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Abstract—In General Game Playing (GGP), artificial intel-
ligence methods play a diverse set of games. The General
Video Game AI Competition (GVGAI) is one of the most
famous GGP competitions, where controllers measure their
performance in games inspired by the Atari 2600 console.
Here, the GVGAI framework is used. In games where the
controller can perform simulations to develop its game plan,
recognizing the chance of victory/defeat of the possible resulting
states is an essential feature for decision making. In GVGAI,
the creation of appropriate evaluation criteria is a challenge
as the algorithm has no previous information regarding the
game, such as win conditions and score rewards. We propose
here the use of (i) avatar-related information provided by the
game, (ii) spacial exploration encouraging and (iii) knowledge
obtained during gameplay in order to enhance the evaluation
of game states. Also, a penalization approach is adopted. A
study is presented where these techniques are combined with
two GVGAI algorithms, namely, Rolling Horizon Evolutionary
Algorithm (RHEA) and Monte Carlo Tree Search (MCTS).
Computational experiments are performed using 20 deter-
ministic and stochastic games, and the results obtained by
the proposed methods are compared to those found by their
baseline techniques and other methods from the literature. We
observed that the proposed techniques (i) presented a larger
number of wins and F1-Scores than those found by their
original versions and (ii) obtained competitive solutions when
compared to those found by methods from the literature.

Keywords-General Video Game Playing; Game State Evalu-
ation; Monte Carlo Tree Search; Rolling Horizon Evolutionary
Algorithm;

I. INTRODUCTION

For a long time games have been used to test new artificial
intelligence (AI). As the definition of intelligence varies,
developing tests to measure AI techniques performances is
considered a great challenge. Some characteristics associated
with the intelligent behaviour are the capacity for logic
reasoning, understanding, learning, planning and problem-
solving. Depending on the game one or more of these
characteristics are a necessary part of some players scope
of abilities to perform well. Therefore, once games usually
have a well-defined set of rules and objectives, developing
game playing agents is considered to be an easy and valid
way to test new AI techniques.

In past decades, game playing controllers have experi-
enced significant improvement, even managing to surpass
expert human players in some cases, such as in the board

games GO (1) and chess (2). Despite the good results found
by these methods, they are commonly designed to a specific
game, having no capability of generalizing the skill used
or learned to perform well in other games. This limitation
brings the challenge of developing and studying controllers
capable of such generalization. In order to provide an
environment to study and develop AI methods with such
characteristics, new forms of testing and creating controllers
arose, where techniques can be tested in different games
with only a little knowledge of the environment they are
playing in. Three of these new environments are: (i) General
Game Playing Competition (GGP) (3), that challenge the
controllers with board games; (ii) Arcade Learning Envi-
ronment (ALE) (4); and (iii) General Video Game Playing
Competition (GVGAI) (5). The last two cases consider Atari
2600 based arcade games to challenge the AI with the
difference that ALE presents the world to the controller as
a screen capture. Here, the GVGAI competition framework
and rules are used.

In game playing, the correct evaluation of the advan-
tageous or disadvantageous features on a given game is
a way of improving the playing skills, as one can plan
to divide the winning condition in smaller and easier to
conquer objectives. Using human knowledge to improve the
performance of AI agents was first used in the pioneer self-
learning checkers playing method developed by Samuel (6),
where the technique chooses from a list of possible desirable
characteristics the ones which better enhance the probabil-
ity of winning the game. Since then, most of the high-
level game playing algorithms perform some kind of state
evaluation, being provided by humans (6) or automatically
generated evaluations with machine learning (2).

In GVGAI, the controllers do not have much time to
adapt to the games. So, performing the analysis necessary
to find which conditions are favourable to that specific
game is a challenge. Here, we explore the techniques of
general state evaluation, analyzing three approaches and
their impact when combined with two popular GVGAI
algorithms, namely, Rolling Horizon Evolutionary Algo-
rithm (RHEA) and Monte Carlo Tree Search (MCTS). The
first technique considers avatar-related game features, its
health and the number of resources in its possession. In the
second approach, the exploration of the map is encouraged
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through a penalization in the evaluation when the avatar
remains in a same region of the level it is playing. The last
technique proposed here involves different forms of using
the knowledge obtained in the simulations. This is done
by recording the outcome of the collision with the sprites
during the game and increasing the evaluation score when
the avatar is near beneficial sprites and decreasing when
around harmful ones.

