
Real-time Motion Detection for Android Smartphones

Cassiano Andrade, Ismael Silva, Glı́via Barbosa, Flávio Coutinho
Department of Computing

Centro Federal de Educação Tecnológica de Minas Gerais
Belo Horizonte, Brazil

cassiano.b.andrade@gmail.com, ismaelsantana@cefetmg.br, gliviabarbosa@decom.cefetmg.br, fegemo@cefetmg.br

Abstract—Real-time motion detection can be used to monitor
a wide range of physical activities, such as those typically
leveraged by exergames, but the literature present few algo-
rithms. Motivated by this demand, we aimed at evaluating
and proposing motion detection algorithms in Android smart-
phones in order to comply with three requirements: accuracy,
precision, and recall above 95%. We evaluated the existing
algorithms, Google and Step Detector. The results of this
evaluation showed the Google algorithm as the most promising,
but it did not meet all the requirements. Therefore, a new
algorithm, based on it, was proposed and evaluated. Thus, this
paper introduces the Castor algorithm and a tool for analyzing
motion detection algorithms. In our evaluation, Castor was
able to overcome Google in most scenarios and could adapt to
lower-speed movements, when Google’s algorithm could not.
As contributions, this paper presents Castor as an algorithm
to detect movements and also a tool which can be extended for
implementing and evaluating new algorithms.

Keywords-motion detection; accelerometer; Android; ex-
ergames;

I. INTRODUCTION

Smartphones provide sensors such as accelerometers and
gyroscopes which can be used by algorithms for indoors
motion detection. A wide range of applications can leverage
the ability to identify the event of a movement in real-time,
such as for physical activities monitoring or exergames.

Although there are mobile apps which can detect move-
ment from different physical activities in Google’s and Ap-
ple’s app stores1, their algorithms are rarely made public. In
the literature, there is a lack of motion detection algorithms
with reasonable accuracy, precision and recall that works
in real-time. Therefore, we aimed to evaluate and propose
a motion detection algorithm that can detect movements in
real-time with precision, accuracy and recall above 95% for
the Android platform.

To achieve our goal, we followed the steps of: (a) devel-
oping a tool for proposing and analyzing motion detection
algorithms, (b) implementing and evaluating the algorithms
Google [4] and Step Detector, (c) developing our motion
detection algorithm called Castor and (d) comparatively
evaluating Castor and Google

We developed Castor as an improvement over Google’s
algorithm [4] and submitted both to four experiments, which

1(a) Strava Running and Cycling, (b) Runkeeper and (c) Pacer

evaluated their performance on different smartphone position
on the body, through different types of exercises, their
robustness for detecting movements in different speeds and
various smartphone devices.

Castor overcame some detection adversities which hap-
pened in Google’s algorithm, and it had average accuracy,
precision, and recall results above 95%. Google could not
satisfy such requirements in 14.29% of the test cases, against
9.52% by Castor. In these last cases, Castor’s performance
was hampered by noises due to its adaptive detection
method, which we describe in the next sections.

As a collateral result, we developed and made public an
extensible tool for authoring and evaluating real-time motion
detection algorithms.

Our contributions comprise the Castor algorithm, which
can be used for detecting movements by Android applica-
tions, but can also be implemented in other environments
that provide three-dimensional accelerometers; and the tool
which can be extended for implementing and evaluating
other motion detection algorithms.

Therefore, Castor can empower applications that aim to
motivate users to practice physical exercises. This approach
can reach a vast amount of people since even the most basic
smartphones have accelerometer sensors that can detect
acceleration in three dimensions [6].

The remainder of the paper is organized as follows: Sec-
tion II provides a brief overview of the literature regarding
motion detection algorithms. Section III explains the ex-
periments made with Google and Step Detector algorithms,
while Section IV describes Google’s algorithmic structure,
which served as the foundation for the proposed algorithm.
Section V explains the Castor algorithm, and in Section VI
we describe the evaluation experiments made with Google
and Castor. Finally, Section VII analyzes the limitations and
future lines of research stemming from this work.

