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Abstract—Game development is simultaneously a technical
and an artistic challenge. The past two decades have brought
many improvements to general-purpose game engines, reducing
the new games development effort considerably. However, the
amount of artistic work per title has continuously grown ever
since, as a result of increased audience’s expectations. The cost
of asset-making is further increased based on the aesthetics
chosen by the design team and the availability of professionals
capable of understanding the nuances of the specific visual
language chosen. In this paper, we dig into the topic of deep-
learning assets generation to reduce the costs of the asset
making pipeline, a major concern for game development teams.
More specifically, we tackle the challenge of generating pixel
art sprites from line art sketches using state-of-the-art image
translation techniques. We set this work within the pipeline
of Trajes Fatais: Suits of Fate, a 2D pixel-art fighting game
inspired by the late nineties classics of the fighting genre. The
results show that our deep-learning assets generation technique
is able to generate sprites that look similar to those created
by the artists’ team. Moreover, by means of qualitative and
quantitative analyses, as well as character designers evaluation,
we demonstrate the similarity of the generated results to the
ground truth.

Keywords-Deep Learning; Generative Adversarial Networks;
Asset Generation; Procedural Content Generation; Qualitative
and Quantitative Analyses; Character Designers Evaluation;

I. INTRODUCTION

Game development is simultaneously a technical and an
artistic challenge [1]. Modern AAA games feature millions
of lines of code and thousands of assets, such as models,
textures, rigs, animations, sounds, shaders and others [2].
The past two decades have brought many improvements
to general-purpose game engines, reducing the new games
development effort considerably [3]. However, the amount
of artistic work per title has continuously grown ever since,
as a result of the increased audience’s expectations in terms
of quality and visual art variability. This trend is shifting
resources towards tools to substantially help artists bring
their visions to life.

The overall cost of asset-making is further increased based
on the visual language chosen by the design team. Some
aesthetics, such as pixel-art [4], need a nearly prohibitive
number of hand-crafted assets. In addition, only a small

group of artists specialize on this art form, which further
increases the associated costs of producing such games.
Recent advances on computer generated imagery foster
the question of whether the current state-of-the-art can be
leveraged to automatically generate art content in place of
human artists or, at least, to automate tedious manual labour.

In this paper, we dig into the topic of deep-learning assets
generation to reduce the costs of the asset making pipeline,
a major concern for gaming teams of character designers
& animators. More specifically, we tackle the challenge of
generating pixel art sprites from line art sketches using state-
of-the-art image translation techniques. We set this work
within the pipeline of Trajes Fatais: Suits of Fate, a 2D pixel-
art fighting game inspired by the late nineties classics of the
fighting genre. On average, for a new character release, 450
sprites are needed, each taking 10 minutes to be sketched
and one hour to be completed. For more complex and
visually appealing characters, these timings might become
even greater. Therefore, using deep learning asset generation,
our goal is to reduce the amount of time needed to release
a new character by turning sketches into semi-final sprites
that can be finalized in a shorter time. Using a variant of
the Pix2Pix architecture [5], we show that our deep-learning
assets generation technique is able to generate sprites that
look similar to those created by the artists’ team. Moreover,
by means of qualitative and quantitative analyses, as well as
character designers evaluation, we demonstrate the similarity
of the generated results to the ground truth.

II. RELATED WORK

The deep learning boom has triggered a series of innova-
tions on several key areas of computer vision [6][7]. Among
the several proposed techniques, generative adversarial net-
works (GANs) [8] and variational auto-encoders (VAEs) [9]
dominate the recent image generation literature, with works
mainly spanning themes such as face generation [10], image
interpolation [11], image segmentation [12], style-transfer
[13] and image translation [5][14][15][16]. The problem of
mapping sketches to completed sprites can be understood as
a case of the paired image translation problem [5]. Formally,
it corresponds to the task of converting images from domain
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A to domain B. Additionally, it is a paired problem, as the
two domains have a strong relationship. In this work, the
input sketch and the generated sprite share the same pose
and contour. Beyond the scope of this work, the unpaired
problem is more difficult and features domains that have
only semantic relationships [14].