This paper is divided into 7 sections. A literature review
of state evaluation techniques in both GVGAI and GGP is
presented in Section II. Section III contains the background
information about the framework and testing algorithms
used. Our proposed techniques are detailed in Section IV.
The computational experiments results and discussion is
present in Section V. In Section VI we present our con-
cluding remarks and future work.

II. LITERATURE REVIEW

This section presents algorithms found in the literature on
state evaluation in general game playing.

Many works can be found in the literature regarding eval-
uating states in GGP. These techniques focus on gathering
information from the game rules, being by feature selection
(7)(8) or using neural networks (9). These methods achieved
interesting results when compared to UCB (Section III-B)
based techniques.

Some performance metrics to test GVGAI algorithms
are proposed by Guerrero-Romero et al. (10) where the
controllers have different objectives in the game, such as
exploration maximization, knowledge discovery and estima-
tion. A heuristic is proposed for each evaluation metric,
which rewards its specific objective.

Perez et al. (11) in their work proposed the use of some
penalty values in the evaluation; The opposite action penalty,
that punishes using spacial redundant actions, which would
not change the avatar position (e.g. moving left then right).
Blocked movement penalty diminishes the evaluation of
states obtained after applying movements that do not change
the position os the avatar (e.g. moving against a wall).
Repelling pheromones trails, a technique where the position
visited by the avatar and its proximity is marked and its
value is subtracted from the evaluation value.

A knowledge-based evaluation (KB) approach is one of
the proposed techniques by Soemers, Dennis et al. (12) to
enhance MCTS performance. This technique keeps a record
of the avatar collisions occurred through the game and its
outcomes. Thus it rewards or penalizes the proximity with
sprites that are to be considered beneficial or prejudicial to
the avatar, respectively.

Similarly to KB evaluations, Park, Hyunsoo and Kim,
Kyung-Joong (13) proposed a heuristic where the infor-
mation gathered in the simulations is used to define the
goodness of sprites, but instead of using the distance to the
components of the game this approach builds an influence

map using this information. This influence map is used then,
to bias the evaluation based on the position of the avatar.

III. BACKGROUND

A background is presented in this section, containing
a description of GVGAI framework (with the rules of
the competition), the main GVGAI controllers (RHEA and
MCTS), and the algorithms used in the comparative analysis
of the computational experiments.

A. GVGAI Framework

GVGAI framework is a Java-coded environment that
allows the creation of controllers to play a set of single and
multiplayer 2D Atari inspired games. These games can be
classified into different categories and difficulties (14; 15),
challenging the controllers to discover and complete differ-
ent types of objectives.

To describe the different games a Video Game Description
Language (VGDL) (16) was created, that allowed another
venue of research to arise, the automatic generated games
and levels. The competition rules are defined in a way that
all games must have a win condition, a time limit for that
condition to be reached and a game score. In the competi-
tion, results are defined using a Formula-1 scoring system
(F1-Score). Once all controllers have played one game, a
rank is made by sorting first by the number of victories,
followed by the average game score and the average time
they spent to finish a given game. According to this rank
position, the agents receive 25, 18, 15, 12, 10, 8, 6, 4, 2
and 1 points, from the first to the tenth ranked player, with
the rest receiving 0 points. When compared across different
games, the controller that achieves the highest F1-Score is
considered the winner.

Before starting, the player has no previous information
about which game it is going to play. However, in order to
better plan its strategy, it is provided with a series of data
about the current state of the game. A list of observations
is given with the position of each sprite, the category of
that sprites type, whether it is a wall, non-player character
(NPC), portal, resource, movable or immovable. A set of
avatar-related information is also provided such as its current
position, available actions, type, health points, resources,
score and game time. This information is used together
with a simulation system called Forward Model (FM) where,
given a previous current or simulated state, allows for the
controller to obtain one possible resulting state (as games
may be stochastic) after performing an action. The controller
must inform a valid action every game tick (defined as
40ms in the competition). Hence, a good strategy with a
low computational cost is important.

