
Application of Q-Learning in a Digital Game

Guilherme de Quevedo Brendel and João Ricardo Bittencourt

Escola Politécnica
Universidade do Vale do Rios dos Sinos (UNISINOS)

Porto Alegre, Brazil
guilhermebrendel@gmail.com, joaorb@unisinos.br

Abstract — Understanding the use of Machine Learning
during game development is essential for the
implementation of intelligent agents. In this work the use
of reinforcement learning is evaluated, going through
details of the implementation of the Q-Learning technique,
to the evaluation of the use of it in a digital game.

Keywords: AI; Reinforcement Learning; Q-Learning;
Games;

I. INTRODUCTION

As the game industry evolves, it provides us with
ever more complex games, with increased production
and gameplay value, the application of artificial
intelligence algorithms needs to keep up with that, if in
the past the agents that were interacting with the players
only needed to reproduce especifics pre programmed
behaviours, based on rigids state machines, today it’s
expected that those entities can make decisions and be
able to present themselves to the player as real and
intelligent beings, this perception from the player is
very important to keep the immersion in the game
world. Machine Learning Techniques allied with classic
algorithms, have proven to be a powerful solution in the
field of game development, given its adaptive capacity.

This paper was written in the academic activity of
Artificial Intelligence for Games in the course of Digital
Games of UNISINOS. In it, it’s proposed the
application of a Reinforcement Learning Algorithm,
Q-Learning, in a context of a digital game.

II. WHAT IS ARTIFICIAL INTELLIGENCE?

There isn't a totally accepted definition about what
artificial intelligence is, but in a simple way, we can say
that it is algorithms of generalization and learning that
tries to simulate the human ability to think. Millington
(2006) defines artificial intelligence as a technique to
make computers capables of thik tasks as humans and
animals do. So, to make those computers able of
generalization, we have to put then under a session
training. Those training occurs to try and error, the role
of the algorithms is to provide a way to the computer
internalize everything that it learned on a training
session.

III. REINFORCEMENT LEARNING

According to Sutton and Barto(1998), the problems
of reinforcement learning involves learning what to do
(through a map of actions to situations), and maximize a
numerical reward. Reinforcement Learning is the name
that are given to various techniques that generates
learning through reward and punishment, an intelligent
agent learns to interact with an environment, so he
considers his actions and opts for one, those actions
alter the environment . Every action is performed with a
reward in mind, the agent needs to follow a politic, a
series of rules that tries to maximize his score. A model
of reinforcement learning algorithm receives a state a an
action as input, the output that it generates is a score
value, this step will only take the agent to the next state,
and, in this way, a new score will be provided for each
action. There are many ways to implement a artificial
intelligence algorithm, each of them has its
peculiarities, and you need to choose the one that best
fits the problem you're trying to solve.

IV. THE MARKOVIAN DECISION PROCESS

Andrei Markov was a Russian mathematician,
responsible by several studies in the area and specially
famous for develop Markovian Decision Process, also
known as Controlled Markov Chain, as described by
Mitchell (1997). In a markovian decision process the
agent must be aware of his current state (S), and from it
he has access to a series of possible actions (A), each
discrete time stamp (t), the agent executes one of those
actions, which brings him to the next state of time (t+1).
The actions performed by the agent change the
environment in which it is inserted in some way, this
change is judged and then a reward(R) is attributed to
the agent, Rt = R (St, At).

V. Q-LEARNING

There are many ways in which you can implement
reinforcement learning algorithms, but the most used in
games and applications it’s the Q-Learning, due to its
simplicity of implementation and understanding
(Millington, 2006). The Q-Learning algorithm consists
in a function of gain that updates the value of Q

(Quality Value), in every interaction of the agent
with the environment.

As said before, there’s a map of the possible actions
of the intelligent agent, given a certain state, in which
he can choose the action with the greatest associated

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Short Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 619

value, or a random action (in the implementation you
will define how random you want the algorithm to be),
it’s important to leave a small randomness in the
decisions so the agent will always experiment other
options and will not fall in a convergence addiction
before he found the optimized state. After he has made
a decision, the value of Q to that action, in that
particularly state will be updated using a gain function,
defined by:

Q = Q + α * (R + γ * (maxQ - Q)).
Q - Represents the current quality state.
α = A value between 0 and 1 that will be multiplied

by the reward, it measures how much the Q value will
be affected by the action, a 0 value represents no gain,
while a 1 value represents maximum gain.