The first generally applicable framework for paired image
translation was developed by Isola et al [5] and uses a GAN
strategy. The GAN model relies on two competing networks:
the generator, which produces the model’s output and, the
discriminator, which learns to differentiate between real and
generated images. During training, the generator strives to
produce results that are indistinguishable from real images
to the discriminator network [8]. The work of Isola et al
particularly features a U-Net based generator [12], a Patch-
based discriminator and the L1 loss function. Nowadays, this
work is commonly known as the Pix2Pix architecture and its
main ideas have been influencing many other works, which
develop on the paired [15], unpaired [14] and multi-domain
[16] settings.

In contrast, the literature on automated asset generation
is notably scarce. To the best of our knowledge, a few au-
thors have tackled the automatic sprite generation problem.
Two examples are Horsley et al [17] and Xue et al [18].
The former attempt to generate 8-bit sprites from random
noise using a simple GAN model, achieving limited results;
whereas the latter seek to generate plausible next-frame
sprites for a given animation sequence, using a probabilistic
model with convolutional neural networks. These authors
report interesting results using several datasets, including a
dataset of 8-bit animated sprites. Beyond the sprite gener-
ation literature, most of the deep learning field on games
concentrates on scene generation [19][20] and game playing
[21][22]. On the general topic of asset generation, for
example, most works deal with the generation of terrain,
trees, props and textures [23][24].

We attribute the scarcity of published works dealing with
automatic sprite generation and, more specifically, character
generation, to the amount of detail involved in those assets
and to the level of protagonism they have within games.
Poorly generated character sprites would be readily noticed
by users and this would negatively impact their overall
perception of quality. This reasoning explains why most
procedurally generated content is more focused on the
background, e.g., the terrain, trees, props, grass, etc [24].
Contrastingly, in this work we investigate the generation of
main character sprites using image translation techniques.
However, instead of attempting to produce the final quality
asset directly, we aim to aid character artists and designers
by creating semi-final assets which, in turn, are suitable to
be finished manually.

Figure 1. Two sprites in their early sketch stages.

III. THE SPRITE CREATION PIPELINE

The concept of a sprite starts with a very rough sketch,
made by the art director. This sketch is used to validate
animation ideas and, if the design team is satisfied with the
resulting animation, each sprite is re-drawn as a line sprite
and then is handed over to be polished and finalized. Fig. 1
shows two sprites in their early sketch stage. This pipeline
centers most of the concept process around the art director
and most of the creative drawing around the other artists. On
average, sketches take less than two minutes to be drawn and
their respective line art sprites take at most ten minutes to
be done.

To replicate the late nineties look, the final sprites are
based on a 252 color palette scheme. For this, each line sprite
has to be completed twice: first, as a gray sprite and then as a
color one. The former uses up to 6 gray tones to convey the
shading information and, the latter, up to 42 different colors
to mark regions of the sprite, such as hair, skin, clothes,
accessories, etc. Combined, they identify up to 6 ∗ 42 =
252 unique colors. Therefore, the final sprite is generated
by encoding the gray and color sprites together. From left
to right, Fig. 2 illustrates the entire life cycle of a sprite.
This procedure streamlines the artists work as it relaxes the
256 colors limitation into two distinct and intuitive problems.
Also, it greatly simplifies the creation of skins, as all shading
and coloring data are kept separate. We exemplify the system
flexibility to create skins in Fig. 3.

Out of the entire life cycle, painting the gray entire sprite
is the most time consuming step, taking around 30 to 40
minutes to complete. Actually, this step can easily spend
more time than all the others combined. The task complexity
also varies with the character, some have more intricate
shading patterns (due to more fashionable clothing, hair
styles and muscles), while others have large and smooth
surfaces, which are considerably easier to draw and colorize.
Inversely, color sprites are considerably easier to generate as
most of them are formed by a handful of colors, that is, being
this process equivalent to flood fill the individual areas of
the sprite (legs, arms, hair, etc.), than actually drawing the
entire shapes. For example, a color sprite may take from 5
to 15 minutes. Some characters, however, have many small
regions to be painted and can take longer to generate. Fig.
4 shows easy and hard to drawn characters, respectively, in
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Figure 2. From left to right, the rough sketch, line sprite, gray sprite, color sprite and final sprite, composed of grayscale lookup indices.

