
Evolving lock-and-key puzzles based on
nonlinear player progression and level exploration

André Siqueira Ruela
Postgraduate Program in Information Systems

University of São Paulo
São Paulo, Brazil

andre.siqueira.ruela@gmail.com

Karina Valdivia Delgado
dept. of Information Systems

University of São Paulo
São Paulo, Brazil

kvd@usp.br

Abstract—This work proposes a novel approach for evolving
puzzles of the lock-and-key style. The algorithm interprets
a predefined graph structure as a dungeon level for which
the puzzle is created and then an Evolutionary Algorithm is
applied to fill the level with obstacles that challenge the player.
A particular evaluation function in the Evolutionary Algorithm
was conceived, allowing the emergence of diverse solutions that
feature a nonlinear progression and a wide spatial exploration.
The computational results showed that the algorithm is fast
enough, that an online application is seen as a possibility.

Keywords-Procedural content generation; automated game
design; lock-and-key puzzle; evolutionary computation;

I. INTRODUCTION

In the last years, the field of Procedural Content Gen-
eration (PCG) has been growing fast, gathering attention
from both industry and academia. In this scenario, one of
the most traditional generation problems is the automatic
production of levels and its inherent properties, entities, and
artifacts [1]. The level is commonly defined as the spatial
environment where the player character wanders through,
during the gameplay. Although the level is considered a
content of a game, each of its components constitutes also
a class of content. Despite being a well-known problem,
the task of producing a consistent level is still difficult and
it is usually managed by search-based approaches, such as
Evolutionary Algorithms (EA) [2].

Besides the construction of a good spatial level, it is
necessary to fill it with obstacles that challenge the player to
overcome them. The player, then, must be able to identify
the obstacle, understand it, and search for a way to defeat
it. The nature of these obstacles can vary considerably,
depending on the game style. In general, these obstacles
may not be crossed until the player reaches a symbol or
fulfill a condition, such as an item or skill.

The purpose of this paper is to provide a tool for generat-
ing obstacles for game levels. In this level, the player must
arrive at a goal, moving through the rooms and eventually
overcoming the obstacles. In the scope of this paper, we
define this obstacle as a lock-and-key puzzle [3]. Here, the
lock and the key are metaphors for an obstacle and its

solution, respectively, and not necessarily a literal door and
a literal key.

According to [3], in a lock-and-key puzzle, the puzzle
is finding out what is an obstacle, what and where is a
key to overcome it, and finally using the key to master the
challenge. This paper presents a novel approach, guiding the
algorithm to maximize the use of the level in a nonlinear
fashion. Our results show that the proposed method can
develop distinct, resolvable, and nontrivial solutions with
user-controlled nonlinearity and desired aesthetic features.
The developed code is available at our GitHub repository1

under the GNU General Public License v3.0.

II. RELATED WORK

Lately, some papers have used graph grammars to gene-
rate levels for adventure games [4]–[6]. In these mentioned
models, the graph structure describes first the puzzle (also
called a quest, mission or a plot sometimes) that motivates
the spacial level generation. Thus, driven by missions, the
algorithm can generate meaningful levels. However, these
works do not explicitly focus on the linearity property or
the level utilization or exploration.

The level’s nonlinearity is a very important feature that
gives the player the impression he is following his own path
or taking his own decisions to solve his challenges, and
not merely following what the designer planned for him.
According to [7], Shigeru Miyamoto, creator of the Zelda
series, once said that he wanted to evoke the feelings associ-
ated with exploration in the player. Therefore, our proposed
algorithm explicitly attempts to achieve such properties.

In this paper, the spatial level is given as an input for
the puzzle generator, diverging from the related literature.
This is done mainly because of our adopted goals, that
are: achieve a nonlinear solution and a required broad
exploration. To ensure such properties, it is important to
know the level previously. In this way, the level is initially
defined, for which a puzzle is generated. The level generator,
however, is described in our previous work [8] and thorough
details about its process are out of the scope of this paper.

1Source: https://github.com/KuruLab/PuzzleGenerator

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Short Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 651

III. PROPOSED APPROACH

We employ EAs, and more specifically, Genetic Al-
gorithms (GA), due to its inherent ability to explore a
diverse space of possible solutions and yet present high-
quality results. In this section, we present our approach to
procedurally generate lock-and-key puzzles through an EA.

