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Abstract—The study of Artificial Intelligence and, more
specifically, Machine learning in games is of great interest to
the gaming industry due to their wide application in several
scenarios and their capabilities of simulating human behavior
by non-playable characters. In online multiplayer scenarios,
one of the greatest concerns is player disconnections and how
to replace this player with a “good” replacement bot. In this
work, we propose a machine learning based methodology to
simulate the behavior of players that learns from their gaming
history that generates more balance in the game. Our work uses
Multi Layer Perceptron Neural Networks evaluated in a classic
card game called Hearts, in order to emulate some previously
defined behaviors. The results obtained in the experiments
indicate that the proposed method has very good performance,
since all generated models have managed to approach similar
amount of victories when comparing to the behaviors that they
were trained with. Through the evaluation of the results of
10,000 matches, with gameseeds of different matches used for
training, the best result was for the model Shooter versus 3
Sheriffs getting 95.5% of the amount of wins compared to
their particular bot. We also conclude that behavior learning
is also clear on the difference of wins in all results depending
on opponent skills, i.e., opponents who were difficult to win
remain difficult to win in the simulated environment.

Keywords-Machine Learning; Neural Networks; Games;

I. INTRODUCTION

The gaming industry is a very important segment of
the Brazilian economy nowadays, having made 1.5 billion
dollars in 2018, 15.3% higher than the $1.3 billion billed in
2017, making it the 13th largest game market in the world
[1]. Also worldwide, it made more than $134.9 billion [2].
With this growth, the concern with the quality that the games
offer to the public increases, and the application of Machine
Learning techniques to improve the Artificial Intelligence of
these games is one of the greatest bets to reach this goal.

According to Barendregt [3], when a game is not pleasant
or fun, it does not arouse interest. If it is tiring, difficult
or very easy, the player may face an entertainment issue.
Entertainment issues are more difficult to diagnose than
technical issues, as a technical issue affects the entire user
database and has tools to aid detection while entertainment
problems affect only certain user segments and there is no
tool to help in this type of detection.

By simulating certain behaviors, it is possible to val-
idate strategies adopted with greater and lesser potential

of victory, allowing the creation of a more interesting and
attractive environment for specific users.

Microsoft has created the “Drivatar” technology initially
for the game Forza Motorsport 5, which uses cloud pro-
cessing to calculate the artificial intelligence of the cars
against which the player runs against [4]. In this model,
the opponents do not adapt to you, they are only pre-setup
profiles with different skill levels. Also, artificial intelligence
created by DeepMind, a company acquired by Google in
2014, was trained to play Go and defeated the best human
player in the world [5]. The same artificial intelligence was
also trained to play Chess and won the world’s best computer
program, having learned alone to play in less than four hours
[6].

In a digital game where the player can interact with other
players, not always those other players are real people, and,
many times, are controlled by the computer itself, being
called robots, or simply, bots. The intelligence of these
robots is defined by a set of algorithms and heuristics that
can be considered efficient for a given public but inefficient
for another. When it is possible to understand a player’s
behavior, we can make the robot behave in a specific way if
that player is absent, helping the handling of the environment
so that the game becomes more interesting and attractive.

Using 2016 statistics, 33% of the Brazilian internet users
who play games, play offline [7], that is, more than half
of the players prefer to play online, where they depend
on a good connection to the internet and other connected
players. In this environment, when a player is disconnected,
the whole game is affected. In the worst case scenario, it
is necessary to start a new game, while, in the best case
scenario, that player is replaced by a bot. Even in games
that approach the best case scenario, bots usually do not
behave at the same level as the player that was disconnected,
unbalancing the game and generating frustration for the rest
of the players. In the case of the substitution by a bot
that behaves similarly to the player that was disconnected,
it is possible to run the game without taking completely
different paths while also increasing the possibility of the
return of that player, as he will know that he has not had
great disadvantage while was disconnected.

The main objective of this work is to propose a method-
ology to simulate the behavior of a player, using machine
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learning techniques, based on their gaming history that
generates more balance in the game. As a secondary ob-
jective, we intend to validate the performance of a behavior
simulation in a real scenario where a database and a working
environment already exist. Due to the difficulty of finding
public gaming history datasets, our matches will be simu-
lated in a controlled environment, played by different bots
with several behaviors.

