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Figure 1.  A village created with our approach.

Abstract— Modeling a terrain with a large amount of details 
by hand is an arduous task. Creating roads, villages, buildings 
and other details demands a lot of time from an artist. In this 
paper we propose a solution that analyzes the terrain, defines 
proper areas for the villages and generates the roads 
connecting them. The area delimited to each village is given 
by the characteristics of the terrain. The road system is 
generated using the A* algorithm with our own cost functions 
that consider the slope of the terrain. Our method is also able 
to create T-junctions and works from a starting point to any 
other road. Buildings are placed on each village according to 
a seed and their locations are defined in acceptable areas of 
the terrain. 

Keywords—Procedural generation; villages; road system; 
shortest path; weightning function; 

I.  INTRODUCTION 

In many applications, such as video games, simulators 
and movies, the scenery must contain a vast amount of 
details to provide good user experience. However, creating 
all the details manually demands a lot of time and resources. 
Procedural generation aims at creating data algorithmically, 
with little to none user input. Modeling landscapes, with 
rivers, forests, human settlements and roads is a challenging 
problem. Several procedural modeling techniques are able 
to generate this kind of content, and they usually require 
some kind of handmade feature or they have some 
limitations. 

A formula that shapes a village or a road does not exist 
in the real world. Villages are the result of people settling in 
convenient locations and roads were created to allow 
transportation among the villages. Procedural generation of 
villages and road systems tries to deliver a result that mimics 
the real life utilizing a pre-defined set of rules and functions. 

This paper presents a procedural approach to generate 
villages and roads connecting them, in a way that permits 
the result to be easily modified by the user to better suit the 
application needs. A village generated by our method can 
be seen in Fig. 1. 

The method proposed in this paper has a global to local 
approach. Given a terrain as input, we create a graph and 
analyze every node in the grid according to its surroundings, 
appointing to each node a number indicating how favorable 
it is to create a city. The nodes act as a seed and the villages 
are built around them. This way, it is possible to change the 
location of a village or add a new one by changing or adding 
a seed node. 

The algorithm proposed to create the road system is 
based on the works of [1] and [4]. It is computed utilizing 
the A* algorithm, however we created our own cost 
function that aims at minimizing the standard deviation of 
the cost of the road. Our approach produces realistic paths 
that avoid slopes that are too steep and also presenting a way 
to create roads from a given position to other roads. 
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The contributions of this paper are as follows:  
 We propose a solution to define the center of a 

village and the area that belongs to it on a given 
terrain. 

 We introduce a method of generating roads 
connecting a set of cities, utilizing our own cost 
functions. This method is capable of generating 
roads from an initial point to any other road in 
the road system, without a destination point, 
which creates T-junctions in the process. 

 The solutions presented can be easily 
manipulated to suit different kinds of 
applications. 

This paper is organized as follows: Section II presents 
related works on the subject, Section III introduces the 
workflow, Sections IV, V and VI describe the steps used by 
the method proposed and implementations, Section VII 
discusses results and Section VIII presents the conclusion 
and future work. 

II. RELATED WORK 

Our approach to generate the road network is based on 
[1], where an algorithm to create complex roads from an 
initial to a final point that adapts to the characteristics of the 
terrain is presented. The goal is to build a path that 
minimizes the line integral of a cost weighting function. It 
takes in consideration the slope of the terrain and natural 
obstacles, like rivers, lakes and forests. It is also capable of 
creating bridges and tunnels. In [4], the paper presents a 
framework for creating a hierarchical road network 
connecting a set of cities. However the cities and their sizes 
must be defined by the user and the roads are connected 
from a starting point on the edge of a city to a final point on 
the edge of another, only merging roads that are very 
similar. Our approach is able to create roads from an initial 
point to any other road, without the need of a defined final 
point, which generates T-junctions, this way creating a road 
system that looks more realistic. Our method also connects 
cities from their centers.  