B. Monte Carlo Tree Search (MCTS)

Since the success obtained by a Monte Carlo Tree
Search (17) combined with a neural network in playing
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Figure 1. Monte Carlo Tree Search scheme

the game GO (1) this technique has been explored in the
game playing field of study obtaining significant results.
Throughout GVGAI competition, MCTS-based algorithms
have dominated other techniques. A vanilla version of the
algorithm provided by the framework is used here in the
computational experiments.

In MCTS algorithm a root node is created at each game
step. Then, as shown in Figure 1 the algorithm repeats four
steps during the given time budget. First, a non-terminal
node with unvisited children is selected by descending the
root node using a tree policy. Then this node is expanded
by adding a new child to it. From this node, a default policy
(applying random actions) is used to simulate using the FM
until a predefined depth is reached. Finally, the state reached
after the simulation step is evaluated using a heuristic and its
value is used to update all the nodes that have been visited
during this iteration. The algorithm returns the child of the
root node that is considered the best action (e.g. that with
the highest evaluation value or the most visited one).

The tree policy is obtained by using a Upper Confi-
dence Bounds (UCB) derived function called Upper Con-
fidence Bound for Trees (UCT) (Equation 1) to balance the
exploration-exploitation and obtain the maximum reward.
This policy consists of, for every node visited, a child node
j is chosen to maximize UCT function

UCT = Xj + 2 ∗ Cp

√
2 lnn

nj
(1)

where Xj is the average reward from arm j, n is the
number of times the current node has been visited, nj the
number of times child j has been visited and Cp > 0 is a
constant.

C. Rolling Horizon Evolutionary Algorithm (RHEA)

Rolling Horizon Evolutionary Algorithm is an algorithm
first proposed by Perez et al. (18) where a set of actions are
evolved to play real-time single player games. As shown in
Figure 2, in GVGAI each individual is represented by the
horizontal lines containing each a sequence of actions that
are performed from the current state Ei using FM. After
the simulation, the final simulated Es state evaluation value
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Figure 2. Illustration of RHEA population with the initial (Ei) and
simulated (Es) states.

becomes the fitness of that individual. Once all individuals
are evaluated, the algorithm evolves to a new population,
this process is repeated until the time budget is reached.
When the time budget is reached, the individual with the
best evaluation value first action is applied to the game and
the controller starts evolving a new population in the next
game tick.

Though not many studies where made regarding RHEA,
recent results obtained from modified versions (19)(20) sug-
gests it can achieve competitive results to MCST algorithm.

D. Baseline Algorithms

The algorithms described in this section are used in the
experiments to provide a baseline towards the efficiency of
our proposed heuristics. These algorithms were chosen as
they propose different evaluation methods.

1) Win Score: The first approach consists of the same
testing algorithm using the simple state heuristic provided
in by the framework. It prioritizes the two main objectives
considered in the competition. As shown in Equation 2,
this is done by returning a huge positive or negative score
for winning or losing states respectively, and returning the
current score P when none of these states is reached.

E(S) =





∞ if Win State
−∞ if Lose State
P Otherwise

(2)

This heuristic is also used as a baseline for our proposed
methods.

2) Influence Map: This is the algorithm proposed by
Park, Hyunsoo and Kim, Kyung-Joong (13)1 the proposed
approach consists of determining the goodness of each sprite
to create an influence map based on that information, and
use the value on where the avatar is positioned to bias MCTS
UCT equation.

1dropbox.com/s/ex0iriqwqfg40hx/GVGAI.zip?dl=0
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3) MaastCTS2: This algorithm created by Soemers, Den-
nis et al. (12)2 and was the champion of 2016 single
player and runner-up on the Two-player competition track.
It consists of an MCTS-based algorithm with several en-
hancements. The evaluation technique used was named
Knowledge-Based Evaluations, and consists of setting a
weight for each sprite and a dynamic update to its values
through every game tick, recording the collision outcome
with sprites and slightly increasing all weights where no in-
formation is obtained. It uses A* algorithm (21) to calculate
the distance between them and the closest of each sprite and
penalizes or increases the evaluation score for being near bad
or good sprites respectively.