This article is divided into seven other sections. Section
II provides the basic concepts of Games Theory and Arti-
ficial Intelligence in digital games, exemplifying machine
learning techniques. Section III describes and compares
similar works. In section IV, we summarize our proposal of
modelling the behavior of a player using machine learning.
Section V describes the game used as a use case for the
validation of the proposal, as well as the modeling used
and the game behaviors that are simulated. The results’
evaluation is shown in section VI. Finally, some conclusions
and the future works is presented in section VII.

II. THEORETICAL REFERENCE

A. Finite State Machines applied to gaming

Digital game developers usually use the same set of tech-
niques in the game’s artificial intelligence implementation,
which are finite state machines (FSMs) and fuzzy state
machines (FuSMs). According to Bourg and Seemann [8],
an FSM is an abstraction of a machine that drives several
predefined states, defining conditions that determine when
a state is present, while the current state determines how
the machine behaves. In Fig. 1, it is possible to observe the
three behaviors of the ghosts of the original Pac-Man game
being represented by states. First, a Scatter behavior, where
the ghost moves toward corners and circles, is activated after
20 seconds of hunting. Then, a Hunting behavior, where each
ghost has its implementation and depends on how far in the
game the player is, is activated after 5 seconds scattering or
10 seconds running away. Finally, a Fleeing behavior, where
the ghost moves randomly in a slower way, is triggered when
the player captures an energy pellet.

The Pac-man approach uses finite state machine (FSM),
which is popular because it requires little power of process-
ing and it is easy and intuitive to define behaviors, mainly
with the aid of visual tools. Buckland [9] presents some
advantages in the use of finite state machine:

• Ease and speed: There are several ways to program a
finite state machine and almost all of them are very
simple.

• Ease of Debugging: When an agent’s behavior is being
interpreted incorrectly, it can be easily debugged by
tracing the code between states.

• Flexibility: an agent can be easily adjusted and evolved
into a digital game project, being able to be updated
with new states and conditions.

However, there are some known limitations, such as com-
binatorial explosions. As the complexity of the environment
increases, so does the number of states and transitions, since
the FSM needs to predict all possible cases and situations in
the environment. The modeling of a complex behavior may
require a large number of states and transitions, resulting
in poorly structured, unrealistic, and chaotic diagrams [10].
To deal with this problem, hierarchical finite state-state
machines (HFSMs) are used, where each state can be a new
FSM. Any hierarchical state machine can be rewritten as a
state machine in the presence of the hierarchy [10]. This
other approach is quite powerful but does not solve another
problem caused by repetitive behaviors, since the FSM has
a fixed set of states and transitions and if the same situation
occurs more than once, the activated behavior will be the
same in both situations.

Fuzzy state machines (FuSMs) were created as an attempt
to mitigate the problems of repetitive behavior present in the
FSMs. This machine, instead of using traditional Boolean
logic, employs fuzzy logic, which can be classified as a
super-set of that logic [11]. Over time, it has been observed
that fuzzy logic (logic that deals with values ranging from 0
to 1, different from Boolean logic that only supports Boolean
values, that is, true or false) presents some advantages, such
as synthesis, adaptation, flexibility and versatility that are
important in the modeling of artificial intelligence in a game.
Despite having some disadvantages, such as the heuristic
nature and the potential combinatorial explosion of rules
and antecedents that could generate debugging problems
and excessive memory and processing consumption, they
are quite useful for this purpose. In the Unreal Tournament
2004, an FPS game in which players move within a virtual
world, bots are controlled by a fuzzy state machine [12],
where elements (weapons and items) appear periodically and
the purpose of the game may vary depending on the chosen
mode.

Figure 1. A Possible Pac-Man finite state machine representation.
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B. Artificial Intelligence

Artificial intelligence (AI) is the study of “systems that act
in a way for any observer to appear intelligent” [13], while
including techniques that are used to solve simple problems.

It is divided into three different Artificial Intelligence
domains [14]. The first one, the philosophical approach tries
to understand the nature of thought and intelligence. The
second domain is about the psychology of understanding
the human brain and mental processes. The final domain
is engineering, where people try to create algorithms to
perform human-like tasks.

Russell and Norvig [15] divides Artificial Intelligence into
four groups:

• Acting Humanely: Where the system has to interact
with people, such as when to explain when you arrived
at a certain diagnosis or a system of processing of
dialog with user. The reasoning of the system may or
may not be based on a human model, different from its
behavior, which must be based on a human model.

