
Procedural terrain generator for platform games using Markov chain

Gleidson Mendes Costa

Vision and Image Processing Laboratory - VIPLab

Universidade Federal do Maranhão - UFMA

São Luis-MA, Brasil

gleidsonmcosta@gmail.com

Tiago Bonini Borchartt

Vision and Image Processing Laboratory - VIPLab

Universidade Federal do Maranhão - UFMA

São Luis-MA, Brasil

tiago.bonini@ufma.br

Abstract— The game design is a complex and huge task and

game companies spend much time to create a beautiful and

exquisite design for a video game. The terrain is the most

extensive part of a game. Some games need to present

different terrains on each level so that the game does not

become repetitive to the players. Procedural Terrain

Generation is a technique that can streamline much of this

work using algorithms to create new terrain randomly. This

work presents a methodology for procedural terrain

generation for 2D platform games. The approach developed

was based on the use of Markov models, specifically the

hidden Markov chains, to produce new terrain

probabilistically. The results show that the technique

presented here is able to generate a 2D platform game terrain.

Keywords- 2D platform game; procedural terrain

generation; Markov models; hidden Markov chains

I. INTRODUCTION

The game design is a complex and huge task, it requires
putting in a lot of manpower and material resources and
spend some time in order to create a beautiful and exquisite
design of good games.

One of the most essential aspects of most video games
is the terrain that the player will traverse. Procedural Terrain
Generation (PTG) can streamline much of this work using
pseudo-random algorithms. The term PTG refers to the
creation of content by an automated system, rather than
being produced manually [1].

There are many of effective techniques currently that
can be applied to procedural game content generation.
However, the main algorithms are based on noise function.
The Diamond-Square Algorithm proposed by [2] have
fractal nature based on recursive subdivision. In [3], several
noise functions are compared to generating terrain texture:
Value Noise, Perlin Noise, Simplex Noise and Whorley
Noise. The authors conclude that each technique present a
weak point, e.g., Simplex Noise is very difficult to
implement in a game context, Value Noise are very simple,
but need a secondary interpolation function based on
fractional Brownian motion to generate a good result.

2D platform games are on the rise due to recent big hits
in mobile operating systems, e.g., Angry Birds and Super
Mario Run, each with more than 100 bi downloads [4][5].
A platform game is a video game genre of action game
where the player controls a character or avatar to jump
between suspended platforms and avoid obstacles.

In [6], the authors presented a hierarchical approach to
generating 2D platform video game maps using multi-
dimensional Markov chains for learning, sampling and
clustering for finding high-level structures. Their approach

need a training data instead of domain knowledge to
generate a new map.

The objective of this work is present a methodology for
procedural terrain generation for 2D platform games. The
approach developed was based on the use of Markov
models, specifically the hidden Markov chains, to produce
new terrain probabilistically.

The game designer can define the terrain behavior of the
game by reporting a transition matrix, where each state is a
terrain element.

Finally, a filtering method was applied to verify the
consistency and viability of the terrain generated. Therefore,
such tool may aid the game designer during the game
development and improve the overall quality of the game.

In the next section, we present the fundamental concepts
to understand the developed methodology. In Section III the
PTG methodology developed are presented. Section IV
discusses the obtained results. The Section V shows the
conclusions and future works.

II. BACKGROUND

A. 2D Platform Game

Platform games originated in the early 1980s, with 3D

successors popularized in the mid-1990s. The term

describes games where jumping on platforms is an integral

part of the gameplay and came into use after the genre had

been established [7].

One of the most famous platform game is “Super Mario

World” (SMW). This game was launched in 1990, and now

is a classic and successful game. SMW is still used as a

template for many games titles of the same genre. It is a

platform-based game, where the main character must

follow a path picking items and destroying or deviating

enemies.

The return of 2D games would be related to aspects of

nostalgia or aesthetics. The 2D style is not necessarily a

technical limitation, since just as hardware has evolved and

transformed the 3D gaming experience, these techniques

may well be applied in two-dimensions [8].

