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Abstract—We present a novel framework for real-time proce-
dural distribution of vegetation, capable of handling large-scale
terrains. Our approach considers several natural aspects that
influence the adaptability of each plant type to topographic and
environmental factors displayed across the terrain, as well as
interactions between different plant types. The adaptability of
each plant type is modeled through a set of consistent parameters
that afford full control to the user over the final results of the
distribution process. The proposed architecture relies on GPU
parallelization and GPU instancing to improve performance.
Our framework can be used to generate the vegetation cover
of a terrain at runtime or to create an initial distribution
that could latter be manually edited, expediting the process
of decorating large environments. The results show that our
framework can achieve natural looking vegetation distributions,
while maintaining the computational costs compatible with real-
time applications.

Index Terms—vegetation distribution; procedural; large scale;
virtual terrains; real-time; GPU-based.

I. INTRODUCTION

Vegetation distribution is a common aspect of creating natu-
ral looking virtual landscapes. Small environments are usually
decorated by an artist or designer, which allows for fine control
and pleasant looking results. However, this process tends to be
time-consuming and can quickly become impractical as the
size of the environment increases. Moreover, manual placing
of vegetation can only be done in predetermined static terrains.

Modern applications, such as simulators and games, increas-
ingly present open worlds with large-scale or even infinite
procedurally generated terrains. This demands the use of
techniques that can take advantage of current graphic cards in
order to generate the vegetation cover and render these terrains.

Several approaches tackle this problems from different
perspectives. The concept of ecosystems [2] [8] [9] [11] is
commonly used to model the interaction between different
types of plants and can be combined with processes that
simulate plant growth [7] [8] and competition [1] [12] to attain
a realistic placement.

In order to achieve visually consistent results when com-
pared to real-world environments, our distribution process is
driven by a set of Adaptability Parameters that models biotic
(e.g. plant interaction) and abiotic (e.g. terrain features) natural
factors that might influence each type of plant. This does not
intend to be a realistic simulation, but rather to afford control
to the user to allow the achievement of virtually any sort of
distribution.

Our approach offers a novel framework for real-time proce-
dural distribution of vegetation capable of handling large-scale
— static or procedurally generated — terrains, by using the
computational power of modern GPU.

The factors that affect the result of the distribution are evalu-
ated on GPU in real-time and interpreted as Maps (Fig. 6) that
represent the occurrence and magnitude of those factors on the
terrain. The Adaptability Parameters are used in association
with the Maps in a deterministic process that evaluates the
terrain to determine the placement of every individual plant.
Stochastic values are used to achieve variation in regard to
type and spatial positioning of the plants distributed on the
terrain.

The architecture of our framework employs a quadtree
to partition the terrain, manage memory usage and avoid
the computational cost processing large areas at once, thus
allowing the handling of large-scale terrains. The quadtree is
supported by static sized buffers and a hash system in order
to efficiently store, distribute and render the vegetation.

To lessen the overhead of rendering a large amount of plant
models, each type of plant is treated separately using GPU
instancing to render all the instances that use the same model.

We claim the following technical contributions: We present
a framework for GPU-based procedural distribution of vegeta-
tion, capable of efficiently handling large-scale terrains in real-
time. The user is afforded control over the distribution process
through a consistent set of parameters that aim to represent
biotic and abiotic natural factors in order to accomplish natural
looking results. The framework is scalable and can be extended
to incorporate new Adaptability Parameters and consider other
natural factors. To our knowledge, ours is the first approach to
employ an architecture for GPU-based procedural distribution
of vegetation that can be applied to procedurally generated
terrains of virtually any size efficiently.

This paper is structured as follows: Section II explores
related works. In Section III we present an overview of our
approach, which is discussed more in depth in Sections IV
through VI. Finally, in Sections VII and VIII we present and
discuss the achieved results.

II. RELATED WORK

Several solutions tackle the problems of vegetation place-
ment from different perspectives. Works presented by Cordon-
nier et al. [8] and Ch’ng [7] consider aspects of plant growth
to attain a realistic placement. Deussen et al. [9], Cordonnier
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Figure 1. Overview of the architecture. Red, blue and orange elements on the GPU side represent data stored in VRAM.

et al. [8], and Beneš, Andrysco and Št’ava [2] use the concept
of ecosystems to model the interaction between different types
of plants in the context of simulations not aimed at real-time
applications.

Several approaches that focus on real-time applications
present great performance, but the placement result is less
realistic. The Field of Neighborhood (FON) approach, intro-
duced by Berger, Hildenbrandt and Grimm [5], considers a
zone of influence of a plant defined by a circular area. Alsweis
and Deussen [1] applied the FON approach with pregenerated
tilling, considering different distributions and densities. This
solution was extended by Weier et al. [15]. The use of pregen-
erated tiles offers a good solution for vegetation distribution
at a low computational cost for real-time applications.