A. Content Representation

To keep the algorithm’s efficiency and ensure a fast com-
putational performance, the puzzle content is represented by
an integer array, where each element is a room ID and each
position in such array have its respective meaning. The Table
I shows the genotype-phenotype mapping scheme for the
adopted representation.

Table I
GENOTYPE-PHENOTYPE MAPPING

Index Genotype Phenotype
0 12 The room 12 is the Start room.
1 16 The room 16 is the Boss room (goal).
2 21 The room 21 contains the A key.
3 06 The room 06 contains the B key.
4 22 The room 22 contains the C key.
5 23 The room 23 contains the D key.

However, to decode the individual into a complete puzzle
solution, more information is required. For instance, the
location of a given key does not define where the doors will
be placed. Thus, the decoding process not just distributes
the keys along the level, but also computes the layout of the
doors and suggest the level of difficulty for each room. This
process is very similar to the dungeon step proposed in our
previous work [8].

B. Evaluation

The fitness assessment takes into consideration a decoded
and complete solution. In other words, the evaluation is
computed over the input level with all entities, artifacts and
conditions settled. The algorithm attempts to minimize the
fitness value of the individuals. This value is defined by the
fitness function, which is composed of three design prefer-
ences and a penalty function. Several papers from literature
deal with unfeasible solutions by constrained optimization
methods [5], [9], [10]. In this paper, we deal with this pro-
blem with a penalization method through the evolutionary
process. Thus, unfeasible solutions coexist in the evolving
population, but their fitness value receives a drastic penalty
assessment, reducing its survival and reproduction chances.
The evaluation function takes into consideration a route R
computed by an A* algorithm that can solve the level by
violating the game rules, breaking the doors.

Following, we present the fitness function, i.e. each design
preference and the penalty function:

φ = P + DIN +
1

VR
+

1

TD
, (1)

P =

R∑

i

max(0, ki − kA∗)× β, (2)

DIN = |NLideal − NLactual|, (3)

VR =

N∑

i

vi, (4)

vi =

{
1 if ri ∈ R
0 if ri /∈ R,

(5)

TD =
R∑

i

dij , (6)

where P is the penalty, DIN is the Distance from the Ideal
Nonlinearity (considering NLideal = 3), VR is the number
of Visited Rooms, TD is the Travel Distance. The ki is the
key level required to access the room ri, ri ∈ R, kA∗ is the
highest key level acquired by the A* algorithm when enter-
ing the room ri, and β is a static penalty coefficient, defined
as β = 103. Therefore, if kA∗ ≥ ki, then (ki − kA∗) ≤ 0,
resulting in no penalization. On the other hand, if kA∗ < ki,
the individual fitness is penalized accordingly. Additionally,
vi marks if the room ri is visited or not. The TD is the total
travel distance of the entire route R, considering each room
coordinates. Finally, where dij is the travel distance from
room ri to room rj , such that ri, rj ∈ R and j = i+ 1.

Given the strength of the penalty coefficient, β, in some
sense, the primary goal of the algorithm is to find feasible
solutions. In this fitness landscape, the three design prefer-
ences can be seen as tiebreakers. However, they are the main
contribution of this paper, in comparison with the related
works, ensuring the good quality of the final solutions.

C. Genetic Operators

In this work, the algorithm has a population of µ = 100
individuals and runs for a maximum of g = 100 generations.
The individuals undergo selection employing a Binary Tour-
nament. The crossover happens with a probability ρc = 0.9
and occurs with a random cut-off point, producing a pair
of children, consisting of the permutation of their fathers’
chromosomes. After the crossover, all children are submitted
to the mutation operator, which has a global probability
ρm = 0.1. There are two mutation operators, both with the
same 50% probability: (i) swap the position of two randomly
chosen rooms in the chromosome; (ii) replace a randomly
chosen room by another randomly possible room. At the end
of the reproduction steps, each child overtakes its parents’
position in the population, without any kind of elitism. After
elapsed a total of g = 100 generations, the algorithm stops
and returns the best individual found so far.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Short Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 652

