
Procedural Planet Generation based on derivate fBm
noise

Ricardo B. D. d’Oliveira, Iago P. do E. Santo, Antonio L. Apolinrio Jr.
Departamento de Ciência da Computação

Universidade Federal da Bahia
ricardo.barros(at)ufba.br, iago.esp(at)gmail.com, antonio.apolinario(at)ufba.br

Abstract—Terrains requires large amounts of data to be
represented in planetary scale. Procedural Content Generation
techniques can reduce storage requirements. This paper uses a
derivate fractional Brownian motion algorithm to procedurally
generate a planetary terrain model and a view-dependent Level
of Detail data structure to achieve realistic planetary terrains,
with temporal coherence, in real-time.

Keywords—procedural generation, fractal terrains, planet ren-
dering

I. INTRODUCTION

Computer games consists of multiple contents varying from
geometric models to sound effects, known as game assets.
Games often use premade assets, however due to the increasing
performance of computers, Procedural Content Generation
(PCG) techniques have grown in number and usage nowadays,
games rely heavily on content generated procedurally. While
manual content requires time and resources to be made,
content generated procedurally can be a cheap alternative to
content creation. PCG comprises of methods for generating
data algorithmically rather than manually, which in turn can
reduce project costs and effort.

In this paper, we propose to procedurally generate planetary
terrains with a variation of fractional Brownian motion (fBm)
with the aid of shaders, resulting in terrains which closely
resembles planetary bodies. In terms of performance, this
approach is better than other noise algorithms for multifrac-
tal terrain generation, it uses direct fBm through derivation
instead mixing noise functions that other Procedural Terrain
Generation (PTG) techniques use. As a result a synthetic
planet can be generated in a single pass, instead of using
multiple passes for each distance relative to the camera.

Our application renders a terrain model at nearly real time,
with ∼60 frames per second, we take advantage of reducing
geometry complexity in a view-dependent way through the us-
age of displacement mapping and view-refinement algorithms
on the GPU.

This paper is organized as follows: Section II describes
related work. Next Section III describes our approach. Next
Section IV shows the performance evaluation of our applica-
tion and finally in Section V we show our conclusion remarks.

II. RELATED WORK

In this section we are going to review approaches for terrain
and planetary rendering which focus on visual quality, LOD

based rendering and efficiency. For surveys regarding terrain
rendering we suggest the readers to [1] for planetary rendering
[2], for procedural techniques [3] for further reference.

A. Terrain Representation
1) Seamless Patches: Livny et al. [4] presented a quadtree

technique appropriated to render large terrains, which is well
suit for our approach, it subdivides the terrain into a regular
grid and different resolutions which are stitched together with
rectangular patches.

B. Planetary Rendering
1) Planetary Scale Composition: Kooima et al. [5] claimed

that many planetary models exists and each model require
different tools for visualization. Those tools are often unreg-
istered, having different resolution, projections and formats.
Planetary Scale Composition proposed a novel approach where
terrain data only exists on the GPU, allowing powerful compo-
sitions to be applied on both the height and surface resulting
in seamless and smooth interpolations in both imagery and
geometry [5]. This technique serves as a basis for our approach
in handling and displacing the mesh with a procedurally
generated heightmap in the GPU.

2) Projective Grid Mapping for Planetary Terrain: Mahs-
man et al. [6] present a hybrid technique for planetary terrain
visualization that combines rasterization with ray casting creat-
ing a view dependent mesh on the GPU [6]. We implemented a
simplified version of the projective grid mapping as a parallax
occlusion mapping for our approach, wh.

III. OUR APPROACH

We propose an approach that combines a derivate fBm by
[7] with GPU planetary rendering. The terrain is generated on
the CPU, while the mesh is displaced on the GPU, consisting
on the following steps: (i) generating a heightmap with fBm,
(ii) normalizing a base mesh into a sphere, (iii) indexing the
normalized mesh through a view-dependent mesh refinement
with seamless quadtree (iv) applying a interpolation on the
GPU to prevent inconsistencies across different LOD regions,
(v) using a displacement mapping on the GPU, (vi) adding
fractal details with a progressive refinement, (vii) applying a
projective mapping to correctly display features which rise
from the horizon and (viii) a final shading step which consists
on mapping the texture through a triplanar approach. Our
approach is depicted in Figure1.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Short Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 667



(a) (b) (c) (d) (e) (f) (g)

Figure 1: Our approach consists of (a) heightmap generator, (b) base mesh, (c) cube to sphere and quad tree indexing, (d) hybrid GPU/CPU
LOD strategy, (e) GPU displacement mapping, (f) GPU synthesis refinement and (g) GPU shading.