II. BACKGROUND - RELATED WORKS

Hassan et al. [1] aimed to record different human activities
by (1) obtaining data from the accelerometer and gyroscope
sensors in order to calculate mean, median and autore-
gressive coefficients, (2) using Kernel Principal Component
Analysis (KPCA) and Linear Discriminant Analysis (LDA)
to make these metrics more robust and (3) Deep Belief

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 505

Network (DBN) application to correctly classify their human
activity. They compare their approach to Support Vector
Machine (SVM) and Artificial Neural Network (ANN)
techniques. The main disadvantage of this approach is the
necessity of high processing time due to the Deep Learning
technique.

Strohrmann et al. [2] studied the movements performed
by a runner’s arm attaching a smartphone to its biceps. The
authors’ algorithm tries to detect the overpassing of the arm
through the central line of the body. This approach showed
low accuracy since the best accuracy value was 80.73%.

San et al. [3] use the Hidden Markov Chains (HMC)
statistical model for motion detection, and they compare
its results with those obtained using Fixed-point Arithmetic
(FA). This statistical model requires a large amount of data
to correctly model the human movement types that one
wishes to classify.

Google algorithm [4] uses the three-dimensional accel-
eration vectors obtained by the accelerometers in order to
estimate the current speed and, thus, evaluate if a move-
ment occurred. The algorithm counts a movement when the
estimated speed exceeds, in a growing state, the threshold
value, a predefined constant whose value is 15.

The Android algorithm [5], called Step Detector, uses a
native software sensor labeled step detector to detect motion.
This sensor uses other sensors, based either on software or
hardware, to accomplish its detection logic. As of 2019,
95.3% of current Android smartphones have the step detector
sensor [5].

The motion detection techniques proposed in the three
first works mentioned above cannot detect motion in real
time because they have, respectively, high processing time
[1], low accuracy [2] and the necessity for a large volume
of training data [3].

Google [4] and Android [5] algorithms can be used in
Android smartphones to detect motion in real-time. The
following section describes the experiments we made with
both algorithms to verify if they accomplished the precision,
accuracy and recall requirements.

III. EXPERIMENTS WITH GOOGLE AND STEP DETECTOR

Google and Step Detector algorithms use, respectively,
the accelerometers and the step detector sensors. In order to
test them simultaneously, we developed a tool as an Android
app which grants access to multiple sensors, enabling the
implementation and analysis of motion detection algorithms
that can use different strategies for acquiring input data.

Fig. 1 exposes the package diagram that shows the tool
packages divided into logical groupings showing the depen-
dencies between each one of them. The controller of each
motion detection algorithm is responsible for processing the
sensing information and supplying the processing results to
the other components.

Figure 1. Package diagram of the motion detection algorithm analysis tool.

Figure 2. Screenshot of the tool’s graphical interface.

The tool for analyzing motion detection algorithms2 had
as requirements (1) to work in Android smartphones, (2)
to use different sensors simultaneously, (3) to export the
sensors data for analysis during and after the detection
period and (4) to be extensible for different motion detection
algorithms, allowing their implementation with low effort.

The sensors data export occurred in two ways: (1) presen-

2https://bitbucket.org/move2playteam/motiondetectors-android-
application/

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 506

tation of a speed graph over time in the tool interface and
(2) data recording in the smartphone’s local storage. This
data consisted of (a) acceleration data, (b) speed data and
(c) timestamp information of each motion detection.

Fig. 2 presents the tool single graphical interface, illus-
trating a 30 seconds execution of a person walking with
the smartphone on their arm. The upper part displays the
Google and Step Detector movement counters and, in the
central part, there is a speed over time graph with detection
points for each algorithm. The detection points values in
the y-axis were statically defined so they have no physical
meaning.

Once the tool was developed, and Google and Step Detec-
tor algorithms implemented, we performed two experiments:
(1) experiment with different people and (2) experiment with
different smartphones. The following sections describe these
experiments.

A. Experiment with different people

In the experiment with different people, we selected a
heterogeneous set of seven people who attend the gym to
do running machine and bicycle activities. Table I character-
izes the experiment participants. We sought a significantly
heterogeneous sample of people to capture different usage
realities.