Looking for the improvement of plants placement, Hammes
[11] considers several abiotic factors, such as height, relative
height, slope and directional slope of the terrain. Ch’ng [7]
complements that approach by also considering biotic factors
to simulate plant growth. However, this approach is more
suitable to simulations rather than real-time applications.

Procedural approaches for vegetation distribution are ap-
pealing to populate larger areas, although the obtained results
do not always look believable. In this regard, Gain et al.
[10] employ a procedural approach, using biotic and abiotic
factors, to generate an initial distribution that is manually
refined at a later stage. A similar approach is presented by
Beneš et al. [3], where it is proposed a solution for distribution
of vegetation within cities, simulating plant competition for
resources, that also requires manual refinement. While manual
placement and editing offers a finer control over the final
results, this approach is not compatible with large-scale and
dynamic terrains.

The concept of subdividing an ecosystem in layers allows
for the modeling of dependency relations between plants.
Plants on upper layers usually dominate and influence the
distribution of those plants in the lower layers. Hammes
[11] employs layers in a restrictive manner, where not every

combination of ecosystem layers is possible. In [13], layers
are used as a base for a more artistic manual-based approach,
in which the vegetation areas are hand-painted and terrain
features are baked based on a predetermined terrain.

Simulation-oriented approaches are usually not aimed at
real-time applications and thus can consider a larger amount
of factors that influence the distribution of vegetation without
focus on execution time. Cordonnier et al. [8] presented
the first vegetation placement solution that considers the bi-
directional feedback between terrain erosion and vegetation
simulation. Deussen et al. [9] proposed a system to distribute
plants based on a combination of ecosystem simulation and
manual placement. The quality of the results attained by
simulation approaches are related to the number of factors
analyzed.

Our approach combines several concepts more commonly
used in simulations and other types of non-real-time appli-
cations, such as tiling, ecosystem layers and environmental
factors, to deliver a solution that achieves natural-looking
results while maintaining real-time compatible performance.
Furthermore, we propose the use of user defined curves to
evaluate environmental factors and plant placement parame-
ters, in order to provide a higher degree of control over the
results of the distribution process than what is usually observed
in procedural approaches. Moreover, our approach to buffer
management is designed to provide the necessary improve-
ment in performance when handling large-scale terrains by
associating a hash technique with fixed-size buffers.

III. OVERVIEW

This section briefly describes the whole process our frame-
work follows — as defined in its architecture (Fig. 1) — to
perform the distribution and rendering of the vegetation.

In the setup phase, the Adaptability Parameters (Sec. IV-H)
for each plant type, as well as the Influence Curves (Sec. IV-C)
are set. The parameters and curves are used to determine the
plant distribution and generation of the Maps (Sec. IV-D),
respectively. Also, at this point, the base maps (i.e., Height and
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Water) should be set, either by the user, or procedurally gen-
erated at runtime using any suitable technique. The Position
Tiles (Sec. IV-F) are generated using Poisson Disk Distribution
(PDD). The Adaptability Parameters, Influence Curves, base
maps and Position Tiles are then loaded into the VRAM. The
set of plant types for each Layer (Sec. IV-B) of the ecosystem
is defined. The quadtree (Sec. V-A) is initialized and associated
with the layers.

Once the system is set up and initialized, the process of
monitoring the quadtree to identify new visible nodes begins.
This process happens every frame. The visible nodes are put
in a Distribution Queue before being dispatched to the GPU
to calculate the positions for the plants. Once a predefined
number of frames has passed, or percentage of the Positions
Buffer is filled, non-visible nodes are identified and put in a
Release Queue to be later removed. Released nodes are put
back in the Node Pool (Sec. V-B). Visible and non-visible
nodes are put in Priority Queues (Sec. V-C) before being
dispatched to GPU to avoid overhead.

After the visible nodes are identified, the distribution pro-
cess (Sec. IV) begins with the generation of the Slope and
Moisture maps of the terrain area associated with each node,
based on the inputted maps and Influence Curves. Next, a
pregenerated Position Tile is selected. Then, every position
in that tile is evaluated, along with the Height, Water, Slope,
Moisture and Density Maps and the Adaptability Parameters to
determine which plant type — if any — will be placed. The
Positions Buffer and Positions Hash are updated (Sec. V-D)
and the Density Map of the node is generated by calculating a
Distance Field (Sec. IV-G) on the valid positions and merged
with the Density Map of the parent node.