IV. COMPUTATIONAL EXPERIMENTS

In this section, we present the computational results of
the conducted experiments. To test the algorithm, there are
two classes of levels, based on their sizes. It is challenging
to define the ideal number of rooms in a dungeon. That
relies on personal feeling and can vary drastically from game
to game. While in [10] a procedurally generated dungeon
presents 27 rooms, in [5] the authors takes as reference the
Gnarled Root Dungeon, from The Legend Of Zelda: Oracle
of Seasons, with only 20 rooms. In this work, we set the
normal value at 25, but we also consider a larger dungeon
of 50 rooms to verify the algorithm’s capabilities.

The level generator consists of a stochastic search-based
method itself [8]. For this reason, a set of 30 predefined
levels is considered for each size. For each of these 30
levels, the puzzle generator is executed another 30 times.
Consequently, there are a total of 900 puzzle solutions for
each dungeon size.

The Tables II and III show the results of the computational
experiments. The values are separated into minimal, maxi-
mal and mean with standard deviation. For each metric, the
minimal and maximal values are evaluated independently.
Note that for VR and TD, the best value is actually the
“Max”, while the best values of DIN, φ and the runtime are
expressed by the column “Min”.

Analyzing the results, it is possible to see that the al-
gorithm is able to find the desired nonlinearity score in
most of the times, however, failing in a few executions. Yet,
considering the low mean values and their deviations, we can
affirm that the results are very satisfactory and the algorithm
is notably robust.

On average, the algorithm design puzzles that demand
the player to visit 20 rooms to solve the level, for N = 25.
In other words, the player must explore at least 80% (on
average) of the dungeon space, but this exploration may be
even more widespread during gameplay. For N = 50, this

Table II
ALGORITHM PERFORMANCE FOR N = 25

Metric Min Mean ± Std Max
DIN 0 0.003±0.058 1
VR 16 20.083±1.823 24
TD 1034.086 1953.182±293.573 2890.191
φ 0.042 0.054±0.058 1.059
Time(s) 1.308 1.366±0.029 1.415

Table III
ALGORITHM PERFORMANCE FOR N = 50

Metric Min Mean ± Std Max
DIN 0 0.048±0.224 2
VR 19 34.657±3.762 43
TD 1920.378 4016.131±689.647 7040.998
φ 0.023 0.077±0.224 2.039
Time(s) 3.096 3.279±0.097 3.477

Figure 1. An individual from the N = 25 scenario.

Figure 2. An individual from the N = 50 scenario.

value is around 34 rooms, which corresponds to 68%. The
best results of 24 (96%) for N = 25 and 43 (86%) for
N = 50, are very exciting. And finally, the worst solutions
seem to be disappointing, however, just like the DIN metric,
based on the mean values, we can affirm that the algorithm
achieves its goals.

Similar to the ideal number of rooms in a dungeon, an
in-depth discussion of the traveled distances is complicated
because it also depends on ad-hoc features of the game.
This means that our interpretation of the results may vary
considerably, depending on the game style. This is one of
the reasons that TD is considered as the least important
designer preference, or just a tiebreaker for the VR. This
metric was adopted as a complementary way to promote

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Short Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 653

the player exploration. However, without good support for
comparison of results, it is challenging to judge the quality
of a solution featuring a TD = 2000, TD = 4000 or even
TD = 7000, for example.

Finally, one impressive and robust result is the short
execution time. The algorithm is written in Java and tests
were performed on an AMD FX-8350 octa-core, with 4.0
GHz. The slowest execution for N = 25 was completed
with just 1.4 seconds and 3.5 seconds for N = 50. This
fast execution time comprehends every step, from reading
the original level from the disk to writing the puzzle layout
on it. With this result, it is possible to affirm that this
generator allows an online level replayability. This means
the puzzle generation can be applied during the gameplay,
even considering common computers or consoles.

The Fig. 1 illustrates the output of the proposed approach
for N = 25. The Fig. 2 does the same for N = 50. The
blue squares represent the empty rooms, the cyan square is
the Start room, the red square is the Boss room and the
yellow ones are the locations of the keys. The capital letter
on a blue room refers to the condition (the required key) to
access that room, while a letter on a yellow room denotes
the key itself.

