications.

For interactive applications, collisions with dynamic ob-
jects become desirable, since they can be triggered by an ac-
tion of the user or NPCs, when controlling the movement of
characters or vehicles through the scenario. Also, a desirable
characteristic is the dynamic behavior after the collision,
once plants have flexible bodies, requiring distinct periods
to recover their natural form. Additionally, the storage of the
ground vegetation deformation has a memory cost, being the
bottleneck of some approaches [3] [5].

In this paper, we propose an efficient GPU-based solution
to render and animate ground vegetation (grass and small
shrubs) visually appealing, capable of large-scale handling
scenarios in real-time. Our primary focus is to apply adap-

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 467

tive deformations to the plants, with different deformation
intensity and recovering times. The vector fields store the
plant’s orientation, which in turn is modified based on the
collision with object dynamics. Then, during the rendering,
these plants are curved to follow its orientation vector.
The deformed vector fields have their initial shape restored
through an associated individual cost for each vector, en-
suring different behaviors for the plants. The vector fields,
in some cases, are compressed to reduce the storage cost.
The complex geometries of 3D objects are approximated by
spherical and planar colliders. Rendering is done in batches
using an image-based approach.

Briefly, this article presents the following contributions:
• Collisions based on vector fields, and management that

allows generating adaptive deformations for the plants,
capable of representing lasting or permanent collisions
with total integrity. To our knowledge, we are the first
to approach this feature on large-scale scenarios;

• An efficient GPU-based Discrete Level of Detail, cou-
pled with an improvement on the refinement of bill-
board’s geometry, specifically adapted to maximize the
performance of the ground vegetation rendering.

This paper is structured as follows: Section II explores
related works. In Section III, we present an overview of our
approach, which is discussed more in-depth in Sections IV
through VIII. Finally, in Sections IX and X, we present and
discuss the achieved results.

II. PREVIOUS WORK

The main techniques used to render ground vegetation can
be classified as image-based, geometry-based, and hybrid-
based. The geometry-based approaches [2] [1] guarantee
pleasant visual results by rendering individual grass leaves
but are computationally expensive. Image-based approaches
[3] [4] use billboards to represent sets of grass, being highly
targeted by real-time applications because they require low
computational costs. Hybrid-based approaches [6] integrate
geometry and image-based approaches with the Level of
Detail, where grams near the observer are rendered using
geometry-based approaches, and distant grams are rendered
using image-based approaches.

Level of Detail (LOD) is widely used in real-time appli-
cations in order to minimize costs during rendering. [2] [7]
employ Continuous LOD (CLOD) using tessellation. How-
ever, given the quantity of geometry for the representation of
plants, that approach may require substantial processing. As
an alternative to CLOD, Discrete LOD approaches (DLOD)
[1] [5] discretize the geometries (LOD0, LOD1, ...), and
define which LOD will be used to render an object based
on its distance from the camera. However, it is crucial —
in real-time applications — that the rendering of the ground
vegetation is done in batches. Accordingly, using DLOD
approaches, LOD is associated with the entire batch, which
is limited to rendering a single geometry.

Few studies have been explored to deal with collisions
between ground vegetation and dynamic objects. [1] em-
ploys collisions between individual grass blades and simple
geometries while rendering, at the vertex shader stage. [2]
extends that approach by integrating collisions with complex
geometries. However, the proposed solutions are limited to
quick collisions, so that when the object moves, the grass
immediately recovers its shape. [5], [3], and [8] present
GPU-based solutions for dealing with collisions, storing the
state of these in auxiliary structures, ensuring long-lasting
deformations. However, these proposed solutions are limited
to small scenes (e.g., [8] uses 4.8x4.8km scenes) because
they demand much storage.

To increase the realism of plants during rendering, [2]
folds the plants that have collided with dynamic objects
using curves. [9] applies a global directional wind, ensuring
great visual results.