Other enhancements are also implemented, among them:
Tree Reuse, considers the entire subtree rooted in the node
corresponding to the action taken in the game. Progressive
History and N-Gram Selection Technique, introduce a bias in
the respective steps towards playing actions, or sequences of
actions, that performed well in earlier simulations. Breadth-
First Tree Initialization, generates the direct successors of
the root node before starting the search. Safety Preprun-
ing, that count the number of immediate game losses and
only keep the actions leading to nodes with the minimum
observed number of losses. Loss Avoidance where the algo-
rithm ignores losses by immediately searching for a better
alternative whenever a loss is encountered the first time a
node is visited. Novelty-Based Pruning uses Iterated Width
(IW) (22) algorithm to prune redundant lines of play during
the selection step of MCTS. Deterministic Game Detection,
detects the type of game it is playing and treats deterministic
and stochastic games differently.

4) TeamTopbug_NI: This refers in the result section to the
RHEA variation proposed by Perez et al. (11)3, that achieved
the best results when compared to the tree-based techniques
with the same changes proposed in that paper and was the
4th best technique of the GVGAI 2014 Competition.

The evaluation technique proposed is based on the Win
Score heuristic with some penalties applied. The penalties
are the use of opposite actions such as moving left after
moving right and using moving actions with no change
in the avatar position, e.g. moving against a wall. Also,
a repelling pheromone trail is secreted by the avatar and
the amount of pheromone in the position being evaluated
is subtracted from that state reward. This stimulates the
controller to explore new regions of the game level. These
pheromones are updated every game tick with the avatar
location according to a diffusion equation and a decay factor
is applied.

IV. PROPOSED GAME HEURISTICS

The baseline of the proposed approach is the heuristic
provided by the competition framework (Section III-D1), as

2github.com/DennisSoemers/MaastCTS2
3github.com/xaedes/open-loop-search-for-general-video-game-playing

it prioritizes the main game objectives: lose avoidance, win-
ning and score. It is hard to observe modifications in E(S)
in some GVGAI games, given the restricted computational
budget. Thus, we propose strategies for differentiating states
with the same score. In this way, Equation 2 is replaced by

E(S) =





∞, if win state
−∞, if lose state

P −
C∑

c=1

εc ×Nc, otherwise
(3)

where Nc represents the penalty value when the characteris-
tic c is observed, εc is the penalty coefficient and indicates
the relevance of the c-th characteristic, and C is the number
of characteristics. Similarly to the baseline algorithm, a very
huge positive (or negative) value is returned in case of a win
(or lose) state. Otherwise, E(S) is the score P penalized
using a static penalty method. One can notice that larger
values of E(S) are preferred. The proposed Nc values are
defined in the following sections.

A. Avatar Status

In games, the characteristics of the avatar are good indica-
tors of its probability of winning the game. An avatar status
penalty (ST ) value is created and it is obtained combining (i)
the avatar’s current health points (HP ) and (ii) the number
of resources gathered (RG). As HP and RG vary during
the game, we decided to normalize them between 0 and 1.

The difference between the current HP (CurHP ) and
its maximum value (MaxHP ) in the evaluated state is
normalized as

NHP =
MaxHP − CurHP

MaxHP
(4)

As there may be more than one resource in the game,
a summation is necessary. For each resource i, its current
quantity (CurRGi

) normalized by the maximum amount
gathered until that moment in the game (MaxRGi

) is
considered to calculate NRG. Thus, −NRG is the mean of
the normalized values of the resources and is calculated as

NRG = −
∑ CurRGi

MaxRGi

|RG| , (5)

where |RG| the number of resources in the game. Due to the
improvement in the controller performance when gathering
more resources, NRG is a negative value.