Reference [2] proposes a local to global approach, 
capable of creating villages and road networks. In it, a 
building is set at random on a valid position of the terrain, 
and then it creates a cycle that consists in adding a road for 
that building and adding new buildings. It takes into account 
the slope of the terrain, water, other building, other villages, 
road connections, types of villages and types of buildings. 

CityEngine [5] is a system that addresses the procedural 
modeling of complete cities using a set of statistical and 
geographical data. The base model of the city relies on aerial 
pictures. The roads are created based on L-systems. It 
generates the road system and the buildings. 

There are several papers [12][13] that focus on modeling 
the land use. Given a terrain description, they generate 
different patterns of land use, including layouts for different 
types of areas, sizes, historic background, and density. 

III. WORKFLOW 

Given a terrain, created by a procedural method, by 
hand or extracted from real data sets, our solution works on 
three steps. 

First, we analyze the terrain, giving each node on the 
terrain a value that indicates how probable it is of acting as 
seed to generate the city around it, and also define which 

nodes belongs to which seeds. Secondly, we select the 
nodes that will generate the villages and create a road 
system connecting them. The road system begins by 
connecting a point in one village to a final point in another, 
and then connecting other villages to an existing road. 
Lastly, we place the buildings on the villages, selecting the 
acceptable spots where a building can be positioned. Fig. 2 
presents the flowchart of our method. 

 

 
 

 
 

 
 
Figure 2.  Flowchart presenting the three steps taken by our method to 

generate the road system and the villages. 

IV. FINDING THE LOCATION OF THE VILLAGES 

To look realistic, the cities must be placed on locations 
that are mostly flat, where buildings can be placed near each 
other and roads can be generated between them. This means 
that the area in which a village occupy must not have a large 
subarea where no buildings or roads can be placed.  The area 
that is given to a village must be consistent (Fig. 3). As an 
example, if a village is near a large gap, buildings belonging 
to a single village must not be placed on both sides of the 
gap. 

 

 
Figure 3.  The areas in blue show the proper delimitation, the area in red 

shows an unfitting approach. 

Analyze the 
terrain and 

define 
village areas 

Generate the 
road system 
connecting 
the villages 
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With this in mind, we propose a solution inspired by the 
algorithms used to calculate the Delaunay Triangulation [6] 
and the Crust [7]. 

Delaunay Triangulation is a method used to triangulate 
a set of vertices. One way to solve it is by creating circles 
that touch every three vertices of the set. If a circle does not 
contain another vertex in it, the three vertex touching the 
circle can be triangulated. 

Crust is a curve reconstruction method that given a set 
of points creates a graph containing the edges of the curve. 
It creates a circle touching every two points, and if this circle 
doesn’t contain another point or a point from the medial 
axis, it is a valid edge. 

Given the height map, the vertices become a graph, 
where every vertex is a node. To define the locations of 
every village, we must first define what nodes on the terrain 
can be used to place a building. Every node on the terrain is 
evaluated, considering its slope. Therefore, given a 
maximum slope, every node is deemed as acceptable or 
unacceptable. The slope is given by the cross product 
between the normal vector of the node and the vector 
perpendicular to the plane XY. Knowing which nodes are 
acceptable, we can define which ones are more favorable to 
act as seeds for the villages and which nodes each seed can 
use. Even the unacceptable nodes can act as seeds, since the 
nodes that belong to it can be acceptable. 

Given a node N and a maximum node count C. We 
create a circle of radius R centered at N. Then, we select the 
acceptable nodes that are the farthest in the X and Y axis 
from N and create new circles of radius R centered on those 
nodes. Note that these new circles will contain N. Now we 
count how many acceptable nodes exists that are contained 
in three or more circles. If the number of counted nodes is 
less than C, we start the loop again, creating new circles 
from our last nodes, and counting the number of acceptable 
nodes. The complexity of this algorithm is 𝑂(𝑛ଷ), but since 
it is limited by a maximum node count that is usually small 
compared to the size of the terrain, it still performs fast. The 
Algorithm 1 provides a pseudo-code of this method and Fig. 
4 presents a resulting area delimited for a seed.  