III. PROPOSED ARCHITECTURE

In the proposed architecture, the virtual scenario is seg-
mented into a set of MxN Cells indexed by a hash table
(Fig. 2). The information — positions, scales and collisions
— needed to represent the ground vegetation (that we refer
to as plants) are stored in buffers in VRAM. The Cells
maintain the reference to access these buffers.

The Manager coordinates submodules for plants’ distri-
bution, collision, and recovery, as well as memory manage-
ment and rendering submodules. It is assigned to perform
the selection of the Cells that need to undergo a specific
procedure, invoking the submodule that performs that task.

The Distribution submodule invoke a compute shader
that generates the plants’ position once (Sec. IV), for Cells
visible or close to the viewer. The generated positions are
stored in the Plants_Buffer associated with each Cell.

The Collision submodule (Sec. V) performs the collisions
between plants and moving colliders. The collisions are
encoded in vector fields, stored in Collisions_Buffer, which
are associated with each Cell. Each vector in the vector
field represents the orientation of the plants that are placed
close to it. Collision Recovery (Sec. V-D) gradually recovers
deformed vectors — that collided with some collider — from
vector fields.

Rendering is performed in batches using GPU-Instancing.
For Cells that do not contain vector fields, batches are de-
termined by the Plants_Buffer. The batches of the Cells that
have associated vector fields are generated by the Individual
DLOD submodule and are stored in the DLOD_Buffers.

Throughout Rendering (Sec. VII), only the deformations
of vector field vectors and the wind animation are applied
to the plants’ billboard.

The Memory Management submodule (Sec. VIII) selects
the Cells that are far from the viewer, and are not in contact
with colliders, to have the Plants_Buffer discarded. In some
cases, Collisions_Buffer are discarded or compressed.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 468

Plants Distribution

Collision Recovery

Collision

Distribution

Rendering

Memory Management

Individual
DLOD

M
 A

 N
 A

 G
 E

 R
GPU

Has collision
Colliders

Has plants and is visible
Has plants and isn’t visible
Will receive plants soon

Cell

VisualizationSpatial Hashing

DLOD
Buffer

Collisions
Buffer

Plants
Buffer

Compressed
Collisions

Buffer

Execution flow Data flow

Figure 2. Overview of the architecture. Spatial Hashing is used to segment the virtual scenario. The Blue elements represent the submodules that processes
ground vegetation and the demands of the system. The Purple elements represent the buffers needed to store information to represent the ground vegetation.
The Cells with the assigned vector field is figured by X and the hexagons.

IV. PLANTS DISTRIBUTION

The plants are distributed, using a compute shader, to the
Cells that have not yet generated positions and are close to
or in the view range.

(A) (B) (D)(C)

Async

Sync Ev
al

ua
tio

n

1
2

3
n

1
2

3
n

1
2 Plants’ Distribution

Figure 3. (A) Selection of Cells to perform Synchronously or Asyn-
chronously plants’ distribution. (B) The complete distribution of the plant’s
positions for a Cell, (C) followed by the evaluation of each position, (D)
remaining only positions placed in appropriate areas (outside of roads,
rivers, and lakes).

The Distribution submodule can be performed Syn-
chronously (Sync) or Asynchronously (Async) (Fig. 3-A).
The Sync distribution occurs for Cells that don’t have the
plant’s positions computed, and must be rendered in the
current frame. As a result, it blocks the graphic pipeline
until the distribution is complete, and no restrictions on the
number of requests can be established. In contrast, the Async
distribution is applied to Cells that are close to the frustum
area, but not visible. This distribution method is limited
to a maximum number of simultaneous requests and can
be executed across several frames, thus avoiding possible
overloads on the GPU. For those reasons, it is attempted to
distribute the plants before the rendering request, through
the Async distribution.

During the plants’ distribution, the Cells are divided into
a regular grid of MxN grid_cells, where the center of these
grid_cells corresponds to potential positions for plants. Also,
a displacement, within these grid_cell boundaries, is applied
to each position (Fig. 3-B). Through this approach ensures
dense distributions using billboards as few as possible.