R = The value of the reward for the taken action,
this value will vary according to the implementation, it
will be a positive value for a considerer good action,
and a negative value for bad actions.

γ = The gamma value, is almost like alpha, when it
comes to define a multiplication factor, but while the
alpha measures the current value, gama will measure
the future value if that action is chosen, it’s also
represented by a value between 0 and 1.

maxQ = The Q value of the future state.

VI. THE TRAINING ENVIRONMENT

To apply the Q-Learning the game, Table Heroes,
was chosen as training environment, this game is under
development using Unity 2017.2, originally a
turn-based tactical combat game, where two teams fight
each other taking actions on their turns, every unit in the
game have a move and an attack action for turn. It’s
possible to move and to attack, the attacks causes
damage to the enemy, the battle ends when all the
members of a team are defeated.

Some of the characteristics of the game where
changed in order to to get more out of the technique, the
test version, then, are composed of:

● A n x n Tile Matrix (The values of “n” can be
setted on the implementation).

● An Actor to be trained, capable of execute the
following actions:

○ Walk (4 directions).
○ Attack (4 directions).

● 3 enemies.
● A Destination Tile that serves as a objective,

the agent reaches the victory state when he
enters that tile.

It’s possible to manually set the values of the
matrix. The Actions of the Actor can occur in any of the
04 adjacents directions, it’s not possible to move
diagonally, remaining a search space of 8 possible
actions. The current state of the actor is defined by a set
that takes in account the position [x, y] of the actor (the
current tile), and if there’s or not a adjacent enemy, so
the total number of states is equal to twice the number
of tiles. The enemies occupies fixed positions and

automatically defeat the actor if he tries to enter their
tile. The objective is to reach the green tile.

VII. AGENT ARCHITECTURE

Although it’s possible to pass complete info about
the world state to the agent, their sensors were
propositaly limiteds, so the agent can learn with his
experiences. When a new match is started the agent
knows his position in the matrix, a two positions vector,
he also knows the answer to question “There’s a enemy
adjacent to me?”, if this statement is true, it means hac
attack or be attacked, note that, while he knows about
the existence of a adjacent enemy, he doesn’t know the
exactly position. The agent knows his eight possible
actions, but the attack actions will only be considered
when near to an enemy.

A. The training cycle
A intelligent agent, the target tile (the agent's goal),

and three enemies are instantiated in different random
positions. At every instant of time the agent will choose
one of his 8 possible actions, there’s 20% of chance of
picking a totally random action, although in 80% of the
cases the agent will opt by the action that he considers
the best to take in his current state, based on a table of
states to actions. After executing a action the current
state of the agent will be updated and the Q value for
that action on the table will receive a reinforcement,
that can be positive or negative, depends on the action.

The following actions generates a positive
reinforcement:

● Attack an enemy.
● Reach the objective, while not adjacent to an

enemy.
● Approach the objective, while not adjacent to

an enemy.
The following actions generates a negative

reinforcement:
● Attack empty tiles.
● Ignore the adjacent enemies by choosing any

action other than attack them.
● Move away from the objective.

The reinforcement is passed to the gain function of
the Q-Learning and the value of the action is updated.
The cycle will be repeated many times, until that,
eventually, all the weights will be adjusted, and the
agent will be capable to trace a route from any position
in the matrix, and beside that, he’ll learn to not ignore is
enemies, attacking they everytime they’re adjacent,
reaching a optimized state.

B. Victory and Defeat State
The agent and the enemy have health points value

(HP), and attack points. The agent starts with 100 HP,
and have 50 attack points, the enemies start with 100
HP and have 30 attack points. If the agent ever ignore
an adjacent enemy, he’ll suffer an attack from that
enemy and his HP will be reduced. If his life reaches

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Short Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 620

zero, the agent will die. The agent will reach the
defeated state everytime he dies or if he enter in an tile
occupied by an enemy. The victory state is achieved
when the agent reaches the objective tile, even if he
didn’t have defeated all the enemies. Achieve a victory
or defeat state means that the instance will be restarted,
all the enemies are respawned in the same tile, and the
agent is respawned in a new random tile, but everything
he learned will be kept for the next generation.