The drawing step uses the information on the Types Counter
and Positions Buffer to efficiently render multiple instances of
the same plant type using GPU instancing. The Types Counter
stores how many positions of each plant type there are in the
Positions Buffer and is the only data to be transferred form
VRAM to RAM.

IV. VEGETATION DISTRIBUTION

The vegetation cover is procedurally generated for every
new node in the quadtree in real-time. This process is per-
formed on GPU and, after completed, the positions of the
plants are stored in the Positions Buffer for future usage.

The distribution is processed per layer (Sec. IV-B), starting
in the top layer (layer 1). Our approach ensures no collisions
between plants by evaluating positions pregenerated using
PDD (Sec. IV-F) and verifying the Density Map of upper
layers. Every plant type is distributed based on a set of
parameters (Sec. IV-H), which will determine the density and
variation of the vegetation cover.

A. Ecosystems

Our approach uses a straightforward concept of ecosystem,
similar to that defined by Hammes [11]. The set of all the
types of plants in the ecosystem is divided and each subset is
assigned to a layer based on size and occupation radius.

Each plant type defined within the same layer of an ecosys-
tem has an associated Predominance Value that controls the
prevalence of that type relative to the others (Fig. 2). The sum
of all of these values in a layer should be 1. During the process
of distributing the vegetation of each layer, the Predominance
Values are used to determine which type of plant will contend
for a position on the terrain.

0.20.30.5

A B C

Figure 2. Set of plant types of a layer with its associated Predominance
Values. In this example, plant A would contend for 50% of the positions
distributed on its layer.

B. Layers

The approach presented in [13] considers layers, which are
associated with plant types and other elements, to generate
the vegetation cover. However, part of this solution requires
manual work, impracticable to use in large or infinity scale.
We adapt this concept, integrating it with a quadtree. This
approach offers flexibility, since it is straightforward to add or
remove layers.

The interaction (e.g., competition for soil nutrients) between
plants on the same layer is not considered. However, plants
on upper layers can affect the distribution of those on lower
layers, since the layers are evaluated from top to bottom. This
enables the reproduction of some forms of behaviours. For
example, plant types that require more sunlight tend to grow
on less dense regions, while other types might thrive in denser
environments, due to factors such as moisture retention and
soil composition.

In our solution, the layers are associated with a height in
the quadtree. We regard three Layers (Fig. 3), differentiable
by plant height h, described as follow:

• Layer 1 (L1): large trees — h > 6 m.
• Layer 2 (L2): small trees, shrubs — 1.5 m ≥ h ≤ 6 m.
• Layer 3 (L3): ground plants, herbs — h < 1.5 m.

Layer 1

Layer 2

Layer 3

Figure 3. Example of layers defined for an ecosystem. Larger plants occupy
the top layer.
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C. Influence Curves

In order to allow a fine-tuning of the influence of a terrain
feature, our approach uses curves that can attenuate or amplify
specific ranges of values. The curves are defined along the x
axis, with x ∈ [0, 1], and are unbounded in the y axis.

There are two sets of Influence Curves used in this work in
different processes. The first is used to control the generation
of the Moisture Map (Fig. 4). The second is associated with
each type of plant and defines its Adaptability Parameters
(Sec. IV-H) used in the distribution of the vegetation. In any
case, curves are always evaluated using values from maps.
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Figure 4. Examples of Moisture Maps (right) generated from the same section
of a Height Map (left) using two different Influence Curves (center). Other
maps (Slope, Relative Height, Water Spread) were not considered in this
example.

To implement all the calculations in the GPU, the curves
have to be discretized by sampling q equidistant values along
the x axis. The sampled values are stored in buffers — one
for each curve — in the VRAM, where they can be accessed
directly. The amount of samples (q) determines the precision
of the curve in the calculations. The experiments presented in
this work used 128 samples. No interpolation is done between
sample values. Fig. 5 illustrates how a curve is discretized and
its buffer filled with the sampled values.
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Figure 5. Filling a buffer with q samples from an Influence Curve. The
numbers inside the buffer represent indexes, not the sampled values.

During the map generation process, each Influence Curve
has an associated weight that can be used to efficiently modify
the global intensity of the influence of the curve without the
need to modify the curve itself or perform the resampling and
updating of the buffers.

D. Maps

Topographic and environmental features of the terrain are
either inputted (e.g. height and water bodies) or calculated (e.g.
slope, moisture) based on other features. They are depicted as
maps that represent their occurrence on the terrain and are
used to evaluate the probability of a plant being placed at a
position. Fig. 6 shows an example of all the maps used in
the moisture calculations and the procedural distribution of
vegetation, except the Density Map.