Another property of the plants’ distribution consists of
evaluate and eliminate positions inside inappropriate re-
gions (Fig. 3-C). The resulting positions (Fig. 3-D) are
associated with a scale that determines the plant’s size
during rendering. The plant’s positions and scales are stored
in the Plants_Buffer, assigned for the Cell that holds the
distribution.

The scale of the plants can be defined by any noise
function (e.g., Perlin Noise). However, once the generated
plant’s positions can be discarded for memory reasons
(Sec. VIII), a deterministic seed is necessary to retain a
consistent position’s layout, since it may be necessary to
redistribute those positions.

V. COLLISIONS

The collisions are encoded in vector fields, which repre-
sent the plants’ orientation. Each vector field is associated
with a Cell and its vectors may be deformed individually
when some collider interacts with them. Moreover, collision
processing depends only on colliders, so the collisions are
also applied in non-visible Cells.

A. Definition of the Vector Fields

The vector field vectors are evenly distributed within the
Cell boundaries and stored in a 2D texture. The vector
fields have a fixed density, which may be different from

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 469

that established to the plants. Each vector covers an area
of the Cell, so, dense vector fields ensure greater accuracy
to represent the collisions, and, consequently, provide more
realism. However, that requires more processing to compute
the collision.

A vector field, when assigned for a Cell, is initialized
with all vectors pointing up. Also, to improve the collision
calculations accuracy, the vectors are scaled proportionally
to the plants’ scale. Thus, the scale of the vectors is defined
by the same noise used during the plants’ distribution
(Sec. IV), and discarded positions (e.g., inside the road)
generate null vectors. It is important to emphasize that the
plants’ positions are not necessary for the initialization of
the vector fields.

B. Definition of the Colliders

Figure 4. Examples of planar and spherical colliders used to approximate
complex 3D objects.

The collision with 3D geometries, depending on their
complexity, may be computationally expensive. Because of
this, we use planar and spherical colliders to approximate
complex 3D objects (Fig. 4).

It is important to highlight that colliders are not associated
with the object’s hierarchy, thus, it is possible to assign
constraints to their transformations. For example, in Fig. 4,
the collider cannot rotate in the direction of rotation of the
wheel. In specific cases where a plane acts as a collider, it
can have its normal vector changed, reflecting directly in the
collisions.

Each collider has a radius of influence r, that covers all
the collider’s geometry, defined to reduce computational cost
during collision calculations.

C. Collision Detection

(B) (C) (A)

r r

Figure 5. (A) Selection of Cells’ vector fields in contact with colliders. The
resulting vector fields are (B) cut off and (C) the resulting vectors that are
outside of the collider’s r are discarded.

The collision calculations are preceded by three steps
(Fig. 5) defined exclusively to select Cells and vectors that
have the possibility of interacting with the colliders.

• Step 1: The Cells in contact with colliders are selected,
in the CPU, using the colliders’ position and radius of
influence r (Fig. 5-A);

• Step 2: The vector fields of the selected Cells are
clipped using the colliders’ position and r (Fig. 5-B);

• Step 3: In parallel on the GPU, the vectors of Step 2
that are outside the range of influence of the collider
are discarded (Fig. 5-C).

It is important to emphasize that the application of Step 2
is possible because the vector fields have an uniform distri-
bution, so it is possible to estimate which vectors can be
affected by a certain collider. Also, through Step 2, it is
possible to notice that the cost to compute the collisions is
defined mainly by the collider’s influence radius, and the
Cell size has no impact on the collision.

Ip

V
Vnew

d

P0

Ipout

Ip

V
Vnew

d

P0

Ipout

Figure 6. Vector field vector placed outside the geometry of the collider
when they intersect.

The vectors resulting from Step 3, collisions are fully em-
ployed in parallel in the GPU from the intersection between
the colliders and the vector field vectors. Consequently,
when there is an intersection between them, it is needed
to redirect the vector out of the collider’s geometry (Fig. 6).