 
Algorithm 1. Pseudo-code to find the area belonging to a village that can 

be created by a seed node N. 

This way we guarantee that the maximum distance 
between a node to three other nodes is no larger than R, thus 
avoiding large gaps and areas without any building. When 
we have found which nodes belongs to which seed, we give 
the seed a number P corresponding to probability of success. 
P is given by the sum of the distances between each node 
and N. 

By changing the values of R and C we can create 
villages with different densities and sizes, allowing the user 
to manipulate the way this algorithm behaves. The value of 
C is proportional to the size of the village. By setting R to a 
high value, the villages will have large subareas where no 
building will be placed, creating villages that are sparser. 

 

 
Figure 4.  The yellow nodes represent the selected area. The blue node 

is the seed. The white and red nodes are the acceptable and unnaceptable 
areas, respectively. The green circles are the center of the expanded 

circles. 

The format of the village is indicated by P. A low valued 
P means that all nodes found are closer to N, and thus able 
to create a denser village in an area that resembles a circle. 
However, a high value for P means that the nodes are 
sparser, and the village would be placed on a larger area, 
that adapts to the shape of the terrain. Fig. 5 shows examples 
of different values of P. 

 

 
P value of 8. 

(a) 
 

 
P value of 12.  

(b) 

Figure 5.  Both images have the same node count of 8. The seed is in 
red and the center number is the value of P. The nodes belonging to the 
seed are in blue, and the number in the center of each node corresponds 

to the distance between the node and the seed. 

Input: N  node being evaluated 
Input: C  maximum number of nodes 
Input: R  radius of the circles 
List<Nodes> circles 
List<Nodes> selectedNodes 
newCircles  N 
while selectedNodes.Num() < C 
       newCircles  findNewCircles(newCircles, R) 
       circles.Add(newCircles) 
       if newCircles.Num() ≤ 0 
              break while 
       end if 
       selectedNodes  findNodesIn3orMoreCircles(circles) 
end while 
return selectedNodes 
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V. GENERATING ROADS 

The A* algorithm [8][9][10][11] is a best-first graph 
search algorithm that finds the path from an initial to a final 
point. We use our own cost function to determine the order 
the A* searches the nodes. Since the terrain is arbitrary, our 
cost function must allow the graph to be connected. Only 
considering steep paths when necessary. 

The A* algorithm works as follows. For every point 
evaluated, we calculate its cost value to the end and its cost 
value to the parent. Given a starting point  𝑝ଵ and a goal 
point 𝑝ଶ, we set all costs of 𝑝ଵ to zero, and add it to a list of 
points L. Then we start a loop that does the following: While 
L is not empty; we select a point 𝑝 in L that has the lowest 
cost. If 𝑝  is the goal point, we stop the loop. Then we 
evaluate the costs of all points connecting 𝑝, set their parent 
as 𝑝 and add them to L; if the point already existed in L, 
we only add it if it has a lower cost. Once 𝑝 is equal to 𝑝ଶ, 
we find the resulting path by following its parents until we 
reach 𝑝ଵ. 

Given the terrain, we create a graph with connectivity of 
eight. Each vertex is a node and it is connected to its eight 
closest neighbors, see Fig. 6 below. 

 
Figure 6.  The eight possible connections between all nodes on the grid. 

The red arrows represent the sideways distance in XY, and the green 
arrows represent the diagonal distance in XY. 

Our cost function between two points 𝑝ଵ and 𝑝ଶ takes in 
consideration the distance in the XY plane between the two 
points, and the slope 𝛼 of the first point. The cost function 
is defined by the distance between 𝑝ଵ and 𝑝ଶ plus this same 
distance multiplied by one minus the slope 𝛼 multiplied by 
a constant 𝛽, as shown in the following equation. 