Every map is stored in VRAM as a single channel 2D
texture with values normalized in the range between 0 and 1.
The Height and Water Maps are transferred to the VRAM only
once as soon as they are loaded. Every other map is calculated
directly on GPU and is never transferred to the main memory.

The maps defined in this work are the following:

• Height Map: is the main map used for rendering the ter-
rain and for calculating of the other maps that contribute
to the procedural distribution of the vegetation. It has a
general influence on the moisture level and it is used to
generate the Mean Height, Relative Height, Slope, and
Moisture Maps.

• Mean Height Map: represents the weighted mean of the
height values of an area adjacent to a point. The distance
(radius of the area) considered is parameterized. The
weight of each height value used in the calculation of
a point decreases linearly as the distance to the point
increases. It is used to generate the Relative Height Map.

• Relative Height Map: represents the local variation of the
terrain height compared to its surroundings. This map is
calculated by subtracting the Mean Height Map from the
Height Map. Values below of 0.5 represent depressions
on the terrain, and values above represent elevations. Nat-
urally, depressions indicate areas with higher moisture.

• Slope Map: represents the local variation of the terrain
height along the x and y directions. The slope value is
calculated as defined in [11, eq. (3)], with the difference
that the distance considered is parameterized. This allows
the attainment of more significant slope values, specially
in flatter terrains. In general, higher distances produce
higher slope values.

• Water Map: contains the distribution of the water bod-
ies (e.g., rivers, lakes). Water bodies act as obstacles,
preventing the placement of any vegetation on the areas
they cover. However, they also contribute heavily with the
moisture level of the terrain on its proximity, therefore
influencing the local distribution of vegetation.

• Water Spread Map: represents the moisture that spreads
(horizontally and vertically) through the soil as a result
of infiltration from water bodies.

• Moisture Map: represents the final value of the soil
moisture. It is generated through the compilation of the
Height, Relative Height, Slope, Water, and Water Spread
Maps.

• Density Map: each node in the quadtree has an associated
map representing the density of the vegetation cover.
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(a) Height (b) Mean Height (c) Relative Height (d) Slope (e) Water (f) Water Spread (g) Moisture

Figure 6. All the maps compiled to generate the Moisture Map. The maps (a), (d), (e) and (g) influence directly the vegetation distribution.

This map is computed as a distance field, showing the
combined influence of each plant in a given layer and all
the upper layers.

E. Moisture Map Compilation

The calculation of the Moisture Map is more complex since
it involves most of the other maps as well as its respective
Influence Curves and associated weights.

The Base Moisture value (BMxy) is defined in (1) by eval-
uating the height value at the coordinate (x, y) (Hmapxy) on
the Influence Curve of the height (Curveh) and its associated
weight (Weighth).

BMxy = eval(Curveh, Hmapxy)×Weighth (1)

The Slope Influence value (Slopexy) and Relative Height
Influence value (RHxy) are calculated in (2) and (3) respec-
tively.

Slopexy = eval(Curveslope, Smapxy)×Weightslope (2)
RHxy = eval(Curverh, RHmapxy)×Weightrh (3)

In (4), the value of the Relative Moisture (RMxy) is
calculated based on the topographic characteristics of the
terrain represented in the Relative Height and Slope Maps.
This value acts as an indicator of regions where naturally
occurs accumulation or decline in soil moisture.

RMxy = RHxy − Slopexy + 1 (4)

The Water Spread (WSxy) calculated in (5) evaluates the
influence of the Relative Height (RHmapxy) over the vertical
water spread (CurvewsV ert) from a water body (WSmapxy).
The value of the Water Map (Wmapxy) is added to ensure
that the Water Spread value does not get attenuated in the
coordinates where there is a water body.

WSxy =Wmapxy +WSmapxy

× eval(CurvewsV ert, RHmapxy) (5)

The final value of the Moisture Map (Mmapxy) is calcu-
lated in (6) by compiling the values obtained from the other
maps. The value of ω, with ω ∈ [0, 1], is used to attenuate the
direct contribution of the Relative Height (RHxy).

Mmapxy =saturate((BMxy +WSxy)×RMxy

+ (RHxy × ω)) +WSxy (6)

F. Position Tiles

To ensure a collision-free distribution, while avoiding a
large amount of calculations, we choose to pregenerate several
sets of positions as tiles. Each tile is generated using PDD [1]
[6] to guarantee a minimum distance between positions. Fig. 7
shows the contrast among different techniques used to generate
distributions.

(a) Uniform Random (b) Jittered Grid (c) PPD

Figure 7. Comparison between distributions.

During the distribution process of a quadtree node, a random
tile is selected to have its positions evaluated.