Figure 3. Several skins of the same character using the index sprite.

Figure 4. Several characters in their gray and color variants. The two
characters on top are harder to shade and colorize due to their complex
clothing and muscles. On the other hand, the two on bottom are more
easier cases, since they have many smooth surfaces and, particularly, the
character located in the leftmost, which has large areas with same colors.

their gray and color variants. Unfortunately, pin-pointing the
exact times taken for each step and sprite is a difficult task,
as each artist has its own work-flow and, very often, they
work on several sprites simultaneously.

IV. OUR DEEP-LEARNING ASSETS GENERATION

Within the sprite painting pipeline, we frame our problem
as two paired image translation sub-problems: converting
line art sprites into gray sprites and into color sprites. This
division mimics how the artists work and simplifies the
learning task into two pixel-wise categorical classification
problems, with 6 and 42 classes, respectively. In this work,
we call these problems the gray and color problems.

Figure 5. Overview of the U-Net architecture. The orange colored
encoder network (on the left) and the green colored decoder network (on the
right) are two components linked through standard and skip connections.

We build our solution on the Pix2Pix architecture [5],
which is a GAN model based on a U-Net generator, a patch-
based discriminator and the L1 loss function. These elements
are detailed as follows:

• U-Net Generator: This network consists of a encoder-
decoder model that has skip connections between the
corresponding encoder and decoder layers. The rea-
soning behind this architecture is that the encoder-
decoder model is concerned with understanding the
input domain and translating it to the output domain
in a semantic way, while the skip connections provide
the necessary low-level information from the previous
layers to reconstruct details, such as the background or
object contours. This network, shown in Fig. 5, is a
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common basis for image-to-image models.
• Patch-based Discriminator: While traditional discrim-

inators learn to classify the whole image as real or fake,
the patch-based discriminator classifies small patches
separately. This change allows the training process to
focus more on the fake-looking areas, and leave the
remaining ones unchanged. This can be accomplished
by casting the discriminator as a segmentation network,
which outputs a lower-resolution image of per-pixel
classifications. Usually, the patch size is chosen to be
1/8th of the image size.

• L1 Loss Function: (1) shows the loss function which
is computed as the mean (E) of the absolute differences
between the correct (ytrue) and generated (ygenerated)
outputs [25].

L1 = E(|ytrue − ygenerated|) (1)

This loss function is preferred over the more common
L2 loss on generative networks as it encourages less
blurring of the output. The importance of this loss
function to the final model resides in capturing low
frequency information from the output domain.

Combined, these elements compose a complete image
translation framework in which the L1 loss and the patch-
based discriminator are used to train the U-Net generator.
The complete training procedure follows the Conditional
GAN formulation and consists in: (1) training the discrimi-
nator to classify real images as real and generated images as
fake, and (2) training the generator over the L1 loss and over
the results of the discriminator classification. These steps
are performed in alternation and, after enough training, they
tend to converge to a scenario where the generator results are
good enough to both minimize the L1 loss and maximize
the discriminator confusion. In other words, the generator
results converge to a state in which the discriminator is no
longer capable of distinguishing real from fake images.

A. Changes to the Pix2Pix architecture

In contrast to the original Pix2Pix architecture, we have
two image translation problems to solve: the gray and color
problems, the former in the grayscale color-space, and the
latter in the RGB color-space. To more efficiently solve
them, we change the U-Net architecture to have two decoder-
discriminator pairs, one for each problem. This way, we have
a single network to solve both gray and color problems.
We found that this strategy improves our results, as it helps
the encoder network to learn more semantic rich features.
For instance, both decoders have to identify the character’s
arms to colorize and shade them. With the shared encoder,
there are two distinct training signals for the encoder to learn
to identify the arms and embed this information within its
features. In general, this multi-objective principle is widely
regarded as beneficial to neural networks.