TABLE I. EXPERIMENT PARTICIPANTS CHARACTERIZATION.

Person ID Characterization
Gender Age Height Weight

P1 Female 23 years old 172 cm 57 kg
P2 Male 22 years old 175 cm 59 kg
P3 Male 53 years old 162 cm 62 kg
P4 Female 70 years old 165 cm 63 kg
P5 Female 30 years old 159 cm 52 kg
P6 Male 40 years old 171 cm 81 kg
P7 Female 29 years old 160 cm 66 kg

The evaluation assessed the algorithms for their accuracy
for each person and each activity, according to (1)

A =

(
1− |Md −Mp|

Mp

)
.100% (1)

in which Md is the quantity of movements detected and Mp

is the amount of movements performed.
Table II lists the activities to which each participant has

been submitted. They were defined based on the walking
and pedaling contexts for two speed intervals each.

TABLE II. EXPERIMENT PROPOSED ACTIVITIES.

Activity ID Activity description
Running machine 1 Walking from 2 km/h to 4 km/h
Running machine 2 Walking from 4 km/h to 6 km/h

Bicycle 1 Pedaling a bicycle from 50 rpm to 60 rpm
Bicycle 2 Pedaling a bicycle from 60 rpm to 80 rpm

Each one of the seven participants performed the four
activities. In each case, the smartphone was located in an

armlet and this armlet was affixed on the person’s biceps
region. The smartphone used was one of brand Asus and
model ZE551ML. Table III presents all the 28 experiment
results.

TABLE III. RESULTS OF THE EXPERIMENT WITH DIFFERENT
PEOPLE.

Activity ID Person ID Accuracy
Step detector Google

Running machine 1

P1 83,67% 83,67%
P2 100% 82,22%
P3 100% 100%
P4 94,74% 94,74%
P5 95,24% 88,1%
P6 95% 96,67%
P7 98,21% 100%

Running machine 2

P1 100% 91,38%
P2 94,64% 100%
P3 64,44% 82,22%
P4 98,18% 98,18%
P5 100% 100%
P6 75,95% 93,67%
P7 97,47% 93,67%

Bicycle 1

P1 18,52% 96,3%
P2 81,36% 98,31%
P3 17,78% 53,33%
P4 58,18% 98,18%
P5 92,06% 98,41%
P6 96,15% 94,23%
P7 73,33% 96,67%

Bicycle 2

P1 97,22% 97,22%
P2 97,3% 97,3%
P3 3,33% 96,67%
P4 94,74% 98,25%
P5 98,55% 98,55%
P6 85,19% 100%
P7 97,5% 97,5%

B. Experiment with different smartphones

The experiment with different smartphones employed six
distinct smartphones in an exercise in which one participant
went from walking to running. It evaluated the algorithms
in terms of precision (2), where TP stands for true positive
(motion detected successfully) and FP indicates false posi-
tive (mistakenly detected motion), and recall (3), also known
as sensitivity, where FN means false negative (motions that
occurred but were not detected):

P =
TP

TP + FP
.100%, (2)

R =
TP

TP + FN
.100%. (3)

This experiment objective was to evaluate the algorithms
assertiveness and sensitivity in different hardware contexts
using the metrics precision and recall. The six smartphones
used were: (a) Asus - ZE520KL, (b) Asus - ZE551ML, (c)
Asus - ZE552KL, (d) Motorola - Moto G3, (e) Motorola -
Moto Z2 Play and (f) Samsung - Galaxy J5.

The experiment took place through a single activity in
which the tester attached the armlet to his ankle and made

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 507

TABLE IV. RESULTS OF THE EXPERIMENT WITH DIFFERENT SMARTPHONES.

Smartphone brand and model Step Detector Google
TP FP FN P R TP FP FN P R

Asus - ZE520KL 60 0 4 100% 93,75% 64 1 0 98,46% 100%
Asus - ZE551ML 62 2 5 96,87% 92,54% 64 0 3 100% 95,52%
Asus - ZE552KL 58 1 8 98,30% 87,88% 55 1 11 98,21% 83,33%
Motorola - Moto G3 - - - - - 60 0 2 100% 96,77%
Motorola - Moto Z2 Play 57 0 7 100% 89,06% 48 0 16 100% 75%
Samsung - Galaxy J5 - - - - - 59 1 1 98,33% 98,33%

the transition from walking to running within a thirty-second
period. Table IV presents the experiment results.