For vectors’ redirection, it is first defined as the inter-
section point (Ip) between the vectors and the colliders.
Through this point and from ~d — that describes the direction
and the displacement of the collider relative to the last
collision test — it is possible to define the point outside
the geometry (Ipout). Having Ipout and position P0 of ~V ,
it is calculated the ~Vnew (1), which represents ~V bent out
of collider’s geometry.

~Vnew =
˙−−−−−→

IpoutP0 · ‖~V ‖ (1)

D. Collision Recovery

An individual recover cost β is assigned to each vector
that intersects with a collider, allowing to set distinct be-
haviors to vectors that interact with different colliders. The
β associated with a given vector may be high enough to
never establish its original shape (parallel to ~Up), resulting
in permanent deformations.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 470

Vector recovery begins, in the CPU, with the selection of
Cells that contains deformed vector fields. In the GPU, using
a compute shader, each vector is gradually reestablished,
based on β until it is completely recovered.

The β is defined proportionally to an empiric parameter
associated on the collider based on some factors (e.g., col-
lider’s mass or height relative to the ground). For example,
the colliders associated with the body and tracks of the Tank
(Fig. 4) may receive different β so the vectors in contact
with these colliders may exhibiting different behaviors.

Besides the parameter associated with the collider, it is
possible to expand the approach so that other conditions
and rules are considered, such as the soil type, where β can
be a higher value for muddy soils than for dry soils.

VI. LEVEL OF DETAILS

It is common to render batches of plants using a single
draw call through the GPU-Instancing. The Discrete LOD
(DLOD) approaches define the billboard’s LOD for the en-
tire batch, which is used to render all the positions contained
on it. Because of this, DLOD approaches are highly efficient
but are limited to render a single geometry by batch. Thus,
to deform the plants (e.g., using splines), it is necessary
to assign a geometry with high-level of detail to the entire
batch. However, it is not suitable to render all positions of
a Cell that have collisions using a fixed geometry, because
plants that should not be deformed can be rendered through
simple geometries. For those reasons, the visible Cells are
selected and divided into two possibles pathways to define
the billboard’s LOD.

(A) (B)

Figure 7. Comparative of the billboard’s LOD distribution using only a
traditional DLOD and (B) using our DLOD approach. Yellow represents a
vector field deformation. Green Cells describe the LODs’ distribution (that
in our case we consider 3, shown by the color gradient) for plants that do
not will be bend, and Red the LODs’ distribution for plants that are bend.
Plants placed in the Red areas are rendered through the dense billboard’s
geometry to achieve a smooth curvature for them, and in (B) it is possible
to observe that the area with these geometries is reduced.

The first path is defined for the Cells that do not
contain vector fields (7-A - Green Cells), and a unique
billboard’s LOD is assigned to render all plants (stored on
Plants_Buffer) contained inside it. The billboards’ LOD are
determined by the distance between the Cell and the camera
[5]. After the LOD definition, the plants of these Cells go
straight to Render.

LOD0
LOD1
LOD2

DLOD_Non_Curved_Buffers

DLOD_Curved_Buffers

DLOD_Buffers

Vector field

LOD0
LOD1
LOD2

Individual
 DLOD

Plants
Buffer

R
en

de
rin

g

Collisions
Buffer

Figure 8. Selection of Cells to prepare for rendering. The Cells without
vector field are rendered straight. Plants of the Cells with the vector field
are rendered through the DLOD_Buffers, which define the plants’ LOD.

The second path is defined for the Cells that contain vector
fields (7-A - Red Cells). For these Cells are dispatched
compute shaders to analyze and distribute each position in
temporary buffers, called DLOD_Buffers (Fig. 8). In this
case, the plants are rendered through these buffers, that are
defined to render a billboard with a specific LOD; therefore,
by directing the plant’s data to a given DLOD_Buffers its
LOD is defined.