Regarding the architecture, for the down sampling steps,
we have included an additional convolution to further elab-
orate on the down sampled features, and have used the ELU
activation function, which yielded better results than the
originally used LeakyReLU [26]. With regard to the training
procedure, we have used the default Adam optimizer with
a learning rate of 0.001 and the L2 loss function shown in
(2), which is defined as the mean (E) of the squared differ-
ences between the correct (ytrue) and generated (ygenerated)
outputs [25].

L2 = E((ytrue − ygenerated)
2) (2)

Experimentally, we obtained a faster convergence and
better results when using the L2 loss function.

B. Technical Details

All trained models in this work were implemented with
the Keras framework [27] on top of the TensorFlow library
[28]. The encoder module has seven downsample steps and
each decoder module has seven upsampling steps. Each
downsample step is a 3x3 convolution with stride 1, followed
by a 4x4 convolution with stride 2, and a batch normalization
step. The reasoning behind using a 4x4 convolution with
stride 2, instead of a max-pooling layer, is that this allows the
network to learn a custom downsampling function instead
of using a fixed one. Empirically, this has been found
to yield improved results. For the upsampling steps, a 2x
nearest-neighbour resize is applied to the input, followed
by a 4x4 convolution with stride 1, the ReLU activation,
a 10% dropout regularization, a batch normalization step
and finally, the resulting features are concatenated with
the features from the respective downsampling step. At the
end of the network, after the last upsampling steps, a 4x4
convolution with the tanh activation is used to generate the
final gray and color results. With regard to the network size,
f∗32 filters were used on every convolution operation, being
f equals to 1, 2, 4, 8, 8, 8, 8 on the seven downsampling steps
and f equals to 8, 8, 8, 8, 4, 2, 1 during the upsampling steps.
In total, the generator has 20, 592, 100 trainable parameters.

With regard to the dataset itself, all sprites may occupy up
to 640x480 pixels. However, for efficiency reasons, we have
cropped all sprites to a 256x256 box, which is enough to
accommodate most sprites. To increase the amount of data
available, we have performed limited data augmentation on
our dataset. Namely, we have included horizontally flipped
versions of all training sprites into our training data. Other
data augmentation techniques, such as vertical flipping or
rotations, have not been applied to our dataset as these would
not match the actual sketches used in practice. Regarding
the training duration, we have run enough epochs to show
at least 106 sprites to the network, in batches of 8. Beyond
this point, we would inspect our results to decide if they
need to be trained more, based on the visual quality of the
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generated sprites. We have not employed early-stopping as
this technique is known for not working well in practice with
GANs, as the main source of improvements in such networks
is the discriminator, and not the loss function. Therefore, it
is not reasonable to stop the training based on the latter.

In all experiments, a Core i7 7700k processor with 32
GB of RAM and a NVidia GTX 1060 with 6 GB of RAM
were used. With this setup, training took from 2 to 6 hours,
depending on the character dataset size. The inference time
to generate all sprites was negligeble, taking a few seconds
to complete.

V. TESTS AND RESULTS

In this section, we bring out and discuss our results for
the test cases designed, based on qualitative and quantitative
data.

A. Character Datasets

We investigate our solution effectiveness using two dis-
tinct datasets: the Sarah and the Lucy characters, which are
shown, respectively, on the left and right sides at the bottom
of Fig. 4.

The former is a tiny girl with a big platypus suit, and
the latter is an adult woman wearing collant clothing. The
Sarah character is useful as a benchmark as it has a large
smooth, well behaved surface (i.e., the platypus suit), and a
highly detailed character, which occupies a small portion of
the entire sprite. In particular, this dataset is incomplete, as
this character has not been finished completely by the design
team at the time of this writing. On the other hand, the Lucy
character has been entirely completed and has mostly smooth
features, thus, being easier to study both on terms of drawing
complexity and amount of available data. These datasets
have provided us with a perspective on the usefulness of
the system to finish incomplete characters and a notion of
the upper bound that the algorithm can reach, when there is
enough data, and an easy and simple to draw character.