G. Distance Field

As discussed, the positions tiles generated using PDD ensure
a minimum distance between all plants in the same layer.
However, plants on different layers might still overlap. A naive
solution to this problem would be to compare, at runtime, all
the positions of each layer to check for collisions, which would
be very expensive (O(n2)).

To avoid this problem, we generate a Distance Field of the
positions distributed in a node of a layer. The values of the
Distance Field are calculate in (7), where ϕ is the influence
of nearest plant, δ is the euclidean distance to that plant, τ is
the trunk radius and ZOI is the Zone of Influence of the plant.

ϕ = 1− saturate
(
δ−τ

ZOI−τ
)

(7)

The resulting Distance Field is used to generate the Den-
sity Map (Fig. 8). This approach reduces the cost to detect
overlapping between positions in different layers to O(n).

The Density Map can be evaluated in a similar manner as
the FON, which is considered the ZOI of the plant canopy is
used only to narrow the plant growth. Our approach, however,
allows the Density Map to both boost or narrow plant growth.
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τ ZOI

(a) (b) (c)

Figure 8. Distance Field definition (a). Density Map of layer (c) is generated
by applying a Distance Field on the positions (blue dots) and combining the
result with the Density Map of the upper layer (b).

H. Adaptability Parameters

The Adaptability Parameters of a plant determine its dis-
tribution, considering the direct influence of the terrain and
interaction between plants in the same ecosystem. Each pa-
rameter is defined using a curve. For every plant placed on
a specific position on the terrain, each parameter is evaluated
along with the corresponding Map in order to determine the
probability of that plant existing on that position (Fig. 12).

This work defines four Adaptability Parameters:
• Height: plants show a natural sensibility to variations in

terrain height, with certain types of plants appearing in
specific height ranges and displaying a denser distribution
only in restrict sections of these ranges. As the height
increases, factors such as temperature and oxygen satu-
ration change, making the general conditions harsher and
decreasing the size and density of plants [11].

• Slope: the rooting capability of some types of plants is
affected by the terrain slope, causing plants to prefer, in
general, flatter regions. Areas with steeper slopes tend
to be covered by fewer types of plants, which display
greater tolerance to steeper inclinations, since in those
areas the competition is reduced as plants with lower
tolerance cease to appear. Very steep slopes might be off
the acceptable range of any type of plant in a ecosystem,
leaving the ground exposed with no vegetation cover [11].

• Moisture: terrain moisture tends to be the most influential
parameter regarding plant density. Most types of plants
rely heavily on water to survive. In general, areas with
higher height and/or distance from water bodies have less
moisture in the soil. In those areas, plant density tends
to decrease and types of plants better adapted to dryer
climate, such as small trees and bushes, dominate the
landscape.

• Interaction: it is common that different types of plants
share adaptability parameters with similar values, causing
those plants to appear in areas that satisfy those parame-
ters. Is those areas, the existence of each plant might be
influenced by the presence of the other plants already dis-
tributed in the proximity. The Interaction parameter aims
to reproduce that influence as a combination of several
factors — positive or negative —, such as competition
for soil nutrients, light absorption, chemical changes in
the soil. The degree of that influence is arbitrary and it is

up to the user to define a curve that better represent her
interpretation of the synergy and competitiveness between
specific types of plants, or that allow the achievement of
the intended final result. The Interaction is evaluated with
the combined Density Map of the upper layers.

I. Evaluation

After a Position Tile is selected during the distribution
process, each position in the set is evaluated on GPU, as
delineated in the algorithm presented in Fig. 9, to determine
which type of plant is to be placed in that position on the
terrain.

1: procedure EVALUATEPOSITION(x, y)
2: P ←− 1
3: P ←− P × (1−Wmapxy)
4: Plant←− getP lant()
5: Curves←− getCurves(Plant)
6: l←− index of the current layer
7: if l > 1 then
8: P ←− P ×eval(Curvesinteract, DensityMapl−1

xy )
9: P ←− P × (1− bDensityMapl−1

xy c)
10: end if
11: P ←− P × eval(Curvesheight, Hmapxy)
12: P ←− P × eval(Curvesslope, Smapxy)
13: P ←− P × eval(Curvesmoisture,Mmapxy)
14: threshold←− getThreshold()
15: if P ≥ threshold then
16: update the Position Buffers
17: DensityMaplxy ←− 1
18: else
19: DensityMaplxy ←− 0
20: end if
21: end procedure

Figure 9. Algorithm for evaluating a position where a plant might be placed.
The coordinates (x, y) inputted in the procedure refer to a specific pixel on
the maps.

Initially, the Probability (P ) is declared and set to the
maximum value (line 2). Then, each relevant map is evaluated
and P results as the product of the influences of these maps.

