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Abstract — Understanding the use of Machine Learning        
during game development is essential for the       
implementation of intelligent agents. In this work the use         
of reinforcement learning is evaluated, going through       
details of the implementation of the Q-Learning technique,        
to the evaluation of the use of it in a digital game. 
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I.  INTRODUCTION 

As the game industry evolves, it provides us with         
ever more complex games, with increased production       
and gameplay value, the application of artificial       
intelligence algorithms needs to keep up with that, if in          
the past the agents that were interacting with the players          
only needed to reproduce especifics pre programmed       
behaviours, based on rigids state machines, today it’s        
expected that those entities can make decisions and be         
able to present themselves to the player as real and          
intelligent beings, this perception from the player is        
very important to keep the immersion in the game         
world. Machine Learning Techniques allied with classic       
algorithms, have proven to be a powerful solution in the          
field of game development, given its adaptive capacity. 

This paper was written in the academic activity of         
Artificial Intelligence for Games in the course of Digital         
Games of UNISINOS. In it, it’s proposed the        
application of a Reinforcement Learning Algorithm,      
Q-Learning, in a context of a digital game. 

II. WHAT IS ARTIFICIAL INTELLIGENCE? 

There isn't a totally accepted definition about what        
artificial intelligence is, but in a simple way, we can say           
that it is algorithms of generalization and learning that         
tries to simulate the human ability to think. Millington         
(2006) defines artificial intelligence as a technique to        
make computers capables of thik tasks as humans and         
animals do. So, to make those computers able of         
generalization, we have to put then under a session         
training. Those training occurs to try and error, the role          
of the algorithms is to provide a way to the computer           
internalize everything that it learned on a training        
session. 

III. REINFORCEMENT LEARNING 

According to Sutton and Barto(1998), the problems       
of reinforcement learning involves learning what to do        
(through a map of actions to situations), and maximize a          
numerical reward. Reinforcement Learning is the name       
that are given to various techniques that generates        
learning through reward and punishment, an intelligent       
agent learns to interact with an environment, so he         
considers his actions and opts for one, those actions         
alter the environment . Every action is performed with a          
reward in mind, the agent needs to follow a politic, a           
series of rules that tries to maximize his score. A model           
of reinforcement learning algorithm receives a state a an         
action as input, the output that it generates is a score           
value, this step will only take the agent to the next state,            
and, in this way, a new score will be provided for each            
action. There are many ways to implement a artificial         
intelligence algorithm, each of them has its       
peculiarities, and you need to choose the one that best          
fits the problem you're trying to solve. 

IV. THE MARKOVIAN DECISION PROCESS 

Andrei Markov was a Russian mathematician,      
responsible by several studies in the area and specially         
famous for develop Markovian Decision Process, also       
known as Controlled Markov Chain, as described by        
Mitchell (1997). In a markovian decision process the        
agent must be aware of his current state (S), and from it            
he has access to a series of possible actions (A), each           
discrete time stamp (t), the agent executes one of those          
actions, which brings him to the next state of time (t+1).           
The actions performed by the agent change the        
environment in which it is inserted in some way, this          
change is judged and then a reward(R) is attributed to          
the agent, Rt = R (St, At). 

V. Q-LEARNING 

There are many ways in which you can implement         
reinforcement learning algorithms, but the most used in        
games and applications it’s the Q-Learning, due to its         
simplicity of implementation and understanding     
(Millington, 2006). The Q-Learning algorithm consists      
in a function of gain that updates the value of Q  

(Quality Value), in every interaction of the agent        
with the environment. 

As said before, there’s a map of the possible actions          
of the intelligent agent, given a certain state, in which          
he can choose the action with the greatest associated         
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value, or a random action (in the implementation you         
will define how random you want the algorithm to be),          
it’s important to leave a small randomness in the         
decisions so the agent will always experiment other        
options and will not fall in a convergence addiction         
before he found the optimized state. After he has made          
a decision, the value of Q to that action, in that           
particularly state will be updated using a gain function,         
defined by:  

Q = Q + α * (R + γ * ( maxQ - Q)). 
Q - Represents the current quality state. 
α = A value between 0 and 1 that will be multiplied            

by the reward, it measures how much the Q value will           
be affected by the action, a 0 value represents no gain,           
while a 1 value represents maximum gain.  