B. Qualitative Results

We start presenting results regarding the Sarah character,
followed by the Lucy one.

Sarah character has gray and color schemes, whose
sprites vary widely on level of difficulty within each pose. In
total, we have 85 fully drawn Sarah sprites that can be used
to the training in deep-learning network which, in turn, we
have doubled applying horizontal flipping. Of these, 10%
were selected for validation purposes. These sprites come
mostly from “neutral” animations, such as idling, walking,
running, jumping and ducking. At the time of this writing,
the complete character had 292 line sprites, which left us
with 207 sprites that might be drawn by our tool and used
by the design team to fast track the character development.
In Fig. 6, we present our results on the validation set after

800 epochs of training. On the left, we show sprites that
have more common poses, therefore, having many similar
sprites on the training set, whereas on the right, we show
more distinct sprites.

As a whole, the gray problem was well handled by our so-
lution, having only minor shading issues (e.g., on shadowed
regions or around the platypus armpits). In turn, the color
problem presented interesting results: the algorithm was
unable to capture the correct color palette used, but was able
to segment most of the sprite regions into distinct colors. We
have found this result even more intriguing and inspiring,
as it demonstrates that the algorithm could learn to solve
the given task, but not on the given conditions. Therefore,
in an unsupervised way, it learned its own set of colors to
use. Also, unlike the gray sprites, some noise is present,
particularly, on the platypus legs and girl’s clothes. In some
generated sprites, the amount of color noise is significant,
making the sprite useless to the character designers.

Applying this solution to the remainder 207 unfinished
sprites, we have obtained the results shown in Fig. 7. On
the first row, we show sprites that are very similar to the
existing ones for training; on the second, sprites that have
new-unseen poses and, finally, on the third, sprites that
are completely different from the ones seen during testing
time. In short, from top to bottom, we show how well our
algorithm generalizes to unseen data. More specifically, for
the gray problem, plausible shadings have been generated,
even for extreme cases, such as the one shown in the third
row of Fig. 7. For the color problem, most sprites from the
second and third rows are too noisy to be usable in any way.

To deeply investigate whether color sprites are feasible,
we have conducted the following study: given the fact that
the algorithm found its own set of colors, we have changed
the colors of the sprites to match those colors and then
retrained the algorithm. The idea behind this approach is
very simple, these colors might be more suitable for the
learning task as they are semantically richer. For instance,
the learned colors for the platypus head and beak have a
high amount of blue and varying amounts of red, while the
colors used for the arms and body are mostly green, which
has no similarity with the head colors. In addition, to reduce
the amount of high frequency details on the color sprite, we
have removed 8 colors used to mark the facial features and
some clothing details, replacing them with the predominant
surrounding color.

Fig. 8 shows the visual outputs of the algorithm retrained
for 600 epochs on the new color setup. Overall, similar
results are observed: the sprites are reasonably segmented,
but intense color noise exists on several key areas, such
as in the girl’s body and in the platypus legs. However,
in this experiment, minimal deviation from the new palette
occurred, which suggests that these colors are more stable
for training. This study suggests that the Pix2Pix architecture
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Figure 6. Results for six different sprites taken from Sarah animations. From top to bottom and left to right, each sprite is shown in its respective
ground truth gray, generated gray, ground truth color and generated color forms.

Figure 7. A sample of the generated sprites to be handed to the design team. From top to bottom row, similar poses to the ones on the training set,
absent poses on the training set, and radically different poses from all others.