Given the NHP and NRG values calculated, respectively,
in Equations 4 and 5, NST can be calculated as

NST = NHP +NRG. (6)

NHP and NRG values are only considered in games with hit
points measure or resources to be gathered. As NHP ∈ [0, 1]
and NRG ∈ [−1, 0], NST assumes values between -1 and 1.
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B. Spacial Exploration Maps

A spacial influence map is a heuristic developed in order
to stimulate the spatial exploration. This is similar to the
pheromones of TeamTopbug_NI (Section II). However,
the matrix here is updated with the position of the avatar
only (no diffusion is used), the penalization value is up-
dated considering also the area explored through simulation,
higher penalization values (> 1) are used, and there is no
decay over time. An example of the techniques to stimulate
exploration mentioned here are given in Figure 3. With this
modification, we expect (i) to reduce the processing time
spent by removing the matrix diffusion and decay update, (ii)
to enhance the exploration by penalizing the area explored
during the simulations and (iii) to reduce the chance of
penalizing a potentially good location as only the places
where the avatar explored are penalized (the neighbour is
not penalized).

In the proposed approach, a two-dimensional matrix is
created with the same size of the maze, i.e., all positions of
the game. Two approaches are tested here: Evaluation Map
(EM ), that keeps score of how many times an evaluation
was taken in that position; and Position Map (PM ), that
records how many times during the simulations the avatar
was in that position. The value of NEM and NPM used in
Equation 3 (corresponding to a given Nc) is the positive
integer value of the matrix in the same position being
evaluated.

C. Knowledge-Based Evaluations

As shown in Section III-D, some studies were already
made using information acquired during simulations to im-
prove the state evaluations in GVGAI. The weighted sum of
the distances to each sprite, as

NKB =
∑

wi × d(i), (7)

where wi is the weight of the i-th sprite and d(i) is the
distance to the i-th sprite.

In computational experiments, the sprites receive an initial
weight w+ = 1, which corresponds to a curiosity value, as
the strategy requires the agent exploring unknown sprites to
acquire information about the game. This value is updated
during the game with wnull = 0 (when the collision does
not provide a change in score) w− = −1 (when the score
decreases), and wloss = −10 or wwin = 10 (when a lose or
win state is observed, respectively).

The distance can be calculated using several measures.
Also, walls, portals and traps can affect the real distance to
the sprites. Here we propose the use of the Euclidean and
Manhattan distances. In the second case, the walls present
in the field are considered: the distance is calculated and
stored for every pair of positions at the beginning of the run,
the pairs that do not present free paths receive a maximum
value established as maze_width+maze_height+1, where

TABLE I. GAMES USED IN THE EXPERIMENT, WITH ITS ID IN THE
FRAMEWORK AND ITS CLASSIFICATION AS DETERMINISTIC (D) OR
STOCHASTIC (S)

Id Name Type Id Name Type
0 Aliens S 4 Bait D
13 Butterflies S 15 Camel Race D
18 Chase D 20 Chopper S
25 Crossfire S 29 Dig Dug S
36 Escape D 46 Hungry Birds D
49 Infection S 50 Intersection S
58 Lemmings D 60 Missile Command D
61 Modality D 66 Plaque Attack D
75 Roguelike S 77 Sea Quest S
84 Survive Zombies S 91 Wait for Breakfast D

maze_width and maze_height are the width and height of
the field, respectively.

In addition, two variants of this approach are tested. In
the first, only the closest sprite of each type is considered
in the distance calculation. In the latter case, the distance is
calculated using all sprites of the same type.

V. COMPUTATIONAL EXPERIMENTS

The results of computational experiments are presented
in this section. Due to a large number of games present in
the framework a subset was selected for the experiments.
This subset is presented in Section V-A along with the
parameters and tests used for evaluating the controllers.
Also, the source-code of the proposal is available4.

A. Setup

A subset of the available games is used to test the heuristic
variations. It contains the 20 games presented in Table I, that
are equally divided in stochastic and deterministic games.
These games are used as a testing set in many (10)(19)(20)
studies. Each controller plays 20 times in each of the 5
different levels available in the framework resulting in 2000
independent runs for each test.

