
Gesture Recognition Using Leap Motion:
A Machine Learning-based Controller Interface

Ivo A. Stinghen Filho, Bernardo B. Gatto, José Luiz de S. Pio,
Federal University of Amazonas

Manaus, Amazonas
{iasf,bernardo,josepio}@icomp.ufam.edu.br

Estevam N. Chen, Jucimar M. Junior, Ricardo Barboza
Amazonas State University

Manaus, Amazonas
enc.eng@uea.edu.br, {jucimar.jr,rsbarboza}@gmail.com

Abstract—There is a growing tendency of making use of
real-time interactions and converting the gestures to the virtual
game scenario. In this paper, we present a gesture interfacing
controller for real-time communication between the Leap
Motion sensor and games. We also we compare the effectiveness
of various methods of real-time machine learning algorithms
to find the most optimal way to identify static hand gestures,
as well as the most optimal sample size for use during the
training step Moreover, we introduce a novel static hand
gesture dataset containing 1200 samples for 10 static gesture
classes. This dataset may encourage to develop innovative
gesture recognition methods.

Keywords-Virtual Reality, Leap Motion, Motion Capture,
Machine Learning

I. INTRODUCTION

Humans interact with machines in a variety of ways. As
such, many forms of HCI (Human-Computer Interaction)
has been developed [6], [7]. Although the use of the mouse
and keyboard is widespread, new methods of HCI are also
developed. An example is gesture recognition, a topic that
received significant attention in the field of HCI due to the
development of Virtual Reality (VR) technology, as well as
a method to control robots [17].

A gesture is a form of nonverbal expression. It includes
hands, face and other parts of the body [4]. Hand gestures
can be divided into two categories: static and dynamic
gestures [3]. In static gestures, the gestures usually do not
change its shape over time. This paper will focus on such
hand gestures.

Depending on the type of the input data, the hand
gesture recognition can also be divided into two cate-
gories: appearance-based and 3D model-based algorithms.
Appearance-based algorithms use the data acquired from the
silhouette or contour of the input images. Meanwhile 3D
model-based algorithms use volumetric or skeletal data, or
even a combination of the two [3].

In this work, we present a comparison of three different
machine learning algorithms used in gesture recognition lit-
erature, with a game interface control technology providing
improved gameplay for games that use gesture recognition.
Moreover, we provide a dataset containing 1200 samples for

10 static gesture classes (https://drive.google.com/open?id=
1lXKnAlNdJ0I1tbPNnvXbi0VOCyUEPaMF).

II. LITERATURE REVIEW

Leap Motion [2] is a computer hardware sensor device
that supports hand and finger motions as input, similar
to a keyboard or a mouse, requiring no hand contact or
touching [12].

In this work, we used a variety of classifiers, including
KNN (K-Nearest Neighbors algorithm), Decision Trees [16]
and SVM (Support Vector Machines) [9].

A. Review on Gesture Recognition Methods

In the work of Ameur et al. [1], the authors introduced
an application with gestural hand control using leap motion
for medical visualization. Their experimental results demon-
strated a high accuracy rate of about 81%. In the paper of
Mapari and Kharat [11], a novel method for recognition of
American Sign Language (ASL) is proposed using Leap
Motion. The proposed feature scheme, combined with the
MLP achieved 90% of accuracy.

In the work of D. Yao et al. [16], the authors proposed
a decision-tree-based algorithm to recognize 3D gestures.
The provided experimental results show that the recognition
rate reached 95.8%, with a response time of 5.4 seconds.
Similarly, In the paper of C.-H. Chuan et al. [4] the authors
present an American Sign Language recognition system with
Leap Motion, employing KNN and SVM, with a average
classification rate of 72.78% and 79.83%, respectively.

III. METHODOLOGY

In order to train the machine learning algorithms, it is nec-
essary to acquire the data regarding the fingers. To do so, we
recorded a series of hand signs using Leap Motion [12], and
the Leap Motion API (Application Programming Interface)
in Unity was used [13]. With this, it was possible to get many
different combinations of variables regarding the fingers. In
this work the main variables chosen were the combination
of the normalized spatial positions of the tip of the 5 fingers
and the 4 angles between adjacent fingers [3], as represented
in the figure 1.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Short Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 659

Figure 1. Methodology flowchart

A. Features Extraction in a 3D Space

The data is acquired through the Leap Motion camera,
which has infrared sensors. The camera is to be tied to the
user’s forehead, as shown in figure 2.

Figure 2. Leap Motion usage

B. Data Normalization

Data normalization is a critical step in computer vi-
sion related-works [8]. The main variables chosen were
the combination of the normalized spatial positions of the
5 fingertips, each one containing a 3D position of each
detected finger.

Γi = (P − ρi) (1)

Γ is the normalized position based on the center of the
hand palm (P), and ρ is the tip position of a finger.

Combined to this data, we also collect the 4 angles
between adjacent fingers, each one calculated according to
law of cosines.