Figure 8. Study on the color problem using the algorithm’s learned
colors, instead of the human chosen ones.

for this semantic segmentation problem is unfit and that
other architectures should be investigated. Also, given that
changing the color palette resulted in a more stable training,
we further conjecture that a study on optimal palettes might

yield improved results.
To understand if a larger data base and an easier to draw

character would significantly impact the effectiveness of our
algorithm, we have trained it for the Lucy character, which
has been fully drawn by the design team. The Lucy character
has gray sprites which are considerably smooth, but have
many curved shapes, while her color sprites are asymmet-
rical, having different colors for the left and right arms and
legs. Her shading and coloring schemes are shown in Fig.
9, on the bottom left corner. The complete dataset features
530 distinct sprites, which we have doubled using horizontal
flipping, and then took 10% for validation purposes.

Training for 250 epochs on the Lucy dataset generated the
results shown in Fig. 9. From top to bottom, left to right, we
have arranged sprites in order of pose complexity, with the
last row featuring unique poses that have few similar sprites.
As for the Sarah dataset, gray sprites are significantly close
to the ground truth, exhibiting only minor shading issues
around shadowed zones, and color sprites yielded moderate
success, being able to segment most regions, but having
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Figure 9. Results for six different sprites taken from Lucy animations. From top to bottom and left to right, each sprite is shown in its respective ground
truth gray, generated gray, ground truth color and generated color forms.

noticeable color noise on some problematic zones, while
also not adhering to the human selected colors. It should be
noted, however, that, in this case, only a handful of colors
have changed, notably the hair, tail and arms, as opposed to
the Sarah character, which had mostly all colors changed.
The overall quality of the generated gray sprites indicate the
usefulness of the solution and its capacity to learn to shade a
complete character. This is an impressive result and should
be noted as a milestone reached on our goal direction. With
this experiment, we show that it is possible to generate high
quality semi-finalized images given enough data. In other
words, the upper bound on the quality of generated sprites
is very close to the ground truth. Comparing this result to
the Sarah dataset, it can be observed that with 16% of the
number of sprites we had for this experiment, good results
could already be obtained.

C. Quantitative Analysis

To objectively compare and evaluate the level of similarity
between our simulated outputs to their respective ground
truth images, we have applied the following three commonly
used metrics: (1) Root-Mean Squared-Error (RMSE), (2)
Mean Absolute Error (MAE) and (3) Structural SIMilarity
(SSIM). These metrics measure the similarity between pairs
of images, and are reported descriptively through the mean,
standard deviation and quartilles information. These metrics
have been calculated using the raw grayscale and RGB data
and, for the RMSE and MAE scores, the average of all color
channels was considered.

More specifically, the RMSE and MAE metrics are two
distance metrics, that is, typical loss functions for deep

learning algorithms. In particular, RMSE is the square root
of the L2 norm, the loss function used on our network,
and MAE is the L1 norm used on the original Pix2Pix
architecture. The SSIM metric is a widely used benchmark
on the image processing literature and was designed to mea-
sure the perceptual similarity of two images, thus, having a
higher correlation to the human perception of similarity. A
SSIM score of zero means that both images are completely
different and a value of one means they are equal.

Table I shows the numerical results obtained with the
three selected similarity metrics. These values were derived
considering all generated images and their respective ground
truth images. One can see that our quantitative analysis
is consistent with our qualitative results, reinforcing that
the generated gray sprites are visually more similar to the
ground truth and performed significantly better than the
color ones.

Also in the qualitative analysis, we compared the color
problem using the original and the algorithm’s preferred
colors, obtaining worse results, but with significantly less
color deviation. In Table I, we included the alternative
colors results as the Color* column. Comparing these to
their original colors, we obtained worse RMSE and MAE
mean errors (from 8.65 to 12.32 and from 2.89 to 3.81.
respectively), but a reduced error standard deviation (from
10.23 to 7.01 and 3.37 to 2.65, respectively). This supports
that the results were indeed worse, but were more stable
with regard to the color deviation problem. When looking at
the SSIM scores, we see the opposite, the alternative colors
outperformed the original ones. This shows that, although
the results were worse, the perceptual similarity was higher,
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TABLE I. RMSE, MAE and SSIM metrics for the tested datasets. For
the Sarah dataset, we include data from the original color problem and
from the alternative color configuration, included as the Color* column