According to [9], mobile games emerge as the favorite

of the public, with 43.6% choosing smartphones as best to

play. In them, the games need to be very "light", which does

not mean that they must be simple, but that they cannot use

high realism to be accepted in the market. This combination

of factors enabled the return of 2D games, in particular

platform games.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Short Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 671

B. Procedural Terrain Generation (PTG)

Player demand for more content is increasing as games

grow in complexity and scope. Traditionally developers

have hand-crafted content for games, requiring a

substantial investment of time and resources.

Procedural content generation methods are used to

create content algorithmically instead of manually [10].

PTG are specific techniques for the generation of terrain.

Virtual terrains have an important role in computer

graphics, and their applications range from landscape

design and flight simulators to movies and computer

games. A terrain is the dominant visual element of the

scene, or it plays a central part in the application.

Procedural techniques are a popular choice in game

development because of the simple implementation and

wide range of terrains they provide when a few parameters

are changed [11].

The desire for automatic terrain generation stems from

the goal of provide a new content to player without a large

investment of developer resources.

In [12], the authors cite the properties of a PTG

technique:

• Novelty: contains an element of randomness and

unpredictability;

• Structure: is not merely random noise, but contains

larger structures;

• Interest: has a combination of randomness and

structure that players find engaging;

• Speed: can be quickly generated;

• Controllability: can be generated according to a set

of natural designer-centric parameters.

In 2D platform games, PTG techniques can be used to

generate the path that the character will have to pass to

complete the level. When the player learns the static path

of a level, the game tends to get less interesting to him. The

PTG makes the game dynamic and challenging at every

new level.

C. Markov chains

A stochastic process is a family of random variables
representing the evolution of a value system over time. In
cases of discrete time, as opposed to continuous time, the
stochastic process is a sequence of random variables, such
as a Markov chain [13].

Define X(t) a random variable evolving as a function of
time. Let X(0) = 1, X(1) = 6, X(2) = 2, X(3) = 5. This
evolution process is called Markovian if its evolution does
not depend on its past, but only on its current state.

A theoretical model called “Markov Model” or “Markov
chain” can model a Markov process.

Markovian chains modeled a set of states. These states
are co-related in a matrix, where each combination is a
probabilistic chance of a state go to another. The set of
probabilistic values of the output and arrival at a new state
become a state transition matrix. There are two types of
Markovian models: observable and hidden.

1) Observable Markov chain

The evolution of the Markov process can be presented by

a state transition graph that shows the structure of the

process according to the following rules [14]:

• States are represented by nodes that belong to the

alphabet ‘S’ of states, S = {s1, s2, …, sn);

• The transitions (possibilities of passing from one

state to the other state) are represented by (directed)

edges, they are weighted by their probabilities. The

probabilities are grouped in a transition matrix ‘A’:

𝐴 = {𝑎𝑖,𝑗 = 𝑃(𝑠𝑖|𝑠𝑗)}, 𝑤ℎ𝑒𝑟𝑒 ∑ 𝑎𝑖,𝑗
𝑁
𝑗=1 = 1 (1)

• The starting probabilities are the probabilities of

starting in one state or another. They are grouped

into a startup vector ‘∏’:

∏ = {𝜋𝑖 = 𝑃(𝑠𝑖)}, 𝑤ℎ𝑒𝑟𝑒 ∑ 𝜋𝑖
𝑁
𝑖=1 = 1 (2)

A model λ is observable because states are directly

observable, and a transition matrix A and an initialization
vector ∏ characterize the model, where:

𝜆 = {∏, 𝐴} (3)

2) Hidden Markov chain

In a Hidden Markov Model (HMM) the states S = {s1,

s2, …, sn), are not observable. However, they emit

observable signals O = {o1, o2, …, ot) that are weighted by

their probabilities.

An HMM is characterized by Eq. (5), a transition matrix

A, an initialization vector ∏ and an emission matrix B,

defined by:

𝐵 = {𝑏𝑖(𝑜𝑘) = 𝑃(𝑜𝑘|𝑠𝑖)}, 𝑤ℎ𝑒𝑟𝑒 ∑ 𝑏𝑖(𝑜𝑗)𝑇
𝑗=1 = 1 (4)

where, bi is probability of the state si to emit the signal ok.