A. Multifractal Brownian Motion

A terrain can be synthesized with a fractal Brownian
motion[8] (Figure1a), by simply mapping a sum of noise func-
tions with decreasing amplitudes and increasing frequencies.
Where in fbm(x, y) =

∑n
i=1 A

i · noise(ωi · x, ωi · y), ωi

is the frequency and each iteration of ω is called an octave
where i = 1, ω1 = 2, in contrast A is the semi-amplitude,
half of the peak-to-peak amplitude, wherein A1 = 1

2 . A
simple iteration of the fBm function can be achieved by
f(p) = fbm(p) where p is a point in space comprising of
its x, y components and f(p) is a compact form of the image
defined as a function of space which can be decomposed
into noise(x) = ∂n

∂x and noise(y) = ∂n
∂y which in turn is

the derivative of the noise function (∂n) of the traditional
fBm function. The derivate noise function shown in those
two decompositions is based on a linear interpolation of
random k values at some given lattice points v, w expanded
on ∂n∂x = (k1+k4v+k6w+k7vw) ·u

′
(x), where u(x) can

be either polynomial functions such as u(x) = 3x2 − 2x3, or
6x5 − 15x4 + 10x3 [7]. Which one is chosen depends on the
number of ki iterations.

Since this approach depends on analytical derivatives com-
putation, it results in a computationally viable fBm approach
that even have a richer variety of landmarks compared to
a regular fBm function, resulting in a complete multireso-
lution heightmap which does not require any blending with
other noise function to create a diverse scene comprising of
mountain, mountain ranges, cliffs and ledges. This approach
doesn’t require to compute multiple samples of the fBm, thus
it is much faster and more accurate than central difference
methods, such as Diamond-square[9].

B. Normalizing a Cube into a Sphere

To produce a uniformly triangulated sphere, we begin with
a cube (Figure1b), and proceed to subdivide its faces until
a criterion defined by a product between PATCH_SIZE,
PLANET_RADIUS and PATCH_MULTIPLIER is met. Be-
cause we use a cube, a cubic subdivision maintain the right
triangular tilling for a 45 degree tile rotation, which is appro-
priated for quadtree and triplanar mapping. At the end of the
subdivision each face is triangulated to comply with OpenGL
4.0, this compliance is guaranteed by a frame coherent hierar-
chy, which subdivides the triangles at a patch level [4]. Later
on the GPU in the vertex shader we apply Jacobian spherical

normalization on the coordinates to properly render a sphere
(Figure1c) [10].

C. Adapted Seamless Quadtree

A slightly modified quadtree by Livny et al. [4] is used
(Figure1c), we apply composite operations to enhance plane-
tary rendering. Where we can trim unused data depending on
the position of the observer. We also use a heightmap cache
to speed up the node querying, to avoid unnecessary quadtree
traversing. We also provide a custom query through a specified
identifier, as such a node can be found by a criteria, e.g.:a node
can be found by its position, or even through its altitude.

D. Mesh interpolation, Displacement and Projective Mapping
on the GPU

We use six quadtrees mapped onto a sphere (Figure1c), on
both the fBm noise and the border regions discontinuities can
arise (see Figure2). To prevent such issue a downsampling is
applied, we pick all four coordinates from a single quadtree
node and pass it to the vertex shader, we apply a linear inter-
polation to obtain a single vertex out of the four coordinates
creating a smooth surface in the process. Livny et al. [4]
contemplates this downsampling, however it is done on the
CPU, we adapted this approach to fully take advantage of the
GPU capabilities.

(a) (b) (c)

Figure 2: Inconsistencies can appear (a) no tile-able noise, (b)
different regions without interpolation, and (c) other view and its
wireframe version.