C. Discussion

The experiments have shown that Step Detector can
detect walking and pedaling movements, especially at higher
speeds. However, the native software sensor was absent in
some smartphones making it impossible for the algorithm to
work.

In the experiment with different people, Google got the
best results in most cases. However, in the experiment
with different smartphones, Google obtained the worst recall
(75%) of the overall test in the Motorola - Moto Z2 Play
case.

Analyzing this case’s speed over time graph shown by Fig.
3, a phenomenon was observed in which the speed signal
moved to below the abscissa axis, which caused several false
negatives by Google algorithm since the speed value did not
exceed the algorithm’s predefined threshold value of 15.

The Google algorithm generally showed the best accuracy
results and high precision values, as the worst precision
value was 98.21%, obtained in the Asus - ZE552KL case.
Besides, this algorithm can be used by any Android smart-
phone while Step Detector is supported by 95.3% of current
Android smartphones [5].

Some of the possible causes of the phenomenon observed
in the figure could be (1) problems with the smartphone’s
accelerometer and (2) integration simplification error.

Due to the best results and the greater robustness ob-
tained by Google algorithm, we observed the opportunity
to improve this algorithm in order to satisfy the variations
between smartphones and to achieve better accuracy results.
Based on this, the Google algorithm was adapted and gave
rise to the Castor algorithm. Therefore, Section IV describes
the Google algorithm in depth, and Section V presents the
adaptations made on it originating the Castor algorithm.

IV. BACKGROUND - GOOGLE ALGORITHM

Google algorithm leverages the accelerometers to per-
form motion detection [4]. The algorithm uses the three-
dimensional acceleration vectors obtained from the sensor
to estimate the current speed and, thus, evaluate if a move-
ment occurred. From these vectors, the average acceleration
~aavg(tcurrent) at any time is calculated as follows:

~aavg(tcurrent) =

∑tcurrent

x=tinitial
~a(x)

tcurrent − tinitial
, (4)

where tcurrent is the current time and ~a(tcurrent) is the
three-dimensional vector of the most recent acceleration

Figure 3. Motorola - Moto Z2 Play smartphone case in the experiment with different smartphones.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 508

provided by the accelerometer. To perform this calcula-
tion, the algorithm keeps a sliding window of the last
fifty acceleration vectors obtained by the sensor, that is,
tcurrent − tinitial ≤ 50.

t is known that the movement acceleration signal acting
on the smartphone behaves like a sine wave, that is, its
mean approximately equals zero. Therefore, the average
acceleration ~aavg(tcurrent) roughly represents the vector of
gravity ~g(tcurrent) that acts on the smartphone, that is,

~g(tcurrent) ≈ ~aavg(tcurrent) = (gx, gy, gz). (5)

Thus, it estimates the gravity component acting on the
smartphone by normalizing the mean acceleration, which is
given by

|~g(tcurrent)| =
√
g2x + g2y + g2z . (6)

In order to obtain the smartphone acceleration value free
of the gravity influence, ~a(tcurrent) must be projected on
~g(tcurrent) so the gravity vector influence can be excluded.
The axis parallel to the gravity vector was called the Z axis,
that is, az(tcurrent) is the acceleration component of same
direction as the gravity vector’s, so that

az(tcurrent) =
~g(tcurrent)

|~g(tcurrent)|
. ~a(tcurrent) − |~g(tcurrent)|. (7)

This way, the current speed s(tcurrent) was calculated as
a consequence of the sum of the fifty most recent Z-axis
acceleration components as follows:

s(tcurrent) =

tcurrent∑

x=tinitial

az(x). (8)

Once the speed scalar is obtained, the Google algorithm
counts a motion when the speed s(tcurrent) exceeds, in a
growing state, the threshold value, a predefined constant in
the algorithm whose value is 15.

