
Real-Time Massive Terrain Generation using Procedural Erosion on the GPU

Gabriel Costa Backes, Tiago Augusto Engel, Cesar Tadeu Pozzer
PPGCC - Programa de Pós-Graduação em Ciência da Computação

UFSM - Universidade Federal de Santa Maria
Santa Maria, Brazil

{gbackes, tengel, pozzer}@inf.ufsm.br

Abstract—Although terrain modeling is a widely explored
field, problems such as scalability remain present when it comes
to massive terrain sizes. While procedural methods have disad-
vantages regarding controllability and visual fidelity, it provides
a great effectiveness handling with extremely large terrains
due its computational performance. Our approach consists of
generating the elevation data using a procedural function in
real-time. We provide an intuitive set of parameters that allow
control of several landscape characteristic. Real-world natural
aspects were taken into account on the generation process. The
terrain is represented by a dynamic quadtree structure and
the elevation data is stored in a virtual texture. To address
real-time performance, we adopt a GPU-based approach for
the heightmap generation. Furthermore, a GPU instancing
approach was used for rendering.

Keywords-massive terrains, procedural generation, perlin
noise, erosive noise, fractional brownian motion, real time
rendering.

I. INTRODUCTION

Procedural terrain generation is a widely explored field
due to its significance in the entertainment industry, more
specifically in movies and video games. It is imperative for
such applications to generate visually appealing and detail
rich landscapes. While physically plausible landscapes can
be generated by hydraulic and wind erosion, and tectonic
uplifting simulations, such approaches are not feasible for
generating elevation data in real-time and often lack on con-
trollability. On the other hand, the terrain can be manually
sketched or entirely loaded by an input data. However, these
approaches are not scalable for extremely large terrains,
which may extent several kilometers at the resolution of
centimeters.

Example-based approaches use real world datasets, so its
resolution and size are limited by the input. Physically-
based approaches demand lengthy preprocessing times and
are accurate, being a suitable approach for movies and games
with limited scenarios. Differently, open-world games often
allow the user to interact with massive worlds. Fractal-based
procedural approaches are efficient but lack realism and
controllability. We therefore provide a process for generating
visually appealing terrains using fractals without compro-
mising performance.

In this paper we introduce an novel approach to address
massively terrain generation in real-time. Our work is based

on a fractional Brownian motion (fBm) that uses a con-
tinuous procedural Perlin function to define the elevation
data [1]. Moreover, we provide different kinds of primitives
to work around the terrain natural properties, providing the
global control over the features.

The coarse features are defined by the base parameters,
such as the terrain height scale, the highlight on mountains
and valleys, and the terrain roughness and details on its com-
position. While these parameters can generate interesting
terrains, its intrinsic features are far from real. In the real
world, the terrain has many complex features of different
sizes on its composition. Pinter and Brandon [2] shown
that natural agents modify these features, causing irregularly
distribution. While higher elevations are characterized by an
irregular surfaces due to, among other factors, its average
temperature and scrub vegetation, lower elevations tend to
be more flat, once they concentrate more sedimentation. To
replicate these properties, we propose a procedural erosion
set, which controls the amount details over the terrain
altitude, steepness and curvature.

Unlike physics-based approach, the procedural erosion
allows us to generate credible terrains at real-time frame
rates. An infinity of complex terrains can be easily defined
through the intuitive input set. Our model is computationally
efficient and provides a flexible control over the terrain
features. As result, it is suitable for editing and rendering
massive terrains.

II. RELATED WORKS

Procedural algorithms have been used in the terrain gener-
ation field for more than three decades. Usually, the terrain is
discretized by a regular grid, which stores the elevation data
in a texture, called as heightmap. Early methods were based
on iterative subdivision of the grid. Fournier [3] presented
a method that became known as midpoint displacement.
Level of details are generated by displacing a new vertex
by the parents average height of a coarse level combined
by a random value. Noise based approaches, such as Perlin
noise [4], were shown as promising due its computational
costs. The details are created by summing several noise
octaves on differentes frequencies and scaled amplitudes [1].
Despite these methods produce many particular features, its
distribution are regular over the surface.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Short Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 675

Physics-based approaches were incorporated to introduce
natural aspects over the terrain features. Musgrave addresses
geomorphic agents by two erosion algorithms to simulate hy-
draulic erosion and thermal weathering [5]. Nevertheless, its
computational cost hinder the use on large terrains with high
level of details. Vanek [6] introduced a GPU-based approach,
in which large terrains are divided into tiles of different
resolutions, the physics-based simulation use different level
of details to speedup the computation. Unfortunately, due
to the heights evaluation are locally dependent, GPU-based
approaches can not deplete parallel programing potential and
the scalability remains a problem.