The chosen RHEA parameters for the experiments are
both population size and simulation depth equal 10.

To analyze the performance of the controllers three met-
rics are used here: (i) The official competition metric,
Formula-1 Score presented in Section III-A, (ii) the total
number of wins in all games and (iii) a statistical analysis
using Kruskal-Wallis H test followed by a Mann-Whitney
non-parametric U test (p-value < 0.05) applied to the scores
obtained in each game individually.

B. Parameter Setting

To define the ǫ parameters for each algorithm proposed
the tests presented in Figure 4 were performed, this value
determines the feature priority relative to the score in the
state evaluations. As the executions are very time costly,
in our experiments the values subset {0.001, 0.01, 0.1, 1} is

4https://github.com/BSant/GVGAI_evaluation.
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(a) Initial Position (b) Pheromone

(c) Evaluation Map (d) Simulation Map

Figure 3. Examples of exploring stimulation in the game Roguelike starting at (a). TeamTopbug_NI pheromones technique (b) penalizes the space where
the avatar is and its surroundings. In (c) and (d) is shown a simulation done with the area to be penalized in EM and PM techniques, respectively.

used for all proposed techniques being using the Euclidean
distance and only the nearest sprite of each type for the KB
evaluations tests.

One can notice that in both graphs that the quality of
the algorithm is dependent on the evaluation of game states.
One can notice that in the heuristics tests where the penalty
value is not normalized, with exception of PM with MCTS,
prioritizing the game score over the other metrics is the
way to go. Also, ST presented the most stable performance
through the different parameters, with a small gain over its
vanilla forms.

C. Techniques Comparison

In Table II it is shown the KB results for the permutation
of each variation proposed. The parameter ǫ = 0.001 for all
variants.

All variations performance were really alike in this tests.
Using Manhattan distance increased the results while the
number of sprites did not show much difference in MCTS
algorithm. In RHEA, calculating the value for all sprites
presented an increase in wins and lowers F1_Score, while
using euclidean calculating distance metric got the best out
of Manhattan with only the closest sprite of each type and
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(b) RHEA parameter testing single wins

Figure 4. Number of single wins in all games in all parameter tests performed in relation to the vanilla algorithm.

TABLE II. RESULTS ON KNOWLEDGE-BASED VARIATIONS.

Algorithm MCTS RHEA
Sprites Path Wins(%) F1_Score Wins(%) F1_Score
Closest Euclidean 50.15 364 49.65 374
Closest Manhattan 51.95 343 49.45 356

All Euclidean 50.10 320 50.10 334
All Manhattan 51.85 373 50.80 336

loses when calculating with all sprites.
Due to this dubious results, no definitive conclusion of

which configuration performed better. But as the configura-
tion with all sprites and Manhattan distance low gap (0.1)
form the configuration with most wins and best F1_Score
in MCTS, best win rate in RHEA algorithm, this variation
will be considered the best for the upcoming tests.

The results presented in Table III considers the parameter
ǫ that achieve better single wins: 0.01 for RHEA+EM and
0.001 for the other variants. TeamTopbug_NI controller
is also compared here due to its similarity to out proposed
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penalty maps techniques.

TABLE III. SINGLE WINS AND F1_Score ON TECHNIQUES CITED IN
THIS ARTICLE.

Algorithms MCTS RHEA
Wins(%) F1_Score wins(%) F1_Score

PM 55.60 356 54.95 417
EM 57.60 421 52.90 374

TeamTopbug_NI 54.70 383 54.70 369

From the table, it is possible to see that our
proposed heuristics overall results outperformed the
TeamTopbug_NI map exploring stimulation techniques.

Our evaluation techniques presented different behaviours
with each algorithm. As shown in the table, when combined
with MCTS algorithm EM presented the best performance
while PM synergizes better with RHEA. Though there
are many differences in both algorithms in relation to the
number of evaluations, like the use of it (individual fitness
or in UCT equation) we believe that PM gives more
information on RHEA individuals sequence of action to the
algorithm that is provided by MCTS tree structure.