• Acting Rationally: Where the system acts rationally,
trying to achieve the objectives given a certain scenario.
With this in mind, it takes the ability to represent
knowledge and reason, in order to achieve good de-
cisions in a wide variety of situations. For example,
humans need to be able to generate understandable
information, in other words, natural language phrases
that help humans live in a complex society.

• Thinking Humanly: Where the system tries to think
like a human, and for that, it is necessary to know the
human mind. Although it is a field widely studied, this
function is not yet known, but the field of cognitive
science brings together models of artificial intelligence
and experimental techniques of psychology to try to
build accurate and testable theories of the functioning
of the human mind.

• Rationally Thinking: Where the system tries to think
rationally, often using logical notation. There are two
major obstacles to this approach. First, it is not easy
to transform informal knowledge into terms required
by logical notation. Second, there is a big difference
between solving a problem “in principle” and doing
it in practice. Although both obstacles apply to any
attempt to build computational reasoning systems, they
first appeared in the logical tradition, because the power
of systems of representation and reasoning are well
defined and well understood.

C. Machine Learning

In machine learning, computers are programmed to learn
from past experience [16] and their tasks are typically
categorized into three classes:

• Supervised Learning: From a set of labeled data where
we already know what the correct output is, the goal

is to learn the relationship between input and output
data. Supervised learning problems can be classified as
regression or classification problems.

• Non-Supervised Learning: From a data set where we
have little or no idea of what our results may look like,
the goal is to discover new patterns in the data or be a
means to an end, such as being applied to problems of
clustering.

• Reinforcement Learning: When there is no need for
a data set, there can be an agent that must learn
how to behave in a dynamic environment through trial
and error interactions, and a return with rewards or
punishments is provided.

D. Neural Networks

A neural network is a system where modeling is done
according to how the human brain performs a task. To
achieve good performance, neural networks employ a mas-
sive interconnection of simple computational cells, called
“neurons” or processing units [17]. According to Nied [18],
the model, called the MCP (McCulloch-Pitts) neuron, is
described as a set of n inputs to each entry which is
multiplied by a certain weight, and then, the results are
summed and compared to a threshold. In Fig. 2, it is possible
to observe a set of neurons arranged in several layers with
weighted interconnections between them.

Figure 2. Simplified diagram of a neural network.

According to Braga et al. [19], a basic neural network
model has the following components:

• Set of synapses: connections between neurons of the
neural network, where each of them has a synaptic
weight.

• Integrator: performs the sum of the input signals of the
neural network, weighted by the synaptic weights.

• Activation function: restricts the amplitude of the out-
put value of a neuron.

• Bias: value applied externally to each neuron and has
the effect of increasing or decreasing the net input of
the activation function.

Neural networks are differentiated by their architecture
and the way the weights associated with the connections
are adjusted during the learning process. The architecture of
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a neural network restricts the type of problem in which the
network can be used, and is defined by the number of layers
(single layer or multiple layers), number of nodes in each
layer, type of connection between nodes and its topology
[17].

There are several topologies that can be used to build
a neural network. Among the best known are Perceptrons
and Multi-Layer Perceptrons. Rosenblatt [20] proposed a
network topology called MLP (Multiple Layer Perceptrons)
where neurons are arranged in the form of a composite
network of layers, which enabled an increase of works
related to neural networks until 1969.

In that same year, Minsky and Papert [21] showed defi-
ciencies and limitations of the MLP model, causing a lack
of interest in studies related to neural networks. It was only
after 1982, with the publication of Hopfield’s work [22], that
the interest in the studies related to neural networks aroused
again.

MLP architectures are the most widely used and well-
known artificial neural models. An MLP network is sub-
divided into layers: an input layer, intermediate or hidden
layer(s) and an output layer [18]. A multilayer neural net-
work is typically composed of aligned layers of neurons
[23]. The input layer distributes the input information to the
hidden layer(s) of the network, while in the output layer,
the problem solution is obtained. The hidden layers are
intermediate layers, whose function is to separate the input
and output layers and solve non-linear problems. Usually,
the neurons of a layer are connected only to the neurons
of the immediately posterior layer, without feedback and
connections between neurons of the same layer. In addition,
the layers are fully connected.