In general, we can affirm that the algorithm reaches the
goals for which it was designed. To observe that, we suggest
the reader take another look on Fig. 1 and Fig. 2 and
mentally outline a route to solve the puzzle. The reader may
easily realize that, at the end of the route, almost the entire
level has been traversed. In addition, on a few occasions, he
had to decide on the best route to take, moving forward and
backward on a nonlinear pace. These features summarize
what we desired to achieve with this paper.

V. CONCLUSIONS AND FUTURE WORKS

This paper presented a novel approach for evolving puz-
zles for adventure or dungeon based games. The algorithm
takes as input an already generated level for which a lock-
and-key puzzle is produced. Diverging from related literature
records, this work is focused on a nonlinear player progres-
sion and the maximization of the level exploration. For this
purpose, a simple content representation was adopted and
a unique evaluation function was conceived. We employ an
EA to evolve several puzzle layouts in a fast computational
time.

The computational results demonstrated that the algorithm
is able to achieve its goals with a high robustness, even
over larger levels. Due to its fast execution time, it is
possible to conclude that this algorithm can run online,
during gameplay. However, it is good to remember that it
is a stochastic approach and so we can not guarantee it
will achieve good results with hundred percent of certainty.
Thus, practical applications would require additional work
to ensure the output feasibility.

In future works, we plan to extend both the previous level
generator and the current proposal in a multi-layered system.
In this plan, both generators work together to produce multi-
level content or complex worlds formed by not just one
but several integrated dungeons. In addition, in the current
state of this project, the puzzle generator demands a level
as input. It would be very promising if the puzzle generator
outputs could be used to feedback the level generator again,
thus creating a virtuous loop, where the resulting content is
iteratively refined.

REFERENCES

[1] N. Shaker, J. Togelius, and M. J. Nelson, Procedural Content
Generation in Games. Springer International Publishing,
2016.

[2] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne,
“Search-based procedural content generation: A taxonomy
and survey,” IEEE Transactions on Computational Intelli-
gence and AI in Games, vol. 3, no. 3, pp. 172–186, Sep 2011.

[3] C. Ashmore and M. Nitsche, “The quest in a generated
world,” in Proceedings of the 2007 DiGRA International
Conference: Situated Play, DiGRA 2007, Tokyo, Japan, Sep
2007, pp. 503–509.

[4] J. Dormans and S. Bakkes, “Generating missions and spaces
for adaptable play experiences,” IEEE Transactions on Com-
putational Intelligence and AI in Games, vol. 3, no. 3, pp.
216–228, Sep 2011.

[5] J. M. Font, R. Izquierdo, D. Manrique, and J. Togelius, “Con-
strained level generation through grammar-based evolutionary
algorithms,” in Applications of Evolutionary Computation,
G. Squillero and P. Burelli, Eds. Cham: Springer Interna-
tional Publishing, 2016, pp. 558–573.

[6] R. van der Linden, R. Lopes, and R. Bidarra, “Procedural gen-
eration of dungeons,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 6, no. 1, pp. 78–89, Mar
2014.

[7] M. Stout, “Learning from the masters: Level design in
the legend of zelda,” Gamasutra, Jan 2012. [Online].
Available: https://www.gamasutra.com/view/feature/134949/
learning from the masters level .php

[8] A. S. Ruela and K. V. Delgado, “Scale-free evolutionary level
generator,” in Proceedings of the 2018 IEEE Conference on
Computational Intelligence and Games (CIG’18), Maastricht,
The Netherlands, Aug 2018, pp. 245–252.

[9] I. D. Horswill and L. Foged, “Fast procedural level population
with playability constraints,” in Proceedings of the Eighth
AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, AIIDE-12, Stanford, California, USA,
Oct 2012, pp. 20–25.

[10] D. Karavolos, A. Bouwer, and R. Bidarra, “Mixed-initiative
design of game levels: Integrating mission and space into
level generation,” in Proceedings of the 10th International
Conference on the Foundations of Digital Games, FDG 2015,
Pacific Grove, CA, USA, Jun 2015.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Short Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 654