The analyzed plants are distributed in 6 possible
DLOD_Buffers (Fig. 8), three related to the plants’ LOD that
must be curved (DLOD_Curved_Buffer) and three to those
that should not be curved (DLOD_Non_Curved_Buffer).
The output buffer of each plant’s is determined by two
factors. 1) The plant’s position is mapped to the vector
field, resulting the group that each position will be inserted
(DLOD_Curved_Buffer or DLOD_Non_Curved_Buffer).
Once the group is established, 2) the LOD is defined
through the distance between the plant’s position and the
camera. For each plant analyzed, the position and scale are
stored in DLOD_Buffers. For deformed plants, the direction
of folding is also stored in DLOD_Buffers.

LOD0 LOD1 LOD2 LOD0 LOD1 LOD2

(A) (B)

Figure 9. (A) Billboard’s LOD generated by the removal of quads and (B)
through the proposed improvement. In this example, the amount of triangles
used to generate the three LODs is [8-6-4] for (A) and [8-4-3] for (B).

Image-based approaches use groups of quads randomly
oriented to design the plants’ textures, and LOD is generated
through the discard of these quads (Fig. 9-A). Based on
this, we present an improvement to generate the geometry’s
LOD used to render the plants. The improvement consists
of generating the geometry of LOD1 by replacing the quads
(of the geometry used by LOD0) by triangles (Fig. 9-B).

Through the proposed approach, it is possible to ensure
further gains in the reduction of the geometries. Also, the
popping between LOD0-LOD1 transition decreases, because
the areas susceptible to the highest occurrence of popping
are close to the ground, thus being partially or totally

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 471

occluded by billboards of the LOD0. The proposed optimiza-
tion is only suitable for dense ground vegetation because, for
lower densities or larger objects, there may be an increase
in popping.

VII. RENDER

The rendering is done using GPU-Instancing, which is
intended to instantiate a batch (several instances) of the same
geometry using a single draw call. Each instance generated
by the GPU-Instancing receives an ID, which is used to
access the information stored in Plants_Buffer — for Cells
without vector fields — or DLOD_Buffers — for Cells with
vector fields assigned. Through the information obtained
from the buffers, the ObjectToWorld matrix of each instance
is set.

Up V

P0

P1

d
CP

θ

Figure 10. Description of Bézier’s control points used to fold the billboard
of the plants.

During the rendering, in the Vertex Shader stage,
the folding of the plants — applied only to the
DLOD_Curved_Buffer — is done using a Quadratic Bézier
curve (Fig. 10). The Bezier’s Control Points P0 and P1 are
defined, respectively, by P0 and P1 of ~V . The Control Point
CP is defined by a perpendicular point to ~V and towards
the ~Up. The distance d (2), between CP and ~V , is defined
so that the maximum curvature is obtained when θ = 45◦

and minimum when θ = 0◦ or θ = 90◦. The curvature in
θ = 90◦ is defined to describe the kneads on the plants
and to prevent them from bending. Dmax represents the
maximum distance allowed between CP and ~V and is static
for all vectors.

d = sin(2θ) ·Dmax (2)

The displacement of the vertices is done by sampling the
Bézier curve, where the interpolation parameter t is defined
by the V coordinate in the billboard vertex’s UV.

When turning a flat surface into a curve, their volume is
distorted, requiring the application of volume conservation
techniques. However, for the folding of plants, we consider
the dealing unnecessary, since the ground vegetation are very
dense structures and the distortions are not perceptible to the
user, in addition to providing an efficient and straightforward
rendering.

The wind animations applied to the plants were based on
[9]. The proposed approach applies a directional global wind
~WG, which is varied in relation to its intensity and direction,
together with a local directional wind ~WL, individual to each
plant, used to cause small attenuations in ~WG. Using the
attenuated ~WG, a displacement is applied to the vertices of
the billboards, varying according to the plant scale and the
V coordinate in the billboard vertex’s UV, so that vertices
close to the ground (V = 0) are not displaced.

The plants’ texturing is done by employing a Texture
Array, where each plant instance receives an index to access
the Texture Array. The index of each plant is defined during
the rendering using a deterministic seed generated from the
plant’s position. The approach allows rendering multiple
species of plants, using the same geometry, with a single
draw call.