A game score comparison among our developed eval-
uation heuristics is shown in Figure 5 heatmap, where
the number in each cell represents the number of games
the algorithm represented by the number in the row is
significantly better than the one in the column. The algorithm
combining all techniques (ALL) in both cases used ST with
ǫST = 0.1, EM and KB (ALL sprites and Manhattan
distance) with ǫEM = ǫKB = 0.001. The use of EM is
due to when together with the other techniques, empirical
tests presented a better performance, even if when applied
alone, PM shows better results combined RHEA.

When with MCTS, the expected ST performance is
observed in 5.(a) first and second rows, a little enhance
from the V anilla form and losing to the other techniques.
Surprisingly, when combined with RHEA it is statistically
better than KB in more games, even with a lower win rate.

Considering the individual techniques, in both algorithms,
the exploring stimulation presented the most improvement
when compared to its respective V anilla variations. This
heatmaps also support the results presented in the Table III
having the heuristic using EM being statistically better more
times than PM for MCTS (EM 3 x 1 PM ) and the contrary
for RHEA (EM 2 x 6 PM ).

As expected, ALL variation presents the best performance
when combined with both algorithms. With MCTS, this
performance boost can be seen in the direct comparison
between the techniques shown in the lasts row and column.
Besides that direct comparison enhancement, with RHEA
it achieves the best values out of each column showing the
synergy between techniques when used to evaluate the single
individuals.
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(b) RHEA

Figure 5. Heatmap representing the number of games the row algorithm
achieved significant better scores than column. ǫ value and configuration
that achieved the most wins used for each of the following configuration:
0 – V anilla; 1 – ST ; 2 – KB; 3 – PM ; 4 – EM ; 5 – ALL.

D. Literature Comparison

Here, the proposed evaluation heuristics with best per-
formances are compared with approaches from the liter-
ature. Table IV shows the score values obtained through
the F1_Score system and the win percentages rates of
the considered algorithms. Figure 6 presents the statistical
results.

TABLE IV. WIN RATE AND F1_SCORE CALCULATED WITH VANILLA,
LITERATURE’S AND OUR BEST ALGORITHMS.

Algorithm wins(%) F1_Score
RHEA 44.45 203
MCTS 43.80 230

RHEA(KB+EM+ST ) 62.15 310
MCTS(KB+EM+ST ) 58.30 337

InfluenceMap 34.15 165
TeamTopbug_NI 54.70 240

MaastCTS2 72.35 395
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Figure 6. Heatmap representing the number of games the row al-
gorithm achieved significant better scores than column one. 0 –
Vanilla RHEA; 1 – V anillaMCTS; 2 – RHEA(KB+EM+ST ); 3 –
MCTS(KB+EM+ST ); 4 – InfluenceMap; 5 – TeamTopbug_NI; 6
– MaastCTS2

One can notice in Table IV that InfluenceMap obtained
a low win rate. This is due to its high computational cost on
building the evaluation matrices every step, leaving a small
time for the simulations. On the other hand, the approach
with MaastCTS2, that contains many enhancements to
MCTS along with the evaluation enhancements, obtained
the best results in all metrics used. Therefore, analyzing
InfluenceMap and MaastCTS2 results it is possible to
conclude that though enhance evaluation heuristic have a
major impact on performance, having a good simulations
strategy and distribute the time budget is essential.

According to Figure 6, the proposed variants of RHEA
and MCTS (third and fourth rows) obtained results better
than those found by its vanillas forms, InfluenceMap, and
TeamTopbug_NI . Also, when compared to MaastCTS2,
one of the best GVGAI algorithms from the literature, the
proposed approaches achieved statistic better results in 4
games. The same can be observed with respect to the win
rate and F1_Score showed in Table IV. Though that in the
direct comparison with MaastCTS2 our proposals showed
lower results, when looking to the rows, the similarity
on the results when comparing with other algorithms is
remarkable, especially RHEA that achieved a slightly better
result comparing to when comparing to TeamTopbug_NI
(13 x 12). Achieving this results without any modifications
on the simulation decisions mechanics shows the importance
of state evaluation in general game playing.