In line 3, the complement of Water Map is used to ensure
that no plant will be placed inside a water body. It is relevant
to note that this process can be extended by defining more
maps that represent other types of obstacles (e.g., buildings,
roads) and evaluating them in the same manner.

The type of plant that will content for the current position
is determined stochastically in line 4. This is dependent on
the overall chance each type of plant has to be selected, as
defined in the Section IV-A. In line 5, we get the curves of
the Adaptability Parameters associated with that type.

If the current layer (l) is not the top layer (layer 1), then, in
line 8, the Density Map of the upper layer (l− 1) is evaluated
with the Interaction parameter. Line 9 ensures that will be no
overlapping between the trunk area of plants of different layers
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(the collision between plants on the same layer is avoided by
using the PDD).

Lines 11 to 13 evaluate, respectively, the Height, Slope and
Moisture maps with their associated Adaptability Parameters.
If the calculated P reaches the threshold determined stochas-
tically in line 14, then the buffers are updated to incorporate
the new plant instance and the Density Map of the current
layer (l) is set to mark the current position as occupied.

After all the positions in the tile are evaluated, the Distance
Field is calculated over Density Map of the current layer and
the result is merged with the Density Map of the upper layer
(if any), so it can reflect the accumulated density.

V. ARCHITECTURE

The architecture of our framework is designed to efficiently
handle dynamic terrains by minimizing data transfers between
RAM and VRAM and performing the vegetation distribution
solely in the GPU, while leaving the CPU responsible only
for processing quadtree-related operations.

Our architecture employs a quadtree to represent the terrain
as nodes and partition the vegetation distribution process in
layers. The memory allocation overload is mitigated by using
a Node Pool to manage the memory usage and to allow the
reuse of allocated memory after a node is released.

The GPU overload is managed by using Priority Queues,
limiting the amount of dispatches per frame and ensuring a
steady frame rate. Furthermore, fixed-size buffers are defined
and managed in the VRAM for improved performance during
the distribution and rendering of plants.

A. Quadtree

The quadtree is a well established and efficient data struc-
ture for managing virtual terrains. Our framework uses a
quadtree to subdivide the terrain, avoiding the overload of
processing large areas at once. This approach also favors the
use of GPU parallelization, allowing the vegetation distribution
process to be performed in multiples nodes simultaneously.

To further reduce overhead, our approach uses Frustum
Culling and View Distances (Fig. 10) to ignore nodes outside
the View Frustum and limit the amount of distributions based
on distance.

Figure 10. Quadtree refinement based on the frustum and view distances.

B. Node Pool

In the setup phase, the Node Pool is filled with a set of
preallocated nodes. All these nodes are marked as not used
and will be occupied as the quadtree expands. Once a used
node is released, it returns to the Node Pool. If all the nodes
are used, the Node pool generates more nodes, on demand.

When the Node Pool is empty, or after predefined number
of frames, the quadtree searches for non-visible nodes to be
released.

C. Priority Queues

Our solution employs three Priority Queues to manage the
amount of GPU dispatches. A Distribution Queue, which is
subdivided in Normal and High priority queues, and a Release
Queue.

The Distribution Queue is used for quadtree nodes that
require vegetation distribution. Nodes in the High priority
queue are dispatched before those in the Normal priority
queue. Nodes are assigned to each queue based on their
distance to the camera and the camera’s height. For example,
when the camera is at a high altitude, top layer nodes are
assigned a higher priority, since plants in that layer will have
a higher impact on the final image.

The Release Queue is used for quadtree nodes that are
marked to be released. When a node is released, the Positions
Buffer, Positions Hash and Types Counter are updated to
remove the plants that existed in the area of the terrain
associated with that node. After released, the node returns to
the Node Pool.

Priority Queues mitigate the problem mentioned in [11],
where sudden changes in camera direction might cause a frame
rate drop or gaps in the vegetation cover due to the overhead
of processing a large area.

D. Buffers

The buffers used in our architecture are specifically de-
signed to enable the handling of large-scale terrains in a
dynamic context, where the all the vegetation is procedurally
distributed. All buffer are fixed-size to avoid the overhead
of resizing. While this approach might lead to sections of
allocated memory being unused in some situations, the trade-
off between memory usage and allocation cost is necessary to
maintain performance.

To take advantage of the static nature of the buffers, our
architecture adopts an approach based on Spatial Hash devised
to index linear memory [14].

Our architecture employs the following buffers:
• Plants Pool: stores the model of each plant type. This

buffer resides in the main memory.
• Positions Buffer: this 2D static buffer stores in VRAM

the positions of all the instances of plants placed on the
terrain. Each row in this buffer contains the positions of
single type o plant, so all the instances of that plant can
be efficiently rendered using GPU instancing. When a
node is released and the positions are removed, this buffer
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is rearranged to maintain all the valid positions at the
beginning of each row.