R = The value of the reward for the taken action,           
this value will vary according to the implementation, it         
will be a positive value for a considerer good action,          
and a negative value for bad actions. 

γ = The gamma value, is almost like alpha, when it           
comes to define a multiplication factor, but while the         
alpha measures the current value, gama will measure        
the future value if that action is chosen, it’s also          
represented by a value between 0 and 1. 

maxQ = The Q value of the future state. 

VI. THE TRAINING ENVIRONMENT 

To apply the Q-Learning the game, Table Heroes,        
was chosen as training environment, this game is under         
development using Unity 2017.2, originally a      
turn-based tactical combat game, where two teams fight        
each other taking actions on their turns, every unit in the           
game have a move and an attack action for turn. It’s           
possible to move and to attack, the attacks causes         
damage to the enemy, the battle ends when all the          
members of a team are defeated. 

Some of the characteristics of the game where        
changed in order to to get more out of the technique, the            
test version, then, are composed of: 

● A n x n Tile Matrix (The values of “n” can be            
setted on the implementation). 

● An Actor to be trained, capable of execute the         
following actions: 

○ Walk (4 directions). 
○ Attack (4 directions). 

● 3 enemies. 
● A Destination Tile that serves as a objective,        

the agent reaches the victory state when he        
enters that tile. 

It’s possible to manually set the values of the         
matrix. The Actions of the Actor can occur in any of the            
04 adjacents directions, it’s not possible to move        
diagonally, remaining a search space of 8 possible        
actions. The current state of the actor is defined by a set            
that takes in account the position [x, y] of the actor (the            
current tile), and if there’s or not a adjacent enemy, so           
the total number of states is equal to twice the number           
of tiles. The enemies occupies fixed positions and        

automatically defeat the actor if he tries to enter their          
tile. The objective is to reach the green tile. 

VII. AGENT ARCHITECTURE 

Although it’s possible to pass complete info about        
the world state to the agent, their sensors were         
propositaly limiteds, so the agent can learn with his         
experiences. When a new match is started the agent         
knows his position in the matrix, a two positions vector,          
he also knows the answer to question “There’s a enemy          
adjacent to me?”, if this statement is true, it means hac           
attack or be attacked, note that, while he knows about          
the existence of a adjacent enemy, he doesn’t know the          
exactly position. The agent knows his eight possible        
actions, but the attack actions will only be considered         
when near to an enemy. 

A. The training cycle 
A intelligent agent, the target tile (the agent's goal),         

and three enemies are instantiated in different random        
positions. At every instant of time the agent will choose          
one of his 8 possible actions, there’s 20% of chance of           
picking a totally random action, although in 80% of the          
cases the agent will opt by the action that he considers           
the best to take in his current state, based on a table of             
states to actions. After executing a action the current         
state of the agent will be updated and the Q value for            
that action on the table will receive a reinforcement,         
that can be positive or negative, depends on the action. 

The following actions generates a positive      
reinforcement: 

● Attack an enemy. 
● Reach the objective, while not adjacent to an        

enemy. 
● Approach the objective, while not adjacent to       

an enemy. 
The following actions generates a negative      

reinforcement: 
●  Attack empty tiles. 
● Ignore the adjacent enemies by choosing any       

action other than attack them. 
● Move away from the objective. 

The reinforcement is passed to the gain function of         
the Q-Learning and the value of the action is updated.          
The cycle will be repeated many times, until that,         
eventually, all the weights will be adjusted, and the         
agent will be capable to trace a route from any position           
in the matrix, and beside that, he’ll learn to not ignore is            
enemies, attacking they everytime they’re adjacent,      
reaching a optimized state.  

B. Victory and Defeat State 
The agent and the enemy have health points value         

(HP), and attack points. The agent starts with 100 HP,          
and have 50 attack points, the enemies start with 100          
HP and have 30 attack points. If the agent ever ignore           
an adjacent enemy, he’ll suffer an attack from that         
enemy and his HP will be reduced. If his life reaches           
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zero, the agent will die. The agent will reach the          
defeated state everytime he dies or if he enter in an tile            
occupied by an enemy. The victory state is achieved         
when the agent reaches the objective tile, even if he          
didn’t have defeated all the enemies. Achieve a victory         
or defeat state means that the instance will be restarted,          
all the enemies are respawned in the same tile, and the           
agent is respawned in a new random tile, but everything          
he learned will be kept for the next generation. 