V. CASTOR ALGORITHM

Castor, abbreviation for Cassiano Detector, is an adaptive
motion detection algorithm developed in this paper. Based
on the detection approach proposed by the Google algo-
rithm, Castor similarly counts a movement when the current
speed exceeds the threshold value. However, in Castor, the
threshold is not a constant but a variable that adapts to the
speed signal over time.

This new approach aims to maintain Google’s detection
performance, observed in Section III, with the hypothesis of
making it adaptable to speed signal displacement around the
abscissa axis.

The algorithm recalculates the threshold value at each
detection cycle based on the following values: (1) mean
maximum speed, (2) mean amplitude and (3) standard

deviation, given the (tcurrent−tinitial) last runs, called time
window.

The average maximum speed is the arithmetic mean of
the sum of all the maximum speed values obtained in the
time window, that is,

avgMaxSpeed =

∑tcurrent

x=tinitial
maxSpeed(x)

tcurrent − tinitial
. (9)

Analogously, the mean speed amplitude is the arithmetic
mean of the sum of all amplitudes obtained in the time
window, which is given by

avgAmp =

∑tcurrent

x=tinitial
amp(x)

tcurrent − tinitial
. (10)

Then, the variance of the speed amplitude in the time
window and the respective standard deviation was calculated
from the following relations:

variance =

∑tcurrent

x=tinitial
(amp(x) − avgAmp)2

tcurrent − tinitial − 1
, (11)

σ =
√
variance. (12)

The goal of updating the threshold value is to place it at
the speed signal center so that all movements can be de-
tected. However, there are some types of physical activities,
such as elliptical activities, in which two consecutive speed
signal periods have a rather significant amplitude difference.

Based on this motivation, the purpose of calculating the
threshold is to make it slightly offset above the speed signal
center. In such a way, the subtraction of the maximum speed
mean by half amplitude mean is responsible for centering
the threshold on the speed signal, that is,

threshold = avgMaxSpeed− avgAmp

2
. (13)

To obtain the slight upward displacement effect, Castor
adds half of the standard deviation to the threshold value as
follows:

threshold = avgMaxSpeed− avgAmp

2
+
σ

2
. (14)

This adaptive threshold approach is a candidate solution to
the speed signal displacement problem around the abscissa
axis. To validate this hypothesis, we evaluated Castor and
Google. The following Section presents experiments done in
a gym environment.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 509

VI. EXPERIMENTS WITH CASTOR AND GOOGLE

The evaluation of Castor and Google algorithms com-
prised four parts, each comparing both algorithms in terms
of accuracy, precision, and recall values. The first part
evaluated the performance of the algorithms in distinct arm-
let positions in running machine and elliptical exercises, in
order to define the smartphone best positioning between the
arm and leg spots. The second part compared the algorithms
during bicycle and abdominal exercises in order to analyze
their detection range for various exercises. Later, the third
part evaluated different speed values in the running machine
to define the impact of speed variation on the performance
of the algorithms. Finally, in the fourth part, experiments
were performed on four distinct smartphones to evaluate the
robustness of the algorithms on different Android hardware.

A. Part 1: Experiments for armlet position

This first set of experiments evaluated the impact of the
armlet position that held the smartphone on the algorithms’
performance. Thereof, the positions defined were the arm,
next to the biceps region, and the leg, next to the calf region.
The equipment in which this armlet position changing is
possible are running machine and elliptical. In this way, we
carried out four experiments: (A1) running machine with
armlet on the arm, (A2) running machine with armlet on
the leg, (A3) elliptical with armlet on the arm and (A4)
elliptical with armlet on the leg. The smartphone used was
the Asus - ZE551ML, each experiment lasted 35 seconds,
and the same person performed all of them. Table V shows
the results.

TABLE V. ALGORITHMS PERFORMANCE ON ARMLET POSITION
EXPERIMENTS.