In the vertex shader we downsample four vertices to find
the central node, where we pass two four dimensional arrays
(P[] and N[]) containing respectively the vertex coordinates
and the base normals. If the terrain is a flat surface this solely
algorithm would be enough, however since we are dealing with
planetary terrains we need to take curvature into account, thus

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Short Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 668



we implemented a discrete form of projective mapping, where
we take the planetary curvature into account.

We check if the vertices are in the central region of their
respective boundaries, if so then a linear interpolation is per-
formed, otherwise we perform a discrete projective mapping
where we take the arc length over the planetary surface to
compute the normals, then we parametrize the point by its
angle theta to the z-axis and the angle gamma to the x axis, we
later apply a transformation on the y axis with a intersection
between the meridians of the z and x axis.

With this interpolation we achieve a discrete grid projection
which has various advantages, the projection of each point
in respect to its arc is computed in parallel on the GPU,
the projection also attempts to optimize the object space
triangle in such a way that the y projection is the same
in each area of the screen space resulting in approximated
pixel sized triangles. With the interpolation the number of
rendered triangles are concise, which allows hardware specific
optimization if required. Thus, the maximum LOD, the number
of triangles each patch has, the patch size, and the patch
multiplier can be tweaked if necessary.

However since we project the arc along a grid, computation
of normals is a bit more complex, it must be computed on
each frame as the mesh changes depending on the position
of the observer. We ease this process by retrieving a part of
the normals from the procedurally generated heightmap, and
also taking advantage of the parallel capabilities of the GPU
to compute the normals on a vertex based criterion.

We calculate the normals by picking the coordinate through
a triplanar mapping approach where we calculate the W offset
by the difference of the UV channel along the procedurally
generated heightmap texture, this approach is very handful
since UVW coordinate system is appropriated for procedural
maps. This approach well suitable for planets because the
coordinate is actually a world coordinate and as each of the
coordinate is sum up a vector relative to the planet surface
is built, which is a normalization of each component between
a range of -1 and 1, we get the transformed normal to the
surface.

IV. RESULTS

In this section we are going to present and discuss the results
obtained from planetary generation using the variation of fBm
noise by Quilez [7], presenting visual comparisons between
other noise algorithms and a performance evaluation on a
workstation equipped with Intel Core i7 3GHz, with 16GB
of RAM and a Nvidia Titan X GPU. Our evaluation focuses
on the visual quality and the performance compared to other
procedural techniques, we compared both classical Perlin noise
generated planet and state of art value noise generator [11].
In all experiments, unless otherwise stated, we use a planetary
body with 1 earth radius (6,371 km). The patches we use
in the application are 32 x 32 pixels wide. Since terrain is
generated procedurally we do not use any terrain database. For
atmospheric effects we used a simple scattering model where
we apply a fog to each rendered fragment based on its depth

TABLE I. Framerate Performance

Our Approach
Configuration Time RAM

Triangles Quads Altitude (kms) FPS Mb
126150 75 94 67 19.9
317898 189 20 61 22.1

Ridged noise
Configuration Time RAM

Triangles Quads Altitude (kms) FPS Mb
— — — 70 17.4
— — — 64 21.3

Value noise
Configuration Time RAM

Triangles Quads Altitude (kms) FPS Mb
166518 99 70 67 18.5
307806 183 22 62 21.7

Central point fBm
Configuration Time RAM

Triangles Quads Altitude (kms) FPS Mb
— — — 58 22.6
— — — 44 32.2

(a) (b)

(c) (d)

Figure 3: The Multifractal Brownian Motion by [7] is able to generate
a planet on a single pass, with planet-wise landmarks such as canyons,
valleys, mountain ranges and trenches

[12]. We also simulate a sky color by computing gradients in
respect to the position of the observer [13].

The performance of our algorithm is summarized in Table I.
The metrics we use to collect results are a) how many triangles
are rendered, b) how many quads are necessary to handle those
triangles, c) the observer altitude (in km) d) the frame rate,
and e) how much RAM is used.

We also compared four noise generators for visual com-
parison. For each noise generator we compared basically two
steps: 1) view from space and 2) atmospheric entry. The
comparison between Ridged Noise, Value Noise, Central Point
fBm and fBm by Quilez [7] is presented in Figure4.