VIII. RESULTS EVALUATION 

In order to observe the effectiveness of the        
algorithm, experiments were performed and log files       
were extracted. The analysis was performed in two        
different ways, and we will see each one separately. 

C. Turn Point Valuation 
Due to the unsupervised learning characteristics of       

the Q-Learning algorithm and the intrinsic randomness       
of the environment proposed in this project, it’s        
necessary to adopt a policy to evaluate the results of          
intelligent agent training. Let’s consider as a turning        
point the generation were the number of victories        
exceeds in 10 the number of defeats. The tests were          
performed in matrices of three different sizes, the        
results were extracted through log. 

The agent was trained in two matrices of different         
sizes: the first a 5x5 matrix and the second a 10x10           
matrix. The program was executed 10 times in each         
matrix, the results can be observed in figures 1 and 2. 

 
Figure 1. Observation of the Turn Point in a 5x5 Matrix. 

 
Figure 2. Observation of the Turn Point in a 10x10 Matrix. 

From the analysis of the two graphs we noticed that          
in the 5x5 matrix the values of the turning point were           
much higher than the turning points of the 10x10         
matrix. We can then conclude that since both matrices         
have the same number of enemies, it is easier for the           
agent to minimize errors in larger matrices, without so         

many enemies in its path, the environment becomes        
more permissive to route errors, causing the agent        
achieve victory status very easily. 

D. Time-Lapse Evaluation. 
Another way to observe the behavior of the agent is          

to analyze only one execution of the program over a          
large number of generations, allowing us to observe        
how long the agent takes to reach its maximum learning          
state. The agent was trained for 1000 generations in         
matrices with 3 different configurations. 

 
Figure 3. Example of a log file for Time-Lapse Evaluation. 

 
Figure 4. Example of a log file for Time-Lapse Evaluation. 

.

 

Figure 5. Configuration of the Matrix referring the Graph of Fig. 4. 

The test represented by figures 5 and 6 occurred in a           
7x6 matrix, with the objective in tile [5] [3], and the           
enemies in tiles [1] [2], [2] [4] and [3] [2] ]. After 1000             
generations the agent achieved a victory rate of 72.4%. 
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Figure 6. Graph of percentage of victories in a thousand generations 

2. 

 
Figure 7.  Configuration of the Matrix referring the Graph of Fig.6. 

The test represented by figures 7 and 8 occurred in a           
7x6 matrix, the objective being in tile [3] [5], and the           
enemies in tiles [1] [3], [5] [3] and [3] [2]. After 1000            
generations the agent achieved a victory rate of 89.2%. 

 
Figure 8. Graph of percentage of victories in a thousand generations 

3. 

 
Figure 9. Configuration of the Matrix referring the Graph of Fig. 8. 

The test represented by Figures 9 and 10 occurred in          
a 7x6 matrix, the objective being in tile [3] [4], and the            
enemies in tiles [2] [4], [4] [4] and [3] [2 ]. After 1000             
generations the agent achieved a victory rate of 85.0%. 

 
Figure 10.  Comparison between the three executions. 

After analyzing all the executions, we can see that in          
the first 100 generations, the agent reaches his        
maximum learning capacity, and that in about 400        
generations the agent's winning rate changes very little,        
tending to remain stable at future time stamps. 

We also verified that in the first execution the         
learning rate of the agent was much lower than in the           
other two, we can conclude that the fact that we have           
positions in the matrix in which the agent is adjacent to           
two enemies at the same time affects the good         
functioning of the learning process. 

IX. CONCLUSION 

In the field of Artificial Intelligence for Games, the         
Machine Learning Techniques have an enormous      
capacity of implementation to be explored, they have        
great uses isolatedly, and even more potential if we bind          
then together. 

The test phases proved to be extremely important,        
since it made clear a failure in the agent's learning in           
situations where, incidentally, it would be adjacent to        
two enemies. Therefore, this failure should be addressed        
in future implementations. 

We analyze the various steps of implementing an        
intelligent agent, and we can see how it behaved in          
different situations. The dynamism of Q-Learning has       
helped to produce an agent capable of generalizing and         
reacting to different environments. 
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