Sarah Lucy
Gray Color Color* Gray Color

RMSE
µ 4.81 8.65 12.32 3.73 7.07
σ 4.91 10.23 7.01 1.68 5.02

Min 2.34 3.50 7.41 2.32 3.77
25% 2.65 4.18 8.92 2.94 5.03
50% 2.83 4.39 9.90 3.15 5.35
75% 3.99 5.21 12.42 3.50 5.74
Max 39.73 57.82 61.81 11.23 30.77

MAE
µ 1.78 2.89 3.81 1.01 2.01
σ 1.86 3.37 2.65 0.39 1.11

Min 0.90 1.40 2.35 0.62 1.34
25% 1.01 1.61 2.78 0.81 1.59
50% 1.10 1.69 3.04 0.88 1.65
75% 1.52 1.93 3.59 0.99 1.72
Max 17.18 22.23 24.16 2.90 8.01

SSIM
µ 0.97 0.84 0.88 0.99 0.94
σ 0.05 0.03 0.03 0.01 0.01

Min 0.65 0.66 0.66 0.96 0.89
25% 0.98 0.83 0.87 0.99 0.93
50% 0.99 0.84 0.89 0.99 0.94
75% 0.99 0.85 0.90 1.00 0.94
Max 0.99 0.88 0.92 1.00 0.96

as the color correspondence was more strictly followed on
the alternative coloring scheme.

When comparing the two datasets, it can be seen that
the Lucy dataset was superior on all observed metrics,
with better average results and significantly lower standard
deviations. This numerically demonstrates the degree of
improvement that is possible given approximately six times
more data and using an easier to draw character. More
specifically, the better average mean results indicate that
the overall quality can be much higher, whereas the lower
standard deviations point to a more consistent quality. Also,
when looking at the quartilles information, it can be noted
that the minimum and maximum values reported on the Lucy
dataset are considerably closer to the median value, whereas
Sarah results have significant outliers.

D. Character Designers Evaluation

Throughout the development of our presented solution,
the design team was regularly consulted for insights on the
drawing process and for their thoughts on the artificially
generated sprites. At first, the team was skeptical about the
idea, but as the quality of the produced material improved, a
naturally increasing interest was manifested. Inspecting the
207 generated Sarah sprites, there was a consensus that most
of the gray sprites are usable and potentially time saving,
but that color sprites still need further improvements to be
considered truly useful. Regarding quality, their feedback

Figure 10. Example of the inconsistent shading issue for a generated
sprite sequence. This problem is evident on the platypus body. Over the
course of the animation, this region is often shaded either darkly or brightly.

Figure 11. Example of poses that are too different from the ones present
on the training set. For these cases, discontinuities on the shading of smooth
surfaces and severe color noise and bleeding are common issues.

can be summarized into three major topics, as follows:

1) Inconsistent Animations: When considering anima-
tions with several frames, the shading consistency
across frames is paramount for a smooth animation.
Currently, we do not encode any form of animation
awareness and, thus, we only optimize for consistency
with the overall shading patterns of the character. In
Fig. 10 are shown eight sequential frames of an attack
animation. In these frames, although the generated
shading is plausible, it changes significantly from
one frame to the other. This is especially noticeable
at the bottom half of the platypus. For artists, the
time needed to correct these consistency errors could
be significant. Also, this error is proportional to the
amount of deviation from the expected shading.

2) Difficulty on Distinct Poses: Due to the small dataset,

Figure 12. Example of color noise evidenced after the color rounding
post processing. On the gray sprite, subtle noise can be seen in the sprite
contour, as well as around transitions from bright to darker areas, in the
arms and legs, for example. In the color sprite, the noise is very noticeable
in the beak, girl, feet and tail.
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most of the generated sprites feature poses are sig-
nificantly different than the neutral poses used for
training. In some cases, this issue can lead to unex-
pected behaviours, such as weird highlights, severely
shadowed regions and, for color sprites, heavy color
noise. Examples of these problems are shown in Fig.
11. In most cases, the artists believe that correcting
these sprites would not lead to any performance im-
provement.