𝜆 = {∏, 𝐴 , 𝐵} (5)

III. METHODOLOGY

The methodology is based on the follow steps:
1. Define the alphabet states S = {s0, s1, ..., sn};
2. Define startup probabilities vector: ∏ = {𝜋𝑖 =

𝑃(𝑠𝑖)};
3. Define the trasition matrix probabilities: 𝐴 =

{𝑎𝑖,𝑗 = 𝑃(𝑠𝑖|𝑠𝑗)};

4. Sorts the initial state conform ∏;
5. Sorts the next state conform 𝐴;
6. Validate generated state, if not valide, repeat step 5;
7. Repeat steps 5 and 6 until reach the end of the level.

The first 3 (three) steps are dependent from the

application, where the game designer defines the
components that compose the terrain.

The game designer can change the elements of the
alphabet in the first step. The elements entered by the
designer are used to generate terrain.

The probability that each terrain of the alphabet has to
appear as the first element of the terrain is defined in the
second step. The game designer is free to choose the
probability values of vector ∏ and matrix A.

The step 4 sets the initial state. The steps 5 and 7 build
the terrain of the game, following the probability of the
Markovian process observable, explained in Section II.

The step 6 is necessary to avoid sequences that escape
the expected behavior of the terrain, e.g., distances that the
character cannot jump.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Short Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 672

After create the platforms to the current level at the
game, another Markov process are executed to populate the
scenery with decorative elements. This process is based on
HMM. An emission matrix is defined based on the alphabet
of states. Each component generated by the previous steps
receive a decorative element predetermined by the game
designer and sorted conform HMM.

IV. RESULTS

The methodology was implemented in Unity game

engine [15]. An experiment was conducted with 12

different possible states. The states can be seen in Figure 1.

Figure 1. Alphabet defined as sample.

The follow initialization vector ∏ was used in the
experiments with the values in Table I:

TABLE I. INITIALIZATION VECTOR ∏.

1 2 3 4 5 6 7 8 9 10 11 12

0 0 0 0 0 0 0 0 1 0 0 0

The initialization vector probabilities make the level

always start with the state 9.
The transition matrix A was defined by Table II.
Figures 3, 4 and 5 show the result of applying the

technique to generate platforms for a 2D game, based on
Markov chain. The game was developed in Unity game
engine.

The scenes shown in Figures 3 and 4 were produced
without the step of inserting decorative elements. The scene
presented in Figure 5 represents the application of the
complete method developed.

The decorative elements selected to experiments are
showed in Figure 2.

The emission matrix B was defined with the values in

Table III.

TABLE II. TRANSITION MATRIX A.

 1 2 3 4 5 6 7 8 9 10 11 12

1 0.4 0 0 0 0.1 0 0.1 0 0.4 0 0 0

2 0.2 0.2 0 0 0 0 0 0 0 0 0 0.6

3 0 0 0.2 0.1 0.1 0.1 0.1 0.2 0 0.2 0 0

4 0 0 0.2 0.2 0 0 0 0.2 0 0.2 0 0.2

5 0 0 0.2 0.2 0 0 0 0.2 0 0.2 0 0.2

6 0 0 0.2 0 0 0.4 0.2 0 0 0 0 0.2

7 0 0 0.2 0 0 0 0.4 0.2 0 0.2 0 0

8 0 0.5 0 0 0 0 0 0 0 0 0 0.5

9 0 0 0.4 0.1 0.1 0 0 0.2 0.2 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 1

11 0 0 0.4 0.1 0.1 0 0 0.2 0.2 0 0 0

12 0 0 0 0 0 0 0 0 0.5 0 0.5 0

Figure 2. Decorative elements.

TABLE III. EMISSION MATRIX B.

 1 2 3

1 1 0 0

2 1 0 0

3 0 0.5 0.5

4 0.2 0.4 0.4

5 0.2 0.4 0.4

6 0.2 0.4 0.4

7 0.2 0.4 0.4

8 0.2 0.4 0.4

9 0.2 0.4 0.4

10 0.2 0.4 0.4

11 0.2 0.4 0.4

12 1 0 0

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Short Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 673

Figure 3. Sample of generated level by Markov chain.