ID Algor. TP FP FN Accuracy Precision Recall

A1 Castor 49 1 0 97,96% 98% 100%
Google 49 0 0 100% 100% 100%

A2 Castor 47 0 1 97,92% 100% 97,92%
Google 46 0 2 95,83% 100% 95,83%

A3 Castor 77 0 1 98,72% 100% 98,72%
Google 77 0 1 98,72% 100% 98,72%

A4 Castor 46 10 1 80,85% 82,14% 97,87%
Google 44 5 3 95,74% 89,8% 93,62%

B. Part 2: Experiments for exercises using bicycle and
abdominal

The second part of the evaluation contemplated two
exercises: (B1) bicycle, with the armlet located on the leg,
and (B2) abdominal, with the armlet located on the arm.
Thus, this part conducted two experiments for each type of
exercise. The smartphone used was the Asus - ZE551ML,
each experiment lasted 35 seconds, and the same person
performed both experiments. Table VI exhibits the achieved
results.

TABLE VI. ALGORITHMS PERFORMANCE ON BICYCLE AND
ABDOMINAL EXPERIMENTS.

ID Algor. TP FP FN Accuracy Precision Recall

B1 Castor 51 1 0 98,04% 98,08% 100%
Google 50 1 1 100% 98,04% 98,04%

B2 Castor 49 2 1 98% 96,08% 98%
Google 0 0 50 0% - 0%

C. Part 3: Experiments with different speeds

These experiments evaluated the algorithms performance
in four running machine speed variations: (C1) slow speed
(2.5 km/h), (C2) medium (5 km/h), (C3) fast (7.5 km/h)
and (C4) transient speed from slow to fast (2.5 km/h to 7.5
km/h). Thus, the same person performed four experiments.
The device used was Asus - ZE551ML and each experiment
lasted 35 seconds. Table VII shows the results.

TABLE VII. ALGORITHMS PERFORMANCE FOR DIFFERENT
SPEED EXPERIMENTS.

ID Algor. TP FP FN Accuracy Precision Recall

C1 Castor 44 0 1 97,78% 100% 97,78%
Google 45 0 0 100% 100% 100%

C2 Castor 63 0 0 100% 100% 100%
Google 63 0 0 100% 100% 100%

C3 Castor 94 0 1 98,95% 100% 98,95%
Google 94 0 1 98,95% 100% 98,95%

C4 Castor 75 2 0 97,33% 97,4% 100%
Google 75 0 0 100% 100% 100%

D. Part 4: Experiments with different smartphones

The last experiments evaluated the algorithms’ robustness
on different mobile devices. The smartphones used were
(D1) Asus - ZE551ML, (D2) Asus - ZE520KL, (D3) Mo-
torola - Moto Z2 Play and (D4) Samsung - Galaxy J5. For
each one, a single exercise experiment lasting 35 seconds
was performed, and it comprised transitioning from walking
to running on flat ground, that is, in an open environment
equipment-free. The same person performed all experiments
with the armlet on the arm. Table VIII exhibits the achieved
results.

TABLE VIII. ALGORITHMS PERFORMANCE ON DIFFERENT
SMARTPHONES EXPERIMENTS.

ID Algor. TP FP FN Accuracy Precision Recall

D1 Castor 79 0 0 100% 100% 100%
Google 79 0 0 100% 100% 100%

D2 Castor 77 5 1 94,87% 93,9% 98,72%
Google 78 4 0 94,87% 95,12% 100%

D3 Castor 77 2 0 97,4% 97,47% 100%
Google 76 1 1 100% 98,7% 98,7%

D4 Castor 76 0 0 100% 100% 100%
Google 76 0 0 100% 100% 100%

E. Discussion

This section presented fourteen experiments, of which
four aimed at supporting the decision of the best armlet

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 510

position in running machine and elliptical exercises, two
involved bicycle and abdominal exercises, four evaluated
different running machine speeds and the last four focused
on assessing the performance of the algorithms on different
smartphones.

First, in terms of applicability, we could observe that only
Castor algorithm complied with the proposed detection of all
experiments since Google proved to be inadequate to slow
speed exercises, as noted in the abdominal exercise case
(B2).

As discussed previously, the motion detection algorithm
must meet requirements of accuracy, precision and recall
above 95%. Thus, we performed 14 exercises and, for each
exercise, those 3 metrics were calculated, so Castor and
Google algorithms were evaluated in 42 cases each as a
whole.