In further accordance with Santos et al. [23], there are
many methods for training a neural network, but backprop-
agation is the most used one. This algorithm requires the
selection of a set of parameters (initial weights, stopping cri-
terion, learning rate, number of iterations of the algorithm),
in which its influence can be decisive for the generalization
capacity of the network. The learning process consists of two
stages: propagation and backpropagation. In the propagation
step, an activation pattern is applied to the nodes of the
input layer and its effect propagates through the entire
network, layer by layer. In the last layer, a set of outputs
is produced, configured as the actual network response. In
the backpropagation step, all synaptic weights are adjusted
according to an error correction rule. The error signal is
propagated back through the network against the direction
of the synaptic connections and the synaptic weights are
adjusted to cause the actual network response to approach
the desired response, in a statistical sense [18].

In Fig. 3, it is illustrated the process of backpropagation,
where weights are updated accordingly to each node error.
Wi’ and Wj’ represent the values optimized for the neural
network while learning to more efficiently map the inputs

to the outputs.

Figure 3. Retropropagation example.

III. RELATED WORKS

Tesauro [24] presents a neural network that is trained to
be an evaluation function for the game of backgammon,
playing against itself and learning from the result, called
TD-Gammon. Although TD-Gammon has largely outgrown
previous computer programs in its ability to play backgam-
mon, that was not the goal of development. Instead, it aimed
to explore some new ideas and interesting approaches to
traditional problems in the field of reinforcement learning.

Geisler [25] uses machine learning techniques so that
agents learn to play the first person shooter (FPS) style from
a data set of a specialist player. The actions of the investi-
gated player were to accelerate and decelerate, direction of
movement, direction of the face and moment of leap. Among
the techniques investigated, which included Decision Trees,
Naive Bayes classifiers and Neural Networks, the models
obtained by the Neural Networks were the ones that had
more success in the four types of actions investigated, but
also those that used more CPU cycles, creating a questioning
for the use of this technique in an online game mode.

Muoz et al. [26] presents a controller for a simulated car
racing championship. The idea was not to create the fastest
driver, but a driver similar to the human. In order to achieve
this, a process was first created to build a model of the
tracks while the car was running and then several neural
networks were used to predict the trajectory that the car
should follow and the target speed. Neural networks were
trained with data retrieved from a human player and the
results showed acceptable performance on unknown tracks
of more than 20% slower times than the human on the same
tracks.

[27] describes an artificial intelligence system for racing
games. Throughout the training, the system observes the
positioning of the road, the player, the choice of the race
line, the speeds reached along the course and the use of the
brake and accelerator. This information is then processed and
absorbed into an artificial intelligence model called Drivatar
that is representative of that player’s driving style. Such a
model can subsequently be used to dynamically generate a
plausible variety of race lines and racing behaviors. It is also
important to note that this model is non-deterministic and
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therefore will not produce the same output every time, not
just a simple recording of the player’s direction. In general
terms, Drivatar learns a model of the player’s trajectory
based on characteristics of the local topology of the track,
such as geometric measurements and a model of the speed
of the player depending on the trajectory and some relevant
properties of the car being handled. When Drivatar is asked
to drive in a new lane, the geometry can be inserted into the
model as input, and a credible (if not perfect) race line will
appear as output. Likewise, the race line generated, along
with the relevant car variables, can be provided for the speed
function. This will automatically take into account the fact
that Drivatar may be driving a car much different from the
one used in training. Therefore, it does not drive at the same
absolute speed (which would seem clearly wrong), but will
be proportional to the capacity of the new car, consistent
with the training data. Although this is not necessarily
realistic in the real world, it makes a lot of sense from a
game perspective.

Pereira [28] introduces a new reinforcement learning
algorithm, called Pessimistic Q-Learning. Although it does
not aim to simulate human behavior, the study tries to
solve the problem of generating robots capable of playing
turn-based games seeking the best results. The experiments
were carried out in different scenarios, being the following
traditional games: TicTacToe, Connect-4 and CardPoints. A
comparison was also made with the traditional Q-Learning
algorithm, where the results illustrate gains in quality in the
proposed technique.

Ortega et al. [29] describes methods, based on machine-
learning techniques, to generate controllers that mimic the
playing style of a given human player, where the player’s
style is measured through an evaluation structure, which
compares the game of a human player with the dotted game
path of an AI player. Neural networks with backpropagation
and neuroevolution for supervised learning and dynamic
scripting were used for reinforcement learning. Having as
a validation game a version of the classic platform game
“Super Mario Bros”, Neural Networks with neuroevolution
obtained better performance both in terms of the measure of
instrumental similarity and in the phenomenological evalu-
ation by human spectators.