Figure 4. Sample of generated level by Markov chain.

Figure 5. Complete level generated by Markov chain.

V. CONCLUSION

In this paper, we apply a stochastic model for the

creation of terrain for 2D platform games. The PTG method

is based on the probability of a new state is created from

the current state, where each state represents a different

segment of terrain. The land tends to connect

probabilistically.

However, only an application of this probabilistic

method can render the result unfeasible in a game, as it can

create new states that hurt consistency of the terrain. To

avoid inconsistent terrain, a rule filter was applied.

The hidden Markov model was applied as a second step

to populate the terrain created with decorative game entities

such as trees, shrubs, rocks, etc.

The methodology shows good results, as can be seen in

Figures 3, 4 and 5. The method applied for filtering the new

states produced to maintain the consistency are useful and

the use of Markov chains alone was insufficient to obtain a

productive result.

Thus, advances must be made to improve the use of

hidden Markov chains, because despite obtaining a useful

result, some errors occur, e.g., the instance of elements in

places that should not exist, as in the case of the instance of

a decorative element on top of an empty terrain segment.

REFERENCES

[1] T. J. Rose and A. G. Bakaoukas, “Algorithms and Approaches for

Procedural Terrain Generation - A Brief Review of Current
Techniques,” 8th International Conference on Games and Virtual
Worlds for Serious Applications, Barcelona, 2016.

[2] G. S. P. Miller, “The definition and rendering of terrain maps,” ACM
SIGGRAPH Comput. Graph., vol. 20, no. 4, pp. 39-48, 1986.

[3] T. Archer, “Procedurally Generating Terrain,” 44th Midwest
Instruction and Computing Symposium, Duluth, 2011.

[4] Angry Birds Classic – Apps no Google Play, Available at
https://play.google.com/store/apps/details?id=com.rovio.angrybird
s, Accessed in 03 ago 2018.

[5] Super Mario Run – Apps on Google Play, Available at
https://play.google.com/store/apps/details?id=com.nintendo.zara,
Accessed in 03 ago 2018.

[6] S. Snodgrass and S. Ontañón, “A Hierarchical MdMC Approach to
2D Video Game Map Generation,” Proceedings of The Eleventh
AAAI Conference on Artificial Intelligence and Interactive Digital
Entertainment, 2015.

[7] S. Rabin, “Introduction to Game Development,” Vol. 1, Editora
Cengage Learning, 2012.

[8] A. Santee, “GS2D e C++: 2D da nova geração em alto nível,” In
Ponto V: Programação de Jogos Profissionais, Available at:
http://www.pontov.com.br/site/cpp/64-gs2/225-gs2d-e-c-2d-da-
nova-geracao-em-alto-nivel, Accessed in 03 ago 2018.

[9] W. Wakka, “Brasileiro joga mais no smartphone e ainda está na
geração passada de consoles,” Available at:
https://canaltech.com.br/games/brasileiro-joga-mais-no-
smartphone-e-ainda-esta-na-geracao-passada-de-consoles-
113590/, Accessed in 03 ago 2018.

[10] J. Togelius, G. N. Yannakakis, K. O. Stanley and C. Browne,
“Search-based procedural content generation: A taxonomy and
survey,” IEEE Transactions on Computational Intelligence and AI
in Games, Vol. 3, No. 3, pp. 172–186, 2011.

[11] J.-D. Genevaux, É. Galin, É, Guérin, A. Peytavie and B. Benes,
“Terrain Generation Using Procedural Models Based on
Hydrology,” ACM Transactions on Graphics, Vol. 32, No. 4, 2013.

[12] J. Doran and I. Parberry, “Controlled Procedural Terrain Generation
Using Software Agents,” IEEE Transactions on Computational
Intelligence and AI in Games, Vol. 2, No. 2, pp. 111-119, 2010.

[13] R. G. Gallanger, “Stochastic Processes: Theory for Applications.”
1st Edition, Hardcover, 2014.

[14] C. Deng and P. Zheng. “A new hidden markov model with
application to classification,” In Intelligent Control and Automation,
2006.

[15] Unity, Available at: https://unity3d.com/pt, Accessed in 03 ago
2018.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Short Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 674