Sketched-based methods address the low controllability
of the procedural generation. Rusnell [7] describes a ter-
rain synthesis method based on distances in a weighted
graph created from user-specified generator nodes. Gain [8]
introduces a height map generation using silhouette and
bounds of mountains user sketched. Hnaidi [9] proposed a
method based on diffusion of constraints, in which the user
control the landforms by feature curves. Recently, Gnevaux
[10] presents a hierarchical procedural model that combines
feature-based primitives to create complex terrains. It has
been extended by Gurin [11], in which proposed a proce-
dural modeling that can automatically generate large scale
terrain rather than authoring the terrain interactively by hand.

III. OVERVIEW

An overview of the proposed terrain generation is shown
in the Fig. 1. The terrain base is defined by the 2D Perlin
noise, in which, along with a fBm, introduce details to the
terrain. The visual appealing relies on an intuitive parameters
set, which provides the user a global controllability. The
inputs manage the terrain scale, roughness and geometric
characteristics. Moreover, an additional manageable erosion
set improves the terrain natural aspect, damping the details
on particular regions, as specific altitudes, slopes or concav-
ities. The proposed approach is inspired by Carpentier [12],
which present a brush editing using several noises primitives.

Our approach relies on discretizing the terrain into multi
resolution tiles using a dynamic quadtree structure. In this
way, once we adopted an continuous procedural function,
we can handle an endless terrain on arbitrary resolution.

The elevation data of each tile is stored on a virtual texture.
A view frustum culling is performed on CPU to select
the quadtree nodes to be rendered. However, since the
Perlin noise is locally independent, i.e., the heights can be
evaluated in parallel, a GPU-based approach was adopted to
perform the heightmap generation. Furthermore, we used a
GPU-instancing approach to render the terrain. In this step,
the vertexes of a grid mesh are displaced by the elevation
data on the vertex shader.

IV. PROCEDURAL TERRAIN GENERATION

The terrain base is provided by the fBm method based on
2D Perlin noise, denoted by F . Since perlin noise evaluates
the noise value individually, the heights for a given patch
can be computed in parallel.

The naive fBm algorithm calculates a weighted sum
of scaled noises from several octaves. The amplitude and
frequency of the noise are modified, respectively, by a gain
and lacunarity on each octave, thus, originating features of
manifold size. The equation is defined as follows:

F (p) =

n−1∑

i=0

ξiN(λip) (1)

where n represents the number of octaves and i the current
octave, ξ ∈ [0, 1] represents the amplitude. N(p) is the perlin
noise function, in which given a position p returns a scalar
s ∈ [−1, 1]. λ represents the frequency.

Although the fBm can create really interesting terrains,the
noise distribution is uniform. Thus, there is no variations on
the terrain features. To address this natural lack aspect, we
presented bellow some intuitive parameters to be introduced
on the fBm, modifying the geometric characteristics.

A. Terrain roughness, sharpness and scale

The terrain roughness is directly controlled by the ampli-
tude ξ and the frequency λ. The amplitude in each octave
ξi is given by the multiplication of an initial value Ia with a
gain g ∈ [0, 1] (Equation 2a). In the same way, the frequency
λi is given by the multiplication of an initial value If with
a lacunarity l (Equation 2b). Lower values to g will make
the terrain be more flat, while higher values will generate

(a) (b) (c) (d)

Figure 1. Terrain generation pipeline. (a) First, the base terrain is generated using a 2D perlin noise. (b)The details are introduced using the fBm method.
(c) Then, terrain features are sculpted using the procedural erosion set to give a more real aspect. (d) Lastly, an enhancement is applied over the terrain
features.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Short Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 676

protuberant features. The figures in this article use Ia = 1,
If = 0.0001, g = 0.5, and l = 2.

ξi = Ia × gi (2a)

λi = If × li (2b)

Two well known noises were used to define the terrain
sharpness. The first one is the billow noise (NB), given
by the absolut value from the noise function (Equation
3a), providing waved features. The second one is the ridge
noise (NR), resulting from the billow noise complement
(Equation 3b), setting up sharp patterns. A sharpness scalar
Ss ∈ [−1, 1] is used in a linear interpolation among the
perlin noise, billow noise and ridge noise, as shown in
Equation 3c.