3) Rounding Noise: in most sprites, considering their
original tones, the shading and coloring can be greatly
smooth. However, when we quantize sprites to the
6 gray tones and to the 42 color tones, some color
noise may appear. While this is a minor issue for
gray sprites, this is a significant problem for the color
ones, mainly because there are many similar colors,
which can be confused when rounding, and because
the generated sprites do not follow the original palette,
which impairs the rounding process. To alleviate these,
we have used the alternative color palette for the
rounding process. However, a considerable amount of
noise still remained. Examples of rounding errors are
shown in Fig. 12. For artists, fixing noisy images is a
tedious and time consuming task.

Considering our results with the Lucy character, we be-
lieve that most of these problems could be solved given
sufficient data. However, we conjecture that we could reduce
these issues with minimal extra data by carefully selecting
which sprites will be finished by the artists firstly. For
instance, consider the animation shown in Fig. 10. If the
first and fifth sprites had been finished, they could be fed
to the algorithm to potentially improve the results for the
other six sprites. The same idea goes for the distinct poses
problem. Given that at least one sprite is finished, the
complete pose would not be as foreign as before, which
would improve the algorithm’s performance on similar data.
Finally, for the rounding problem, we believe that more
sophisticated rounding or image denoising algorithms could
reduce the generated noise. Possible candidates include
using neighbouring data to sort the most predominant color,
using morphological operators, such as dilation and erosion,
to remove single pixel noise or using a blur filter before
rounding to soften the amount of color variation.

VI. DISCUSSION AND FUTURE WORK

In this work, we investigated the use of deep learning
algorithms to create pixel art sprites from line art sketches,
with the goal of reducing the artists workload. More specif-
ically, we set this work within the Trajes Fatais: Suits of
Fate pipeline, which consists of drawing a gray and a color
sprite from a line art sketch. We cast our problem as an
image translation problem and, for this, we have designed
a variant of the Pix2Pix algorithm to handle the line-to-
gray and line-to-color problems with a single network. In

our qualitative analysis we show sprites from the validation
set and how the generated sprites relate to the ground truth
visually. In addition, we used different well-known objective
image quality metrics to quantify the similarity of our results
to the artist drawn sprites, reinforcing our qualitative results.
Finally, our design team evaluated the 207 sprites generated
for the Sarah character and provided valuable feedback on
the generated material. Considering our entire analysis, we
conclude that our system can generate useful sprites, most
of them from the gray problem, and that, given more sprites,
a significant improvement can be achieved.

More specifically, the study on Lucy sprites showed that
the current architecture is able to learn how to shade a
complete character, which is an impressive result, given the
complexity of the task. With only 16% as many sprites, the
Sarah dataset could still train a reasonably good generator
and yield usable results. Among our key problems, the hard-
est is the distinct poses problem, as it requires a human level
of generalization to be solved. This fact leads us to believe
that the current system can be largely improved by carefully
curating a dataset with enough pose variety. A possible path
would be to prioritize the design team work to draw a
single sprite from each animation sequence, improving the
diversity of poses seen during training. Finally, it would also
be worthwhile to investigate whether both datasets could be
leveraged using transfer learning techniques.

As future work, several key areas of our solution could
be improved to generate higher quality assets. Mainly, new
architectures and techniques could be introduced in our
model to improve its efficiency. Residual blocks, inception
blocks, spectral normalization and custom loss functions are
a few of the many techniques that could be incorporated into
our model. Additionally, we believe that different settings
to our problem could yield interesting results. One possible
option would be to recast our problem as a pixel-wise
classification, instead of being a regression model. Other
idea would be to include neighbouring frames as inputs
to the network to improve its intra-animation consistency.
To improve the algorithms performance, we could use a
weighted loss on less frequent tones or to weight animations
equally, despite the amount of frames used. Finally, image
processing techniques could also be investigated to improve
even more the quality of generated sprites.
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