Cardoso [30] uses artificial intelligence, classification and
association algorithms along with fuzzy logic, specifically
Apriori, FuzzyDT, FCA-BASED, C4.5, PART, and Ripper
to extract relevant Blackjack rules. The study attempts to
find ways to minimize the casino’s edge and turn the odds
in favor of the player using gambling strategies.

Mendonça et al. [31] presents two machine learning tech-
niques, a Reinforcement Learning approach and an Artificial
Neural Network (ANN), that are used in a fighting game in
order to allow the agent/fighter to emulate a human player.
The results in the experiments indicate that the proposed
methods had better performance against human players than

those obtained by AI bots derived from other state-of-the-art
methods.

Oshri and Khandwal [32] uses a Convolutional Neural
Network (CNN) to make predictions of movement in chess.
The task has been defined as a two-part classification prob-
lem: A CNN part selector is trained to score which white
pieces are to be moved and CNC selectors for each part that
produces scores to where it should be moved. The networks
were trained using 20,000 games, consisting of 245,000
moves made by well-skilled players. The parts selection
network was trained in all these movements, and the motion-
selection networks were trained in all movements made by
the respective piece. The success of convolutions in the
model is reflected in how locally moving parts perform better
than those moving globally. The network was played as an
artificial intelligence against another artificial intelligence
existing for purposes of teaching the game of chess, tying
with 26 games in 100 and losing the rest. It was concluded
that the convolution layers in the deep learning approaches to
chess are useful in recognizing patterns of small local tactics
and that this approach should be trained and composed with
evaluation functions for a smarter global game.

Table I
COMPARISON BETWEEN RELATED WORK

Reference
Learning

Techniques Use Case
Behavior

Type Simulation

[24] Reinforcement
Temporal

Gammon No
Difference

[25] Supervised

Decision Tree Soldier

YesNaive Bayes of

Neural Network Fortune 2

[26] Supervised Neural Network

The Open

YesRacing Car

Simulator

[27]
Not Not Forza

Yes
Specified Specified Motorsport

[28] Reinforcement

Q-Learning TicTacToe

NoQ-Learning Connect-4

Pessimist CardPoints

[29]
Supervised Neural Network Super Mario

Yes
Reinforcement Dynamic Scripting Bros

[30] Supervised
Decision Tree

Blackjack Yes
Fuzzy Logic

[31]
Supervised Neural Network

Boxer Yes
Reinforcement Q-Learning

[32] Supervised Neural Network Chess Yes

IV. MODELING PLAYER BEHAVIOUR WITH MACHINE
LEARNING

To reduce the risk of a player losing interest in a game,
we propose to use the behavioral simulation of a human
player with specific characteristics in order to generate a
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better balance between the game-play of the human op-
ponent and the Artificial Intelligence bot simulating their
behavior. In order to perform this behavioral simulation,
machine learning techniques, such as Neural Networks, may
be applied, however, our methodology is not limited to solely
these techniques and may be applied with many supervised
techniques.

In Fig. 4, it is possible to observe that the the training
phase of our proposal uses a dataset built from several games
played by a given player, the one that will be simulated.
With this dataset, we generate the attributes needed to use in
our proposed modeling, which will be used by the machine
learning technique as input data. After this training phase,
the generated models can be evaluated and analyzed for
efficiency and, if necessary, a new attribute selection process.

Figure 4. Proposal scheme.

In this context, an investigation will be carried out on the
relation between the performance of the classifiers generated
from the selection of attributes relevant to the domain. The
objective here is to use data from several games of a certain
player, in order to generate a model capable of simulating
the behavior of this player for a set of inputs never explored
before.

V. THE USE CASE - HEARTS GAME

In order to evaluate our proposal, we chose Hearts, a card
game involving 4 players. From adaptations of an existing
game code, it was possible to generate different behaviors
for the bots to be simulated and generate a database to be
used with the machine learning techniques.