Comparing RHEA and MCTS approaches one can no-
tice notice that MCTS overcomes RHEA when using the
competition F1_Score metric and the evolutionary algorithm
achieves better win rates. Additionally, the gap between
the the win rates increase when applying the proposed

modifications. Also, the statistical tests show that the number
of games where each algorithm achieves a significantly
better game score when the vanilla versions are adopted is
larger using MCTS (RHEA 5 x 9 MCTS). On the other
hand, a tie is observed when the proposed approaches are
considered (RHEA 7 x 7 MCTS). Thus, one can argue that
a good state evaluation heuristic is more beneficial to RHEA
than MCTS. This result also suggests that RHEA can achieve
competitive solutions when compared to those found by
MCTS based techniques.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a study on state evaluation and three
techniques are proposed using (i) penalties to enhance the
map exploration, (ii) different approaches on the collision
information gathered by the avatar during the gameplay,
and (iii) features of the avatar. A combined version of these
ideas is also considered here. The proposed approaches are
combined with two popular GVGAI algorithms, namely,
MCTS and RHEA.

Preliminary tests were performed in order to determine the
importance of each technique when compared to the main
game objectives (winning and gathering points). It is no-
ticeable that among our techniques the one that encourages
the map exploration performed better, followed by the use of
knowledge-based information, with both methods presenting
better results when applied with a lower priority regarding
the direct game objectives. As the avatar-related character-
istics values are normalized in our approach, the technique
presented a constant small improvement, independent of its
prioritization.

In the computational experiments performed, the pro-
posals improved the performance of the baseline methods.
This result indicates that the integration of state evaluation
approaches to MCTS and RHEA is a good venue to develop
new general controllers.

Compared to MCTS, RHEA presented more sensitivity
to change in the proposed evaluation techniques given the
direct impact of the state evaluation on the fitness of the
individuals and its importance to the evolutionary process.
On the other hand, the proposed evaluation approaches did
not overcome MaastCTS2, an improved version of MCTS.
This occurred due to the large number of other components
used by MaastCTS2. Thus, studying the combination of the
techniques proposed here with enhanced versions of the
algorithms from the literature is a good direction to create
better general player controllers.

The development of state evaluating algorithms is encour-
aged by the results found here. One idea is to adapt the
values ǫ of the penalty method. Also, the investigation of
methods which can quickly select and use more knowledge-
based information is an interesting research venue.
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XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 506



ACKNOWLEDGMENT

The authors thank the financial support provided by UFJF,
PPGCC, Capes, CNPq and FAPEMIG.

The authors would like to thank Denis Soemers, Martin
Hünermund and Hyunsoo Park, for their availability in
providing the source code for our experiments.

REFERENCES

[1] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. Van Den Driessche, J. Schrittwieser, I. Antonoglou,
V. Panneershelvam, M. Lanctot et al., “Mastering the
game of go with deep neural networks and tree search,”
nature, vol. 529, no. 7587, pp. 484–489, 2016.

[2] M. Campbell, A. J. Hoane Jr, and F.-h. Hsu, “Deep
blue,” Artificial intelligence, vol. 134, no. 1-2, pp. 57–
83, 2002.

[3] M. Genesereth, N. Love, and B. Pell, “General game
playing: Overview of the aaai competition,” AI maga-
zine, vol. 26, no. 2, p. 62, 2005.

[4] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowl-
ing, “The arcade learning environment: An evaluation
platform for general agents,” Journal of Artificial In-
telligence Research, vol. 47, pp. 253–279, 2013.

[5] J. Levine, C. B. Congdon, M. Ebner, G. Kendall, S. M.
Lucas, R. Miikkulainen, T. Schaul, and T. Thompson,
“General video game playing,” in Artificial and Com-
putational Intelligence in Games, 2013, pp. 77–83.

[6] A. L. Samuel, “Some studies in machine learning using
the game of checkers,” IBM Journal of research and
development, vol. 3, no. 3, pp. 210–229, 1959.

[7] J. Clune, “Heuristic evaluation functions for general
game playing,” in AAAI, vol. 7, 2007, pp. 1134–1139.
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