The fBm algorithm by Quilez [7] procedurally generates a
planet with planet-wise landmarks such as canyons, valleys,

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Short Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 669



(a) (b)

(c) (d)

Figure 4: Comparison of different noise generators: (a) Ridged noise; (b) Value noise; (c) Central point fBm and (d) fBm by [7].

mountain ranges and trenches, since it is a fractal algorithm
level of detail is added with granularity which could enhance
the terrain and give a realistic behavior while the observer
zooms into the planet as shown in Figure3.

V. CONCLUSION AND FUTURE WORKS

We presented a real-time procedural planetary terrain ap-
proach, it is able to generate planets with diverse spectrum
of landmarks. The planetary terrain is rich in detail and due
to the nature of fBm, it is able to produce a multi resolution
terrain which can be refined using a LOD technique. In our
experimental results we show that our approach is able to
render large number of triangles in a real frame time.

As future works we intend to port the fBm algorithm into
the vertex shader, to take advantage of the parallelism, we also
plan to use other LOD based terrain rendering techniques, to
test if there is a better data structure for planetary rendering,
and to use hardware-supported tessellation to procedurally
insert high frequency details on the surface.

ACKNOWLEDGMENT

The authors would like to thank The State of Bahia Research
Foundation (FAPESB) for the sponsorship and NVIDIA for
providing a TITAN X Graphics Card through its GPU Grant
Program.

REFERENCES

[1] M. Thöny, M. Billeter, and R. Pajarola, “Vision paper:
The future of scientific terrain visualization,” in Proceed-
ings of the 23rd SIGSPATIAL International Conference
on Advances in Geographic Information Systems, ser.
SIGSPATIAL ’15. New York, NY, USA: ACM, 2015,
pp. 13:1–13:4.

[2] P. Cozzi and K. Ring, 3D Engine Design for Virtual
Globes, 1st ed. A K Peters/CRC Press, 6 2011.

[3] N. Shaker, J. Togelius, and M. J. Nelson, Procedural
Content Generation in Games (Computational Synthesis
and Creative Systems). Springer, 2016.

[4] Y. Livny, Z. Kogan, and J. El-Sana, “Seamless patches
for gpu-based terrain rendering,” The Visual Computer,
vol. 25, no. 3, pp. 197–208, Mar 2009.

[5] R. Kooima, J. Leigh, A. Johnson, D. Roberts, M. Sub-
baRao, and T. A. DeFanti, “Planetary-scale terrain com-
position,” IEEE Transactions on Visualization and Com-
puter Graphics, vol. 15, no. 5, pp. 719–733, Sept 2009.

[6] J. D. Mahsman, C. J. White, D. S. Coming, and F. C.
Harris, “Projective grid mapping for planetary terrain,”
High Performance Computation and Visualization Lab,
2011.

[7] I. Quilez, “Advanced value noise - fbm derivatives,”
2017, retrieved April 10, 2018. [Online]. Avail-
able: http://www.iquilezles.org/www/articles/morenoise/
morenoise.htm#fbm

[8] F. K. Musgrave, C. E. Kolb, and R. S. Mace, “The synthe-
sis and rendering of eroded fractal terrains,” SIGGRAPH
Comput. Graph., vol. 23, no. 3, pp. 41–50, Jul. 1989.

[9] A. Fournier, D. Fussell, and L. Carpenter, “Computer
rendering of stochastic models,” Commun. ACM, vol. 25,
no. 6, pp. 371–384, Jun. 1982.

[10] H. Parks, “Lecture notes - the jacobian
for polar and spherical coordinates,” February
1996. [Online]. Available: https://math.oregonstate.edu/
home / programs / undergrad / CalculusQuestStudyGuides /
vcalc/jacpol/jacpol.html

[11] I. Parberry, “Modeling real-world terrain with exponen-
tially distributed noise,” Journal of Computer Graphics
Techniques Vol, vol. 4, no. 2, pp. 1–9, 2015.

[12] E. Bruneton and F. Neyret, “Precomputed atmospheric
scattering,” Computer Graphics Forum, vol. 27, no. 4,
pp. 1079–1086, jun 2008.

[13] J. Abad, “A fast, simple method to render
sky color using gradients maps,” 2006. [On-
line]. Available: https://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.89.7917&rep=rep1&type=pdf

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Short Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 670