A. Hearts Rules

The game uses a single deck with 52 cards, 13 for each
player and ends when a player reaches 50, 100 or 150

points, as configured. The winner is, then, decided based
on the player that has the less amount of points. The score
is based on the number of cards each player gets at the
end of every round. Each card of the Hearts suit is worth a
single point, the Queen of Spades is worth thirteen and the
Jack of Diamonds is worth ten negative points. If a player
collects all points, he is awarded a zero score, while the
others receive 26 points each. This is called “Shooting the
Moon”. To decide the winner of each round, it is necessary
to see which is the highest card of the table in relation to
the strength and rank of the initial played suit, regardless
of whether it is a Hearts or not. When all 13 cards of each
player are played and there are no cards left, this hand is
finished and the score is evaluated. Before the match begins,
each player chooses three cards, and passes them to another
player. The main objectives of passing are to try to become
“short” (few cards) or “void” (no cards) of a suit, and thus
be able to play off-suit when that suit is led, or to get rid
of some of the “dangerous” cards that will likely force that
player to “win” a round containing penalty points, such as
Aces, Kings, or Queens of any suit (especially spades and
hearts).

1) Bot Behavior: Five different behaviors were defined
for the “pass” movement at the beginning of each match,
which changes the order of the player’s hand, influencing
each subsequent move in the game, as the cards are selected
according to this ascending order assigned to the player’s
hand:

• VOIDER: First, the player’s hand is ordered according
to the suits that has fewer cards, ignoring their values.
Then, it is ordered by the sum of the value of the cards
with the weight of the suit, which is the sum of all the
cards of a certain suit divided by the number of cards
of that suit.

• SHOOTER: First, the player’s hand is sorted by the face
value of the cards. Then, the hand is sub-sorted by the
suit that has fewer cards. Finally, all Hearts cards are
put at the end of the sorting.

• SHERIFF: First, the player’s hand is sorted by the face
value of the cards. Finally, all Hearts cards are put at
the end of the sorting.

• BOUNTY HUNTER: All positive point cards are
placed at the end of the hand. Finally, the player’s hand
is sorted by the suits that has fewer cards in hand.

• LOW LAYER: The player’s hand is sorted solely by
the values of the cards with the weight of the card.

2) Dataset Modeling: The samples obtained from the
processing of games played by the bots are saved in a
CSV format file. The file fields are exemplified in Table
II, where each card in the deck is represented by a column
(concatenating the initial letter and the value of the card),
and its values are integers that represent the card’s location
in the current game state, as can be seen in Table III. The
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output column contains the value of the card that was chosen
by the player given the game state represented by the other
columns. These samples are sub-divided in training and
validation datasets, that are used to train a machine learning
model and to evaluate its performance, respectively.

Table II
REPRESENTATION OF THE GAME STATE USED IN THE TRAINING

DATASET

AH 2H 3H 4H ... TC JC QC KC Output

0 2 0 0 ... 0 0 0 0 2C
0 2 0 0 ... 1 0 0 0 AD
0 2 0 0 ... 1 0 0 0 4D
1 2 0 0 ... 1 0 0 0 7H

3) Neural Network Implementation: The Scikit-Learn li-
brary was used for the implementation of the Multilayer
Perceptron Neural Networks. Several initial experiments
were performed with the available parameters in search of
the best performance model, such as the number of neurons
per layer, number of hidden layers, regularization value,
type of optimization and activation function. We highlight
the number of iterations and hidden layers, which were the
strongest influencing parameters in the final results. In Fig.
5, it is possible to verify that, by increasing the number of
hidden layers and the number of iterations, the loss values
decreased, although with 7 hidden layers or more, more
iterations are necessary to achieve the same results. In Fig.
6, it is possible to observe that by increasing the number of
hidden layers, the results improve, both for the training and
validation datasets. With 15 hidden layers or more, however,
the results start to decrease again. Bear in mind that this is
not the final evaluation of the model but an intermediate
phase. One bot can play different cards and have the same
final result. In the end, the bots are evaluated by full match
results and not just by comparing each card chosen in a
given scenario.

Table III
REPRESENTATION OF THE CARD STATE IN THE MATCH

Numerical Value Description

0 Unknown
1 Already used
2 In player’s hand
3 In table
4 In opponent’s hand, if known

VI. RESULTS EVALUATION

The models generated to perform the result analyzes were
trained from a dataset with 9,500 matches versus the same
opponents, Sheriff, Shooter and Low Layer. The behaviors
for those opponents were randomly chosen but the same
ones were used for all 5 bot behaviors. The gameseed allows

to control the initial state of the game (initial cards in the
hands of each player), however from the moment the players
make their actual moves, the game can completely change.
A Multilayer Perceptron Neural Network was used, with 5
hidden layers, each with 52 neurons, alpha value of 1e-02,
relu as the activation function and the adam solver.