VIII. RESULTS EVALUATION

In order to observe the effectiveness of the
algorithm, experiments were performed and log files
were extracted. The analysis was performed in two
different ways, and we will see each one separately.

C. Turn Point Valuation
Due to the unsupervised learning characteristics of

the Q-Learning algorithm and the intrinsic randomness
of the environment proposed in this project, it’s
necessary to adopt a policy to evaluate the results of
intelligent agent training. Let’s consider as a turning
point the generation were the number of victories
exceeds in 10 the number of defeats. The tests were
performed in matrices of three different sizes, the
results were extracted through log.

The agent was trained in two matrices of different
sizes: the first a 5x5 matrix and the second a 10x10
matrix. The program was executed 10 times in each
matrix, the results can be observed in figures 1 and 2.

Figure 1. Observation of the Turn Point in a 5x5 Matrix.

Figure 2. Observation of the Turn Point in a 10x10 Matrix.

From the analysis of the two graphs we noticed that
in the 5x5 matrix the values of the turning point were
much higher than the turning points of the 10x10
matrix. We can then conclude that since both matrices
have the same number of enemies, it is easier for the
agent to minimize errors in larger matrices, without so

many enemies in its path, the environment becomes
more permissive to route errors, causing the agent
achieve victory status very easily.

D. Time-Lapse Evaluation.
Another way to observe the behavior of the agent is

to analyze only one execution of the program over a
large number of generations, allowing us to observe
how long the agent takes to reach its maximum learning
state. The agent was trained for 1000 generations in
matrices with 3 different configurations.

Figure 3. Example of a log file for Time-Lapse Evaluation.

Figure 4. Example of a log file for Time-Lapse Evaluation.

.

Figure 5. Configuration of the Matrix referring the Graph of Fig. 4.

The test represented by figures 5 and 6 occurred in a
7x6 matrix, with the objective in tile [5] [3], and the
enemies in tiles [1] [2], [2] [4] and [3] [2]]. After 1000
generations the agent achieved a victory rate of 72.4%.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Short Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 621

Figure 6. Graph of percentage of victories in a thousand generations

2.

Figure 7. Configuration of the Matrix referring the Graph of Fig.6.

The test represented by figures 7 and 8 occurred in a
7x6 matrix, the objective being in tile [3] [5], and the
enemies in tiles [1] [3], [5] [3] and [3] [2]. After 1000
generations the agent achieved a victory rate of 89.2%.

Figure 8. Graph of percentage of victories in a thousand generations

3.

Figure 9. Configuration of the Matrix referring the Graph of Fig. 8.

The test represented by Figures 9 and 10 occurred in
a 7x6 matrix, the objective being in tile [3] [4], and the
enemies in tiles [2] [4], [4] [4] and [3] [2]. After 1000
generations the agent achieved a victory rate of 85.0%.

Figure 10. Comparison between the three executions.

After analyzing all the executions, we can see that in
the first 100 generations, the agent reaches his
maximum learning capacity, and that in about 400
generations the agent's winning rate changes very little,
tending to remain stable at future time stamps.

We also verified that in the first execution the
learning rate of the agent was much lower than in the
other two, we can conclude that the fact that we have
positions in the matrix in which the agent is adjacent to
two enemies at the same time affects the good
functioning of the learning process.

IX. CONCLUSION

In the field of Artificial Intelligence for Games, the
Machine Learning Techniques have an enormous
capacity of implementation to be explored, they have
great uses isolatedly, and even more potential if we bind
then together.

The test phases proved to be extremely important,
since it made clear a failure in the agent's learning in
situations where, incidentally, it would be adjacent to
two enemies. Therefore, this failure should be addressed
in future implementations.

We analyze the various steps of implementing an
intelligent agent, and we can see how it behaved in
different situations. The dynamism of Q-Learning has
helped to produce an agent capable of generalizing and
reacting to different environments.

REFERENCES
[1] I. Millington and J. Funge, Artificial Intelligence for Games.

CRC Press, 2006.
[2] R. Sutton and A. Barto, Reinforcement Learning: An

Introduction. MIT Press, 1998.
[3] T. Mitchell, Machine learning. Boston: McGrawHill, 1997.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Short Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 622