Google did not meet the requirements in six cases
(14.29%): (a) accuracy of 89.8% and (b) recall of 93.62% in
the elliptical experiment with the armlet located on the leg
(A4) (c) accuracy, (d) precision and (e) recall either null or
invalid on the abdominal experiment (B2), and (f) 94.87%
accuracy in the Asus-ZE520KL smartphone case (D2).

Castor, on the other hand, did not meet the requirements
in four cases (9.52%): (a) accuracy of 80.85% and (b)
precision of 82.14% in the elliptical experiment with the
armlet located on the leg (A4) (c) accuracy of 94.87% and
(d) precision of 93.9% in the Asus-ZE520KL smartphone
case (D2).

In terms of accuracy, Castor and Google algorithms ob-
tained valid results in all fourteen experiments (100%). Fig.
4 presents the box diagram of the valid accuracies obtained
by the algorithms in the evaluation.

Figure 4. Box diagram of valid accuracies obtained by the algorithms.

The box diagram was generated based on four values:
(1) maximum value, represented by the vertical line highest
value, (2) minimum value, represented by the vertical line
lowest value, (3) third quartile, represented by the box upper
value and (4) first quartile, represented by the box lower
value. The first quartile is a delimiter number that indicates
that 25% of the values from the dataset lie below it, while
in the third quartile they are 75%.

Regarding accuracy, Castor obtained valid values in
the fourteen experiments (100%) and Google in thirteen
(92.86%), since in the abdominal experiment (B2) it did not
detect any movement. Fig. 5 shows the box diagram of the
valid precisions obtained by the algorithms in the evaluation.

Figure 5. Box diagram of valid precisions obtained by the algorithms.

In terms of recall, Castor and Google obtained fourteen
valid values (100%). Fig. 6 shows the box diagram of
the valid recall values obtained by the algorithms in the
evaluation.

Figure 6. Box diagram of valid recalls obtained by the algorithms.

From the box diagrams of Fig. 4, 5 and 6, we see, at
first, the high discrepancy between the minimum and first
quartile values of accuracy and recall obtained by Google
algorithm, that is, for these cases, the algorithm had a high
performance dispersion between the experiments.

For Google, this dispersion was mostly because of its
performance in the abdominal experiment (B2), obtaining
0% of accuracy and recall since its threshold value is fixed
at 15. Therefore motions with maximum speed below this
value are not detected.

Castor, on the other hand, obtained differences between
the first quartile and minimum values of accuracy and recall
smaller than Google. Thus, Castor exhibits greater stability
than Google in terms of (1) proportion of movements
detected on movements performed and (2) false negative
rate. In terms of accuracy, Google was more stable due to
its low false positive rate.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 511

Figure 7. Simulation of the Motorola - Moto Z2 Play smartphone experiment shown in Section III-C using Castor.

On average, Castor obtained the highest accuracy and the
lowest false negative rate in the experiments. On the other
hand, Google had the lowest false positives rate. The fact
that Castor has a false positive rate greater than Google’s is
consistent with its algorithmic structure because its threshold
adapts over time. Consequently, it is more susceptible to
noise over the entire speed signal, while Google is only
susceptible around its threshold value.

To assess if Castor’s adaptive threshold value would
be robust enough to overcome situations such as the one
we experienced with the Motorola Moto Z2 Play device
(described in Section III-C), we conducted one more test
simulating how Castor would detect movements if it received
the same input from that experiment. Fig. 7 presents the
simulation results.

We observed that Castor was adaptable to the phe-
nomenon once its threshold followed the speed signal.
Out of the 64 movements performed, Castor successfully
detected 54 and did not detect 10. Therefore, Castor obtained
accuracy of 100% and recall of 84.37%, that is, accuracy
equal to Google’s and recall 9.37% p.p. higher.

Thus, Castor’s hypothesis of a solution to make Google
adaptable to different speed waveforms was met, since, in
the abdominal experiment (B2), Castor made its threshold
feasible so it could detect such exercise’s typical movements
and, in the simulation above, it presented a smaller number
of false negatives than Google.