• Types Counter: stores the amount of valid positions in
each row of the Positions Buffer. This buffer resides in
VRAM and is read back to RAM to be used in the draw
calls.

• Positions Hash: this buffer contains the start index and
count of each plant type for every node in the quadtree.
The start index refers to the first index in the Positions
Buffer where are stored the positions of a plant type, the
count is the amount of plants of that type in a given node.
For example, in Fig. 11, the Node 1 contains two plants
of type P1 (A and B), one of type P2 (C) and one of
type P3 (D). Looking at the portion of the Positions Hash
associated with the Node 1, the first value indicates where
in the Positions Buffer the first plant of type P1 is stored
(index 0, in this case) and the second value represents
the amount (2 instances) of plants of type P1 that are
associated with the Node 1. So we can determine that,
starting at index 0, 2 positions in the Positions Buffer
store plants (A and B) associated with the Node 1.
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Figure 11. Example of how each buffer stores positions and references plants
on the terrain. The Positions hash store the initial position and the amount of
positions for one node.

This approach is essential to maintain performance when
handling large-scale terrains, since it allows the framework
to efficiently access and update the section of the Positions
Buffer associated with any node in the quadtree.

VI. RENDERING

One important challenge when rendering large-scale natural
landscapes is the amount of plant instances in the scene.
Considering that each plant type usually is represented by the
same model (i.e., same mesh), it becomes advantageous an
approach that uses GPU instancing to allow the dispatching
of multiple instances that use the same mesh to the GPU
in a single draw call, increasing the performance drastically
[16]. In this context, our framework employs GPU instancing
to render all the instances of each plant type stored in the
Positions Buffer using fewer draw calls.

It is relevant to note that our framework does not apply
any form of Level of Detail (LOD) regarding the meshes of
the plants, thus, rendering a large amount of highly detailed
meshes can still become overwhelming. This problem can be
lessened by applying a LOD technique.

VII. RESULTS

All the experiments and measurements where performed on
an Intel Core i7-4790 3.5 GHz processor, with 24 GB of DDR3
RAM and a NVIDIA GeForce GTX 1070 graphics card, with
8 GB DDR5 VRAM.

Table I presents the times to generate each map at different
resolutions. The Height and Water maps are inputted rather
than generated. Also, since the Density Map is generated
in separated steps, its times are not shown in the table, but
computed with the times presented in Table II. Further looking
into Table I, one can observe that the Mean Height and
Water Spread maps are the most time consuming tasks. Their
times are directly proportional to the distance used for their
computation, in this case, 32 pixels. The distance used for the
Slope Map was 12 pixels.

TABLE I
MAP GENERATION TIMES

Maps
Time (ms) at different resolutions (pixels)

32x32 64x64 128x128 256x256 512x512
Mean Height 0.028 0.030 0.058 0.204 0.733

Relative Height 0.006 0.006 0.008 0.012 0.024

Slope 0.007 0.007 0.007 0.012 0.020

Water Spread 0.028 0.031 0.058 0.206 0.737

Moisture 0.007 0.007 0.008 0.015 0.039

Total 0.076 0.079 0.137 0.449 1.553

The effects of the Adaptability Parameters can be observed
in Fig. 12. This image demonstrates how two types (red and
green) of plants follow the associated curves that represent
their adaptability to the terrain. Each row exemplifies the effect
that a single factor (height, slope, moisture, and density) has
on the results (right column) of the distribution. The Maps on
the left column represent the intensity of each factor across
the terrain. Defining each parameter using a curve allows the
user to compose virtually any sort of distribution that is based
on the terrain features and avoids the occurrence of sharp
transitions.

The measurements presented in Table II represent the times
to distribute the vegetation cover on the entire View Frustum,
using different configurations, . Visualization Distances are
used to determine the refinement of the quadtree and to select
the nodes of each layer (L1, L2, L3) on which the vegeta-
tion will be distributed. Forty different types of plants were
assigned to each layer. The Node Size affects the refinement
and, thus, the amount of nodes that will be distributed. The
amount of positions evaluated is related to the radius used
to generate the Position Tiles in the setup phase. The Map
Resolution was defined to maintain a scale of 2 m/pixel. Most
of the CPU and GPU processing occur in parallel.