Figure 5. Comparison between loss values by iterations for different
amount of hidden layers.

After the training phase, the first validation conducted was
the comparison of the responses of each model against the
responses of their respective bot for each play in 10,000
matches, all with different controlled gameseeds from those
used in the 9,500 training matches. As can be seen in the
table IV, all models chose the same card as their respective
bot in at least 58% of cases. Even so, in up to 79.0% of the
cases the card chosen by the respective bot was within the
first 3 alternatives of choice of the model, considering that
the response of the model consists of a list of cards ordered
by probability.

Figure 6. Partial scores of training and validation by amount of hidden
layers.

From the data obtained by comparing the response of the
model to each play with the bots, the next step was, from
the same gameseeds of the 10,000 matches, to let the model
play the matches from start to finish and compare their final
results. The idea here is to compare if the generated bot
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performs the same result, in terms of final score position
(victory, 2nd, 3rd or last), as in the original recorded played
match. Although the model has not chosen the same cards,
all the times, if the training has been successful, the choice
must be related to its behavior, ensuring that the final results
are likely to be the same.

Table IV
STATISTICS OF THE CHOSEN CARDS BY THE GENERATED MODEL

Model Plays Same Card Inside Top 3 Outside Top 3

Voider 608,738 58.2% 79.0% 21.0%

Shooter 1,315,314 62.3% 81.7% 18.3%

Sheriff 634,829 69.7% 88.0% 12.0%

Bounty Hunter 641,433 59.6% 79.7% 20.3%

Low Layer 1,242,722 66.8% 86.4% 13.6%

As it can be seen in the Fig. 7, all models managed to
get close to the amount of victories of their respective bots,
keeping also the amount of victorious matches in common
(intersection) with a rate higher than matches won only by
the model. The stacks represent victories against opponents
of the grouped model, the order of behaviors being the
same as that of the pooled models (Voider, Shooter, Sheriff,
Bounty Hunter and Low Layer). The lighter colors are the
representation of the intersection of victories between the bot
and its particular model. The intermediate color represents
the wins of matches that the model won but the bot lost and
the darker color represents the games in which the bot won
but the model lost. Therefore, the best results are when the
lighter bars are bigger, then the intermediate ones. Finally,
the darker bars should be small. For example, the second
stack of the “Voider” model shows that on average 86%
of the matches against opponents “Shooters” were won, of
which 76% on average were the exact same games that
the “Voider” bot won. Behavior learning is also clear on
the difference of wins depending on opponents, that is,
opponents who were difficult to win, in a particular match,
remained difficult and easy ones remained easy.

Figure 7. Models result statistics.

Regarding not only victories, the models also showed a
similar trajectory to their respective bots with the number of
times they were in second, third and fourth place, as it can
be compared in the Tables V, VI, VII, VIII and IX.

Table V
VOIDER RESULT STATISTICS

Opponents (1vs3) Voider Shooter Sheriff Bounty Hunter Low Layer

1st
Bot 2449 7721 5826 4043 2730

Model 1402 6662 4430 2404 1657

Intersection 782 5884 35464 1620 909

2nd

Bot 2513 1843 2897 2890 2271

Model 1699 2397 3201 2419 1567

Intersection 676 877 1419 963 573

3rd
Bot 2498 392 1010 1897 2379

Model 2446 810 1676 2560 2225

Intersection 825 153 422 723 702

4th
Bot 2540 44 267 1170 2602

Model 4453 131 693 2617 4551

Intersection 1794 18 122 728 1830

Table VI
SHOOTER RESULT STATISTICS

Opponents (1vs3) Voider Shooter Sheriff Bounty Hunter Low Layer

1st
Bot 245 2554 378 240 404

Model 273 2249 361 272 426

Intersection 116 1386 166 120 230

2nd

Bot 164 2465 651 157 255

Model 205 2340 614 171 274

Intersection 61 1046 253 54 102

3rd
Bot 577 2540 1867 700 584

Model 631 2492 1922 678 661

Intersection 254 1131 952 270 272

4th
Bot 9014 2441 7104 8903 8757

Model 8891 2919 7103 8879 8639

Intersection 8485 1615 6141 8360 8187

VII. CONCLUSION

The skill level of game participants (simulated people
or bots), that we can interact, can be defined by a set of
algorithms and heuristics that may be considered efficient
for a given public, but inefficient for others. Thus, with the