Therefore, we point that Castor can successfully detect
slow, fast and accelerated movements, whereas Google suc-
cessfully detects only the fast ones but with results as good
as those obtained by Castor. Such flexibility from Castor
allows the detection in more diverse exercises, which are

those that require practitioners to perform slower movement
speed, and it allows applicability in other initiatives, such as
climbing activities.

Finally, the tool for motion detection algorithms analysis
proved to be versatile and practical for developing and
evaluating algorithms, since it enabled the execution of all
experiments carried out on this paper.

Section VII displays our final remarks, summarizing the
results and presenting some suggestions of future work.

VII. CONCLUSIONS AND FUTURE WORK

This paper aimed at evaluating and proposing motion
detection algorithms in Android smartphones that could
detect indoor movements such as those performed during
physical activities. Our methodology consisted of (a) the
development of an analysis and evaluation tool for motion
detection algorithms, (b) the implementation of Google and
Step Detector algorithms in the tool, followed by their
evaluation, (c) the development of the motion detection
algorithm Castor and (d) the comparative evaluation of the
algorithms Castor and Google.

Thus, this project generated a tool for motion detection
algorithms analysis and the Castor algorithm. This algorithm
represents an alternative solution to the motion detection
problem, and it provides an accessible algorithm for various
purposes. Moreover, the developed tool contributes to the
academic environment by providing an extensible instrument
for motion detection algorithms implementation and analy-
sis.

This tool was a facilitator in terms of development,
reproduction, and testing of motion detection algorithms. It
allowed the reproduction of Google and Step Detector algo-

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 512

rithms, the subsequent implementation of Castor algorithm
and the evaluation of Google and Castor simultaneously in
an effective and versatile way.

The experiments performed on Castor algorithm presented
promising results. The algorithm proved to be adaptable to
detection adversities and had average accuracy, precision and
recall results above 95%. Also, Castor exhibits better results
when the armlet is positioned on the arm instead of the leg
in walking and elliptical exercises, it can be implemented
on all Android smartphones [5], and it can also detect low-
speed motion.

However, the evaluation showed that noise could impact
Castor performance. In this way, Castor can be improved
with a filter that prevents motion detection in really close
timestamps. Therefore, as future works, it is suggested to
add to Castor (1) a filter that performs this function based on
the sensor sampling period and (2) the concept of variable
sliding window, in which instead of always using the 50
vectors of acceleration to estimate speed, to make this
number adaptable so it represents complete wave periods
more accurately.

REFERENCES

[1] M. Hassan, M. Uddin, A. Mohamed and A. Almogren, “A robust
human activity recognition system using smartphone sensors and
deep learning”, Future Generation Computer Systems, vol. 81, pp.
307-313, 2018. ISSN 0167-739X.

[2] C. Strohrmann, J. Seiter, Y. Llorca, and G. Trster, “Can smartphones
help with running technique?”, Procedia Computer Science, vol. 19,
pp. 902-907, 2013. ISSN 1877-0509.

[3] R. San-Segundo, J. Lorenzo-Trueba, B. Martnez-Gonzlez, J. Pardo,
“Segmenting human activities based on hmms using smartphone
inertial sensors”, Pervasive and Mobile Computing, vol. 30, pp. 84-
96, 2016. ISSN 1574-1192.

[4] Google, “Simple Pedometer”, GitHub, 2019. [Online]. Avail-
able: https://github.com/google/simple-pedometer. [Accessed: 22-
Mar-2019].

[5] Android, “Monitoring Sensor Events”,
Android, 2019. [Online]. Available:
https://developer.android.com/guide/topics/sensors/sensors.
[Accessed: 22-Mar-2019].

[6] T. Costa, I. Silva, G. Barbosa, F. Coutinho, “An Architecture for
Using Smartphones as Interfaces for Computer Games”. Proceedings
of SBGames 2018, pp. 611-614, 2018. ISSN 2179-225.

SBC – Proceedings of SBGames 2019 — ISSN: 2179-2259 Computing Track – Full Papers

XVIII SBGames – Rio de Janeiro – RJ – Brazil, October 28th – 31th, 2019 513