VIII. MEMORY MANAGEMENT

Given the amount of data needed to represent the plants,
considering all buffers used, it is expected to have a signif-
icant storage demand. Due to this, memory management is
made to discard the Plants_Buffer and Collisions_Buffer of
Cells that 1) is not in contact with the colliders, 2) are not
visualized for a time interval and 3) are outside the view
range and view frustum.

The Cells that satisfy the conditions have their
Plants_Buffer discarded. In contrast, Collisions_Buffer is
only discarded if the entire vector field has already been
restored; otherwise, these vector fields are compressed.

Before the compression, the vector field vector that re-
quires the longest time to have its form reestablished is
saved, and its recovery is maintained. When this vector
is fully recovered, it means that the entire vector field
is restored, and, consequently, it can be discarded. Af-
terward, the Collisions_Buffer is transferred from VRAM
to the RAM so that it is compressed and stored in the
Compressed_Collisions_Buffer.

When the Render or the Collision submodule demands a
Cell that contains a compressed Collisions_Buffer this buffer
is decompressed and returns to the VRAM. Next, Collision
Recovery is applied regarding the time interval between the
moment of compression and the current one. After that, the
Collisions_Buffer is ready for use.

The compression of the vector fields is done through the
Deflate algorithm, since it has high levels of compression
and, mainly, excellent decompression times (Sec. IX-A).
The cost to decompress becomes essential because data
compression is only aimed at reducing storage costs, and can
be done with Threads whenever the CPU is not fully loaded
and over several frames. On the other hand, decompression
is intended to apply new collisions in the vector fields or
to be used by the rendering. Consequently, when requested,
the vector fields must be decompressed quickly; otherwise,
application performance may be compromised.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 472

IX. RESULTS

The experiments were performed on an AMD Ryzen 5
3.6 GHz processor, with 16 GB of RAM and an NVIDIA
GeForce GTX 1070 graphics card, with 8 GB VRAM. The
proposed architecture was implemented in C# and HLSL
languages using the Unity engine, however, it is a generic
solution and can be implemented on any graphical API or
integrated into any modern game engine.

The experiments were done in three scenarios generated
from Digital Elevation Models (DEMs) with different di-
mensions (30kmx40km, 70kmx30km, and 110kmx60km).
However, terrain size is not a limitation for our solution,
as the cost of collision is attributed only to the number
of colliders in the scenario and the density of the vector
field. Also, the rendering cost is defined by the view range,
plants’ distribution density, and billboard’s complexity to
render them.

During the time measurements, costs with memory alloca-
tion as well as elements and characteristics of the scenario
(e.g., trees, anti-aliasing, post-processing, and other) were
disregarded.

A. Performance

For a better explanation of the performance results ob-
tained, it is necessary to list common situations in games
and simulators. A scene that renders plants at a distance
of 150m from the observer accesses 190-210 Cells with
16x16m/frame. A vehicle moving in the same direction at
100km/h requires the system to create 25-30 new Cells/s,
as well as a character that moves at 10km/h and causes the
generation of 1-6 Cells/s.

Table I shows the processing and storage costs to
distribute plants for different quantity of Cells, as well
as with the different amount of instances. For the ex-
plored cases, the last line is highlighted as the worst-case
— considering the view range of 150m — being executed
during initialization or teleports.

Table I. Plant Distribution Times and Storage

 Cells
Instances / m²

16 36 64 100
50 0.32ms 3.1MB 0.38ms 7.0MB 0.48ms 12.5MB 0.54ms 19.5MB

100 0.55ms 6.2MB 0.65ms 14.1MB 0.71ms 25MB 0.77ms 39.1MB
150 0.88ms 9.4MB 0.98ms 21.1MB 1.07ms 37.5MB 1.18ms 58.6MB
200 1.24ms BM4.21 1.31ms 28.2MB 1.52ms 50MB 1.81ms BM1.87

Processing times for computing the collisions with vector
fields of distinct densities are shown in Table II. In the exper-
iments, the planar and spherical collider were dimensioned
with an area of 10m2 (360~V) approximately.