Table VII
SHERIFF RESULT STATISTICS

Opponents (1vs3) Voider Shooter Sheriff Bounty Hunter Low Layer

1st
Bot 1657 5196 2582 1333 2562

Model 1137 3615 1338 931 1729

Intersection 567 2808 818 479 1077

2nd

Bot 840 2823 2424 912 868

Model 556 2800 1875 649 699

Intersection 137 1181 739 175 188

3rd
Bot 1299 1471 2491 1755 1258

Model 1015 2220 2555 1376 1028

Intersection 250 654 915 499 316

4th
Bot 6204 510 2503 6000 5312

Model 7292 1365 4232 7044 6544

Intersection 5222 287 1833 5083 4408
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application of machine learning techniques, it is possible
to have behaviors simulated in order to make the game
environment more attractive to the player, specially when
considering environments where player disconnections are a
big concern.

Table VIII
BOUNTY HUNTER RESULT STATISTICS

Opponents (1vs3) Voider Shooter Sheriff Bounty Hunter Low Layer

1st
Bot 1568 7288 5087 2514 1705

Model 774 6544 3608 1306 892

Intersection 378 5551 2650 793 436

2nd

Bot 1911 2097 3015 2565 1730

Model 1139 2468 3111 1828 1040

Intersection 417 956 1267 725 347

3rd
Bot 2511 540 1436 2501 2387

Model 2108 807 2043 2546 1972

Intersection 732 157 575 901 732

4th
Bot 4010 75 462 2420 4178

Model 5979 181 1238 4320 6096

Intersection 3180 17 221 1795 3337

Table IX
LOW LAYER RESULT STATISTICS

Opponents (1vs3) Voider Shooter Sheriff Bounty Hunter Low Layer

1st
Bot 2227 7325 4661 3931 2467

Model 1361 6622 3958 2620 1482

Intersection 749 5961 3179 1861 872

2nd

Bot 2763 2173 3545 3106 2465

Model 2070 2597 3697 2849 1908

Intersection 904 1336 2257 1311 763

3rd
Bot 2633 451 1430 1938 2538

Model 2806 665 1770 2447 2604

Intersection 1043 209 849 797 954

4th
Bot 2377 51 364 1025 2530

Model 3763 116 575 2084 4006

Intersection 1652 25 203 659 1780

In this work, we present a methodology to simulate
the behavior of a player using a Multilayer Perceptron
Neural Network Machine Learning scheme based on gaming
history. We evaluate our methodology in a very popular
cards game called Hearts. In an effort to evaluate behavioral
similarities for each of the presented models, two test metrics
are presented:

1) Comparison between the cards chosen by the gener-
ated model and its specific bot;

2) Comparison between the final score position (1st, 2nd,
3nd or last) by the generated model and its specific bot.

It is possible to evaluate that neural network hyperpa-
rameters and the modeling used on input data influence the
quality of the obtained results. All models were able to get
closer to the results of their respective trained bots. Through
the evaluation of the results of 10,000 matches, with different

gameseeds of the 9,500 matches used for training, the best
results are for the model Shooter versus 3 Sheriffs getting
95.5% in the amount wins compared to their particular bot
and the worst result was for the Bounty Hunter model versus
3 Voiders getting 49.36%. Besides that, another contribution
is the generated gaming history dataset, both for testing and
for validation. We also adapted an existing Hearts game code
to allow the simulation of such behaviors addressed in this
work.

By analyzing the experimental results, we showed very
good results for the proposed technique that is able to
provide a simulation of player behaviour in games. Nev-
ertheless, improvements always can be incorporated, and
tests should be done with real players, not bots with certain
behaviors. Real players usually do not have a single behavior
and can change their strategy as the game progresses, so it
is also a good use case to validate the learning of different
behaviors for specific players. In addition, the proposal
may be validated using other machine learning techniques,
specially deep learning techniques where we expect even
better results. We also plan to test our methodology in other
more complex games like Chess and Canasta1.
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