θi =
|ρi+1, P |2 + |ρi, P |2 − |ρi, ρi+1|

2 ∗ |ρi+1, P |2 ∗ |ρi, P |2
(2)

We made use of three world points to calculate the angle
between fingers, θ. ρ is the tip position of a finger, and P is
the center of the hand palm and “i” varies from 1 to n - 1,
where n is the number of fingers. And

|ρA, ρB | (3)

calculate the distance between two points.

C. Classification Models

In this work, we evaluate the use of different types of
classifiers to use in our gesture recognition control system.
We used three classifiers: K-Nearest Neighbors(KNN), Sup-
port Vector Machines(SVM) and Decision Trees. To do so,
a python library named numPy was used, similar to its use
in Solem’s work [14].

IV. DATA SET

In this database 6 different volunteers use their hands to
feed the database. Each one of them put the leap motion on
their heads and training the gestures while having variations
of said gestures.

In this work ten classes were used, each represent-
ing a hand gesture: “OPEN”, “CLOSE”, “THUMB”,
“TWO”, “THREE”, “FOUR”, “LOVE”, “COOL”, “FIRE”
and “SHAKA”. The hand gestures can be seen in figure 3.

Figure 3. 10 classes used in this work.

V. EXPERIMENTAL RESULTS

To generate the necessary data, it is required to do at
least one record session for each machine learning class,
each representing a hand sign. For each record session, while
positioning the hand, a script in Unity records the data to a
.csv file, along with the class name. A line is recorded every
0.05s, varying in total recording time with necessity. 30% of
the lines were used to train, while the remaining 70% lines
were used to evaluate accuracy. The algorithm then returns
the percentage of correct predictions.

The .csv files are then analyzed. Overfitting started oc-
curring when over than 12000 samples were utilized (1200

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Short Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 660

per hand gesture), as such, this particular sample size was
used. Figure 6 shows the accuracy of gesture predictions
using different classifier algorithms utilizing a file with 1200
learning samples per gesture. It shows a comparison based
on the best algorithms results. The worst results were that
of the “COOL” class, with 96, 57% hit rate. Table 1 shows
the confusion matrix of the hand gesture recognition of the
selected classes, In order to check for false positives and
consider the complexity of each gesture of the Decision
tree algorithm. The values are presented in percentage based
on the number of gestures of each class. Noticeably, the
“SHAKA” class has the smaller false positive rate.

A. Application

Given the results, the decision tree classifier was used
for offline [5] base classification and training with real-time
sample input. By having offline training, it’s possible to
make real-time predictions.

Our system have the following specifications: Windows
10 version 10.0.17, 64 bit, Intel R© CoreTM i5-5200U CPU
@ 2.20GHz, 2201 Mhz, 2 Core(s), 8GB RAM DDR3 3x,
USB 3.0 port, NVIDIA GTX 920M. We also make use of
Leap Motion, which uses two monochromatic IR (infrared)
cameras and three infrared LEDs (Light Emitting Diode),
the sensor device observes a roughly hemispherical area,
approximately up to 1 meter of distance. The LEDs are also
able to generate pattern-less IR light [15]. The software tools
used were Python 3.6.2 and Unity Engine 2018.1.0f2.

Figure 4. Data loop between Python and Unity.

A loop was created between Unity and a socket created
by Python, running on localhost, as shown in figure 4.
The current state is updated every 0.02 seconds in Unity’s
interface, Unity then sends a vector as input through the
socket to the decision tree classifier in scikit-learn.

Figure 5. The sequences used in the tests.

When receiving the data through the socket, the predict()
function is run, (using the decision tree classifiers) and
returns the result. Ex: “Open”. Finally, Unity receives the
result from the socket and creates effects as needed.

B. Qualitative Analysis
In our analysis the algorithms were labeled as A and B

so that the user could not know the name of the classifier he
was testing or which had better results in our comparison.
Algorithm A represents SVM and B the Decision Tree.

For this, we used the Case Study method [10] to obtain
a detailed examination of this comparison in relation to the
ease of gesture recognition. In order to obtain significant
analysis, the case study had 12 volunteers involved, who
tested 6 of the total of 10 gestures of that work.

The volunteers were instructed on how Leap Motion
works, including to only use the right hand and to always
remain in the field of view of the device, as well as images
of each gestures, as shown in figure 3.

Then it was instructed to follow the sequence of gestures
shown in figure 5. After that, an Unity scene is initialized
and the user is instructed to attempt to destroy all targets on
the screen. A test ends when destroying all targets or when
the sequence is finished. In the analysis to the test using the
A algorithm, the following results were verified:

In the gesture sequence 1 (tested with all users), the
system often outputs the “Thumb” gesture when the inputs
were “Fire”. Everyone managed to perform the “Plasma
Fire” magic. In the gesture sequence 2 (tested with 9 users),
the system often outputs the “Open“ gesture when the
inputs were “Four”. Everyone managed to perform the “Fire
Flame” magic. In the gesture sequence 3 (tested with all
users), the system often outputs the “Fire” gesture when the
inputs were “Two”, meaning summoning the Thunderbolt
magic was impossible in all cases. That was due to the fact
the thumb finger blocked the camera view of the index finger.