Table II. Collisions Times (ms)
Vector Field

Density (V/m²)
Planar Colliders Spherical Colliders

50 150 300 50 150 300
16 0.15 0.25 0.33 0.11 0.15 0.25
36 0.21 0.43 0.57 0.19 0.39 0.52
64 0.32 0.66 0.93 0.24 0.58 0.71

100 0.45 0.98 1.26 0.36 0.67 1.13

The Table III presents the average of times and the
storage cost for vector fields, with different densities, before
and after their compression. The experiment was performed
with some colliders moving sparsely through the scenario,
being concluded when an amount of 100 Cells was reached.
(De)compression times and compression rates were mea-
sured using the LZ4 [10] and Deflate [11] algorithms.

Table III. Vector Field (De)Compression Analysis

Algorithm Vector Field
Density (V/m²)

Compression
 (ms)

Decompression
(ms)

Required Memory (MB)
Decompressed Compressed

LZ4
16 0.21 0.11 6,25 0,70
64 0.65 0.35 25,00 2,61
100 0.90 0.59 39,06 4,14

Deflate
16 0.92 0.18 6,25 0,38
64 3.41 0.36 25,00 1,40
100 4.45 0.61 39,06 2,07

As discussed in Section VIII, the decompression cost of
vector fields is a crucial factor, so the LZ4 algorithm shows
to be the most suitable for the problem since it presents
lower decompression costs. However, if the compression
of the vector fields can be done through Threads, the
Deflate algorithm becomes more advantageous, since its
decompression cost resembles the LZ4, and the compression
rates are significantly higher. For these reasons, we chose the
Deflate algorithm, with the compression being done through
Threads.

At this point, teleport is also the worst-case, being neces-
sary to decompress all vector fields of the Cells in the view
frustum. In applications that this extreme case may occur,
the need to use threads to decompress vector fields should
be considered, and the decompression time can be masked
by special effects (e.g., fade-in effect).

The Table IV shows the time required to define batches,
through the Individual DLOD, for Cells that have vector
fields. In these experiments, it was considered sets of visible
Cells that have vector field assigned. Also, the different
vector field densities were considered.

Table IV. Individual DLOD Times (ms)

 Cells
Instances / m²

16 36 64 100
50 0.08 0.09 0.14 0.22

100 0.12 0.16 0.27 0.41
150 0.17 0.23 0.39 0.63
200 0.22 0.31 0.53 0.81

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 473

Figure 11. Example of an object that sets different costs for the plants’
recovering based on the height to the ground of the colliders. The figures at the
top and middle show that colliders associated with the vehicle’s base define a
lower cost to the vectors, and the wheels generate long-lasting deformations.
The bottom figure shows that some plants that have collided with the vehicle’s
base have already recovered.

Figure 12. Example of a 3D object with colliders that define different costs
to the plants’ recovery, being defined by the elevation of the collider relative
to the ground. In top and middle figures it can be seen that the collider of the
Tank’s base causes less deformation in the plants than the tracks. The bottom
figure shows the same scene from a top view camera.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 474

B. Visual Results

The visual results of the plants and collisions can be
analyzed in Figures 1, 11, and 12. In these figures, the
plants were defined with a density of 36 instances/m2 and
the vector fields with 36 vectors/m2. The colors defined in
some images represent the vector field vectors’ direction. For
better viewing, some images were captured with Collision
Recovery turned off. Other visual results can be analyzed in
the video.

X. CONCLUSION

In this article, we present a GPU-based approach for
distribution, collision, and rendering of ground vegetation.
The proposed approach ensures that the plants are distributed
in real-time. The collisions are encoded in vector fields,
and during the rendering, the deformations are applied to
the plants. Moreover, the deformations generated in the
vector fields may require different times to reestablish the
original shape, thus generating different behaviors to the
plants. In order to reduce the computational overhead during
rendering, an Individual DLOD was proposed, as well as
an improvement in the refinement of the geometry of the
plants, maximizing the gains of the LOD technique. The
performance of our solution is guaranteed by the high-
level of parallelization in GPU used to perform the ground
vegetation demands.