It is important to underline that these measurements rep-
resent the worst case scenario, where all the View Frustum
is generated at once. This situation should only occur at the
beginning of the execution or when the camera suddenly
turns more than the Field of View. Rendering times were

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers
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TABLE II
VEGETATION DISTRIBUTION TIMES

View Distance
(km)

Node Size (m) Map Resolution
(pixels)

Nodes Distributed Total Positions
Evaluated (± 5%)

Total Time (ms)
Average Time (ms)

per Node
L1 L2 L3 L1 L2 L3 L1 L2 L3 CPU GPU CPU GPU

10 5 3
256 128 64 32x32 418 1088 1421

1,700,000
200.680 366.991 0.069 0.125

512 256 128 64x64 111 281 366 68.320 128.965 0.090 0.170
1024 512 256 128x128 31 75 97 29.170 63.084 0.144 0.311

5 3 1
256 128 64 32x32 281 366 98

850,000
66.980 101.749 0.090 0.137

512 256 128 64x64 75 97 28 22.720 45.717 0.114 0.229
1024 512 256 128x128 22 28 8 6.530 12.870 0.113 0.222

2 1 0.5
256 128 64 32x32 41 28 9

100,000
7.470 15.880 0.096 0.204

512 256 128 64x64 13 8 3 2.460 9.389 0.103 0.391
1024 512 256 128x128 4 3 1 1.060 4.012 0.133 0.502
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Figure 12. Effects of the Adaptability Parameters on the vegetation distri-
bution. The Maps (left) are evaluated along the associated curves (center)
to determine the final placement of each plant (right). Each row shows the
result of a distribution using only one parameter. From top to bottom, Height,
Slope, Moisture, and Interaction parameters. Each plant type is represented
to a color (red or green), and its adaptability is determined by the curve with
the same color. The Density Map on the bottom row is generated based on
the positions of the purple plants.

not considering in this measurements, since they are closely
related to the mesh resolution of the plants.

The vegetation distributed on each layer can be observed
in Fig. 13. Dense vegetation covers are generated without
collisions between plants. Layers are also used to establish
a relation between plants. For instance, the ground plants
observed on top image have a disposition to grow in denser
regions and, thus, appear in parts of the terrain covered by
other plants, as seen in the bottom image.

Fig. 14 shows a different angle of the same landscape
presented in Fig. 13, where one can observe the distribution
of the pine trees, highlighted in the image. In that example,

Figure 13. Representation of the ecosystem layers. Each picture shows the
combination of plants of different layers. Only the layer L3 in the top image,
layers L3 and L2 on the middle, and all layers combined in the bottom image.

the pine trees belong in top layer (L1), and their Adaptability
Parameters — represented by the colored curves — are defined
to ensure that they can survive in dry and high regions.

VIII. CONCLUSION AND FUTURE WORK

We have presented a framework for GPU-based procedural
distribution of vegetation in real-time, capable of handling
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Figure 14. In this example, pine trees dominate the area of the terrain indicated by the white loop because they are better adapted to low moisture and high
elevation regions. On the left are the Height, Slope, Water, and Moisture maps.

large-scale terrains, which uses the concept of ecosystems to
model the interaction between different plant types, while con-
sidering biotic and abiotic factors to determine the adaptability
of plants in terrains with various topographic features. This
is achieved with a layered ecosystem model that contains a
subset of plant types in each layer. Plant types in top layers
are considered to dominate, so plants are distributed in a
descending fashion. Terrain features are calculated and stored
as maps that are evaluated along with Adaptability Parameters
to determine the placement of each plant. This technique,
associated with a dynamic quadtree, Priority Queues and pre-
generated sets of distributions, proved to be an efficient way to
handle vegetation distribution on large-scale terrains, allowing
control of memory usage and achieving satisfactory times
regarding distribution and rendering using GPU instancing.

One drawback of using a fixed buffer to store the positions
of the plants is that sudden changes in the View Frustum might
require the generation and distribution of new visible nodes,
while plants in nodes outside the View Frustum would still
be rendered, since the they were not yet removed from the
Positions Buffer. This would cause a brief overhead on the
GPU due to the distribution process and rendering of plants
— including those out of view — occurring simultaneously.
Other current limitation is the fact that the framework does
not support random access to any plant position. This does
not allow dynamic modifications to limited areas that would
require a change in the plant models and rearrangement of the
Positions Buffer. Common game events, such as woodcutting
or forest fires, are good examples of that. This could be
improved by using some form of spatial hashing to enable
specific changes in the Positions Buffer.

Future work could include integrating a system for procedu-
ral generation of terrains and water bodies into the framework,
creating a more complete solution for procedural generation
of virtual environments. Furthermore, it would be interesting
to incorporate maps to represent other obstacles for plants,
such as roads and buildings, and also maps to consider more
factors, such as sunlight exposure, temperature, and wind. One
important open problem is to improve the rendering phase to
better handle even larger amounts of plants instances when a
very long view distance is defined. A LOD technique could be
implemented reduce the overhead and improve performance.
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