NB(p) = |N(p)| (3a)

NR(p) = 1−NB(p) (3b)

NC(p) =

{
lerp(N(p), NB(p), |Ss|) Ss >= 0

lerp(N(p), NR(p), Ss) Ss < 0
(3c)

Since we are working with fBm output values in the range
[-1, 1], the mountains and valleys are enhanced by a scalar
Se and the terrain height is rescaled by and scalar Sh as the
following equation:

H(p) = F (p)× |F (p)|Se × Sh (4)

First, the noise output value is multiplied by its absolute
value on the power of Se. Higher values of Se turn the
height exponentially close to zero, causing abrupt height
variations to be highlighted, such as valleys and mountains.
Subsequently, the value is multiplied by the scalar Sh, which
rescale the height range [-1, 1] into the range [-Sh, Sh].

B. Terrain Erosion

To satisfy the properties elected by [2], variables were
aggregated on the fBm to damp the summed noise height,
denoted by σi, and the noise amplitude, based on the terrain
altitude, slope and concavity. Moreover, scalars were defined
to provide the user control over the damp ratio.

The altitude erosion makes the finer details of the noise
fade out quickly on lower heights.It can be introduced on
the fBm to progressively damp the amplitude based on the
summed height σi and an altitude factor (Ea), as shown as
follows:

ξi =

{
Ia i = 0

ξi−1 × lerp(gi, gi ×max(0, σi), Ea) i > 0
(5)

On the first octave, the amplitude value is set to the initial
value Ia. On the subsequents octaves, instead of multiply

the value by the gain g, as shown on the Equation 2a,
we multiply by the result of a linear interpolation between
the current gain gi and the current gain gi damped by the
current height σi. Since we are working on the height range
∈ [−1, 1], where 1 is the highest point, lower values will
decrease the gain value, and consequently, the amplitude.
The amplitude erosion is controlled by the altitude factor
Ea used on the linear interpolation.

A similar idea is used on the slope erosion. The details
are directly dependent of the terrain steepness. The terrain
slope can be retrieved by its derivative. Thus, we used the
analytical derivative from the Perlin noise to get its gradient.
The slope erosion ζs is given by the following formula:

ζs =
1

1 + (Gi(p) ·Gi(p))
(6)

G(p) represents the gradient at p (point on XY plane),
which is given by the summed partial derivative of N(p),
weighted by the slope factor Es:

Gi(x, y) =

{
(0, 0) i = −1
Gi−1(x, y) + (∂N(x,y)

∂x , ∂N(x,y)
∂y)× Es i >= 0

(7)
The idea is to decrease the amplitude on the steeper

slopes, represented by larger derivative values. In this way,
we perform the scalar product from the gradient vector with
itself, giving its magnitude squared. The gradient Gi is
initialized as (0,0), and stores the summed gradient until
the current octave. The equation 7 gives values closer to 0
to greater gradients. Then, we can use this value to damp the
amplitude. The damp ratio is controlled by the slope factor
Es which scale the point’s gradient.

Considering that concaves surfaces tend to be more sed-
imented, the concavity erosion turns the terrain smoother
based on its concavity. Therefore, the current gain gi is
damped by the surface concavity and the concavity factor
Ec:

gi = lerp(g, g × (
1

1 + abs(min(Ci, 0))
), Ec) (8)

The surface concavity, denoted by Ci, is a scalar that
defines the concavity of the current height. Values greater
than 0 represent a concave surface. On the other hand, values
lower then 0 represent a convex surface. Ci is computed
using the second partial derivatives, as follows:

Ci = (
∂2N(x, y)

∂x2
+
∂2N(x, y)

∂y2
)× 0.5 (9)

As we expect to decrease the details on the concaves areas,
we compute a minimum between Ci and 0. We use the
absolute value to damp the gain. The altitude erosion, we
perform a linear interpolation between the gain and the

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Short Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 677

(a) (b) (c)

Figure 2. Example of terrains generated by our model.

damped gain. The concavity factor Ec is used to control
the damp ratio.