Meanwhile using the B algorithm, in all 3 gesture se-
quences (tested with all users) the system output was mostly
correct gestures, with a small number of false positives,
although the same problem with the “Fire” gesture remained.

Overall, through observation and verbal reports of each
user, we came to the conclusion that the Decision Tree
approach was superior when comparing with the SVM.

VI. CONCLUSION AND FUTURE WORK

In this paper, we used 1200 samples per class and nor-
malized data regarding the fingers and the angles between
them. With this, we achieved a hit rate of over 99.7% using
the decision tree classifier, while showing that the Unity
engine and the Leap Motion API can be used in real-time
applications of arbitrary gestures.

Everything considered, further study of how dynamic
gestures behave through normalization might be interesting,
as both dynamic and static gestures can be used for various
applications, such as VR games.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Short Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 661

Figure 6. Comparison between KNN (with 3 and 5 neighbors), SVM and Decision Tree classifiers, respectively, for each of the 10 classes.

Table 1: Cross-validated confusion matrix for Decision Tree classifier.

OPEN CLOSE THUMB TWO THREE FOUR LOVE COOL FIRE SHAKA
OPEN 97.69 0.48 1.05 0.11 0.57
CLOSE 0.12 99.52 0.34
THUMB 98.56 0.47 0.8 0.12
TWO 0.24 98.57 0.49 0.47 0.23
THREE 1.07 98.65 0.12 0.11
FOUR 1.58 0.12 97.66 0.69
LOVE 0.24 0.35 99.06 0.23 0.12
COOL 0.85 1.43 0.35 0.12 96.57 0.8
FIRE 0.85 0.59 0.36 0.48 0.94 0.34 96.58
SHAKA 100

ACKNOWLEDGMENT

The authors would like to thank IComp UFAM, UEA
Ludus Lab, and FAPEAM for supporting the development
of this work.

REFERENCES

[1] S. Ameur, A. B. Khalifa, and M. S. Bouhlel. A compre-
hensive leap motion database for hand gesture recognition.
In Sciences of Electronics, Technologies of Information and
Telecommunications (SETIT), 2016 7th International Confer-
ence on, pages 514–519. IEEE, 2016.

[2] M. Buckwald. Leap motion. https://www.leapmotion.com
(accessed: 2018.08.04).

[3] F. Chen, J. Deng, Z. Pang, M. Baghaei Nejad, H. Yang,
and G. Yang. Finger angle-based hand gesture recognition
for smart infrastructure using wearable wrist-worn camera.
Applied Sciences, 8(3):369, 2018.

[4] C.-H. Chuan, E. Regina, and C. Guardino. American sign
language recognition using leap motion sensor. In Machine
Learning and Applications (ICMLA), 2014 13th International
Conference on, pages 541–544. IEEE, 2014.

[5] E. M. Y. David, Shai; Kushilevitz. Online learning versus
offline learning. 1997.

[6] B. B. Gatto, A. Bogdanova, L. S. Souza, and E. M. dos
Santos. Hankel subspace method for efficient gesture rep-
resentation. In Machine Learning for Signal Processing
(MLSP), 2017 IEEE 27th International Workshop on, pages
1–6. IEEE, 2017.

[7] B. B. Gatto, E. M. dos Santos, and W. S. Da Silva. Orthogonal
hankel subspaces for applications in gesture recognition.
In Graphics, Patterns and Images (SIBGRAPI), 2017 30th
SIBGRAPI Conference on, pages 429–435. IEEE, 2017.

[8] B. B. Gatto, S. Waldir, M. Eulanda, and D. Santos. Kernel
two dimensional subspace for image set classification. In
Tools with Artificial Intelligence (ICTAI), 2016 IEEE 28th
International Conference on, pages 1004–1011. IEEE, 2016.

[9] S. R. Gunn et al. Support vector machines for classification
and regression. ISIS technical report, 14(1):5–16, 1998.

[10] S. Krug. Não me faça pensar. Tradução de Roger Maioli dos
Santos, São Paulo: Market Books, pages 123–137, 2001.

[11] R. B. Mapari and G. Kharat. American static signs recogni-
tion using leap motion sensor. In Proceedings of the Second
International Conference on Information and Communication
Technology for Competitive Strategies, page 67. ACM, 2016.

[12] R. Ribeiro et al. Framework for registration and recognition
of free-hand gestures in digital games. SBGames, 2016.

[13] L. Shao. Hand movement and gesture recognition using Leap
Motion Controller. Stanford University, Stanford, CA, 2016.

[14] J. E. Solem. Programming computer vision with python.
2012.

[15] D. R. B. F. D. Weichert, F; Bachmann. Analysis of the
accuracy and robustness of the leap motion controller. 2013.

[16] D. Yao, M. Jiang, A. Abulizi, and X. You. Decision-tree-based
algorithm for 3d sign classification. In Signal Processing
(ICSP), 2014 12th International Conference on, pages 1200–
1204. IEEE, 2014.

[17] J. Youngkyoon, S.-T. Noh, H. J. Chang, and T.-K. Kim. 3d
finger cape: Clicking action and position estimation under
self-occlusions in egocentric viewpoint. 2015.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Short Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 662