The main limitation found by the other solutions is the
storage costs, which we solve using an architecture that
supports managing individual parts of the scenario, as well
as compressing the vector fields. This significant gain in
storage allows us to generate long-lasting, or even perma-
nent, deformations to the plants. As a result, the approach
proves capable of handling ground vegetation on large-scale
scenarios.

One drawback of our solutions is that when calculating
collisions in parallel, it is not possible to simulate the
resistance that the plants’ bodies impose on the colliders.

As future work, it is possible to add deformations that
are not generated only by the contact, for example, the
deformation of the plants with the air displacement generated
by the helicopters [2] [12]. Also, the rules used to distribute
the plants were only defined to describe the distribution
model, however, more promising works may be considered,
for example, [13] proposes a highly parameterizable GPU-
based approach using curve systems to distribute trees.
Vector fields, after compressed, are stored in RAM, but in
applications where this demand is big, it is possible to extend
the approach to store the compressed vector fields on the
Hard Drive.

ACKNOWLEDGMENT

We thank the Brazilian Army for the financial support
through the SIS-ASTROS project.

REFERENCES

[1] Z. Fan, H. Li, K. Hillesland, and B. Sheng, “Simu-
lation and rendering for millions of grass blades,” in
Proceedings of the 19th symposium on interactive 3D
graphics and games. ACM, 2015, pp. 55–60.

[2] K. Jahrmann and M. Wimmer, “Responsive real-time
grass rendering for general 3d scenes,” in Proceedings
of the 21st ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games. ACM, 2017, p. 6.

[3] O. Jens, C. R. Salama, and A. Kolb, “Gpu-based
responsive grass,” 2009.

[4] K. Pelzer, “Rendering countless blades of waving
grass,” GPU Gems, vol. 1, pp. 107–121, 2004.

[5] H. Qiu, L. Chen, and G. Qiu, “A novel approach to
simulate the interaction between grass and dynamic
objects,” WSEAS Trans. Comput, vol. 12, no. 7, pp.
277–287, 2013.

[6] K. Boulanger, S. N. Pattanaik, and K. Bouatouch,
“Rendering grass in real time with dynamic lighting,”
IEEE Computer Graphics and Applications, vol. 29,
no. 1, pp. 32–41, 2008.

[7] K. Jahrmann, Michael and M. Wimmer, “Interactive
grass rendering using real-time tessellation,” 2013.

[8] K. Chen and H. Johan, “Real-time continuum grass,”
in 2010 IEEE Virtual Reality Conference (VR). IEEE,
2010, pp. 227–234.

[9] B. Knowles and O. Fryazinov, “Increasing realism of
animated grass in real-time game environments,” in
ACM SIGGRAPH 2015 Posters. ACM, 2015, p. 48.

[10] MiloszKrajewski, “LZ4.” [Online]. Available: https:
//github.com/MiloszKrajewski/K4os.Compressio.LZ4

[11] L. P. Deutsch, “Deflate.” [Online]. Available: https:
//tools.ietf.org/html/rfc1951

[12] C. Wang, Z. Wang, Q. Zhou, C. Song, Y. Guan, and
Q. Peng, “Dynamic modeling and rendering of grass
wagging in wind,” Computer Animation and Virtual
Worlds, vol. 16, no. 3-4, pp. 377–389, 2005.

[13] B. T. do Nascimento, F. P. Franzin, and C. T. Pozzer,
“Gpu-based real-time procedural distribution of veg-
etation on large-scale virtual terrains,” in 2018 17th
Brazilian Symposium on Computer Games and Digital
Entertainment (SBGames). IEEE, 2018, pp. 157–
15 709.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 475