V. RESULTS AND DISCUSSION

Since it is known that procedural methods are extremely
efficient, we have analyzed the performance variation of the
heightmap generation using the native fBm with a 2D Perlin
noise and the proposed solution. The tests were performed
on a AMD Ryzen 5 1600 3.2GHz CPU, 16GB RAM, and
GeForce 1070. The proposed algorithm was implemented in
C# using the Unity engine.

In the tests, we have played with three different octaves
for each noise. The times to generate a heightmap of
128x128 size for 2, 4 and 8 octaves were, respectively, 0.291,
0.298, 0.318 for the naive fBm and 0.310, 0.312, 0.327
for the proposed solution, requiring 1 second to generate
a terrain with 7x7 kilometers at a resolution of 1 meter.

We aimed at a massive terrain generation with real-time
performance. Hence, our model does not handle erosion
correctness because these methods rely on the computation
of neighboring values which is not suitable for parallel
evaluation approach. Despite our implementation does not
produce realistic results as physics-based approaches, it can
generates more truthful features without losing significant
performance when compared to the naive fBm, preserving
the high scalability from the procedural methods.

VI. CONCLUSION

This paper presents a GPU-based procedural terrain gen-
eration, controlled by an intuitive parameters set as input,
which supports massive terrains at real-time frame rates.
The terrain generation is based on the fBm method. The
proposed procedural erosion set gives more naturalness to
the terrain, concomitantly, guides the user to create unique
terrains with singular features. Moreover, the heightmap
generation performance was highly increase due to the fBm
parallel implementation on the GPU. Likewise, the real-time
rendering also relies on an efficient terrain management due
to (a) a multi LOD terrain provided by a dynamic quadtree,
and a (b) GPU instancing approach.

VII. ACKNOWLEDGEMENT

We thank the Brazilian Army for the financial support
through the SIS-ASTROS project.

REFERENCES

[1] D. S. Ebert, F. K. Musgrave, D. Peachey, K. Perlin, and
S. Worley, Texturing and Modeling: A Procedural Approach.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
3rd ed., 2002.

[2] N. Pinter and M. T. Brandon, “How erosion builds moun-
tains,” Scientific American, vol. 276, no. 4, pp. 74–79, 1997.

[3] A. Fournier, D. Fussell, and L. Carpenter, “Computer ren-
dering of stochastic models,” Communications of the ACM,
vol. 25, no. 6, pp. 371–384, 1982.

[4] K. Perlin, “An image synthesizer,” ACM SIGGRAPH Com-
puter Graphics, vol. 19, no. 3, pp. 287–296, 1985.

[5] F. K. Musgrave, C. E. Kolb, and R. S. Mace, “The synthesis
and rendering of eroded fractal terrains,” Proceedings of the
16th annual conference on Computer graphics and interactive
techniques - SIGGRAPH ’89, vol. 23, no. 3, pp. 41–50, 1989.

[6] J. Vanek and A. Herout, “Large-Scale Physics-Based Terrain
Editing Using Adaptive Tiles on the GPU,” pp. 1–9, 2011.

[7] B. Rusnell, D. Mould, and M. Eramian, “Feature-rich
distance-based terrain synthesis,” pp. 573–579, 2009.

[8] J. Gain, P. Marais, and W. Straßer, “Terrain sketching,” Pro-
ceedings of the 2009 symposium on Interactive 3D graphics
and games - I3D ’09, vol. 1, no. 212, p. 31, 2009.

[9] H. Hnaidi, E. Guérin, S. Akkouche, A. Peytavie, and E. Galin,
“Feature based terrain generation using diffusion equation,”
Computer Graphics Forum, vol. 29, no. 7, pp. 2179–2186,
2010.

[10] J. D. Génevaux, E. Galin, A. Peytavie, E. Guérin, C. Briquet,
F. Grosbellet, and B. Benes, “Terrain Modelling from Fea-
ture Primitives,” Computer Graphics Forum, vol. 34, no. 6,
pp. 198–210, 2015.

[11] E. Guérin, J. Digne, E. Galin, and A. Peytavie, “Sparse
representation of terrains for procedural modeling,” Computer
Graphics Forum, vol. 35, no. 2, pp. 177–187, 2016.

[12] G. J. de Carpentier and R. Bidarra, “Interactive gpu-based
procedural heightfield brushes,” in Proceedings of the 4th
International Conference on Foundations of Digital Games,
pp. 55–62, ACM, 2009.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Short Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 678