 
𝐶 = 𝐷𝑖𝑠𝑡𝑋𝑌൫𝑝ଵ,𝑝ଶ൯ + 𝐷𝑖𝑠𝑡𝑋𝑌൫𝑝ଵ,𝑝ଶ൯ × (1 − 𝛼) × 𝛽   (1) 

 
This cost function is applied in the cost of a node to its 

goal and to its parent. The slope 𝛼 can be pre-calculated and 
is defined by the dot product between the normal vector of 
the vertex and the vector perpendicular to the plane XY. We 
use the distance only in the XY plane because this distance 
can be pre-calculated, allowing the algorithm to run in less 
time. The sideways distance to every other vertex is constant 
and the same occurs on the diagonal distance (see Fig. 6). 
The value of 𝛽 affects the impact that the slope has on the 
path. A pseudo-code example of this method can be seen in 
Algorithm 2. 

All roads created are added to the road system R. In 
order to create T-junctions, we utilize a small variation of 
the Algorithm 2. We no longer define a goal point, instead 
we give the function the start point and all the existing roads. 

When calculating the cost of a node to the goal point, we 
calculate the cost of the point to the closest node that 
belongs to a road. Then, we stop the loop when one of the 
nodes that were evaluated is contained in R. An example 
can be seen in Algorithm 3. 

 
Algorithm 2. Procedure to find the best path between two points utilizing 

our cost function.

Algorithm 3. Procedure to create a road giving a start point and a road 
system. 

Given a number of possible village locations, we choose 
two of these locations to start our road system and create a 
path between their seed nodes, utilizing algorithm 2. The 
path to the other villages is then created with algorithm 3, 
giving their seed nodes and the road system. Fig. 7 shows 
an example of this. 

 

 
Figure 7.  Road system created utilizing our method. The road in black 
was generated with Algorithm 2. The roads in blue and red were created 

using Algorithm 3. 

A road with a lower standard deviation σ is a path that 
has less steep parts that deviate from the average slope of 
the road. By changing 𝛽  the user can control how the 

Input: 𝑝ଵ starting point  
Input: 𝑝ଶ  goal point 
List<Point> L 
List<Point> possibilities 
L.Add(𝑝ଵ) 
while L.Num() > 0 
       select the point P in L that has the lowest cost 
       possibilities  eight closest neighbors of P 
       for each Point S in possibilities 
              S.parent  P 
              S.costToParent  DistXY(S, P) + DistXY(S, P)*(1-slope)*𝛽 
              S.costToGoal  DistXY(S, 𝑝ଶ) + DistXY(S, 𝑝ଶ)*(1-slope)*𝛽 
       end for 
       if possibilities contains 𝑝ଶ 
              break while 
       end if 
       Add possibilities to L 
end while 

Input: 𝑝ଵ  starting point 
Input: List<Roads> R  all existing roads 
List<Point> L 
List<Point> possibilities 
L.Add(𝑝ଵ) 
while L.Num() > 0 
       select the point P in L that has the lowest cost 
       possibilities  eight closest neighbors of P 
       for each Point S in possibilities 
              S.parent  P 
              T  closest node that belongs to R 
              S.costToParent  DistXY(S, P) + DistXY(S, P)*(1-slope)*𝛽 
              S.costToGoal  DistXY(S, T) + DistXY(S, T)*(1-slope)*𝛽 
       end for 
       if possibilities contains a node in R 
              break while 
       end if 
       Add possibilities to L 
end while 
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algorithm behave, creating a path that better suit the user 
needs. The value of 𝛽 also affects the standard deviation. 
This method was extensively tested in order to give an 
insight about the impact that 𝛽 has on the road. Fig. 8 shows 
different roads created with different values of 𝛽. 

 

    
                 𝛽 = 0                                                       𝛽 = 1 
                        (a)                                                             (b) 
 

    
                       𝛽 = 10                                                   𝛽 = 28 
                          (c)                                                           (d) 
 

    
                      𝛽 = 50                                                     𝛽 = 70 
                         (e)                                                             (f) 

Figure 8.  Roads created with differents value of 𝛽.  All roads have the 
same starting and ending points. 

VI. CREATING THE VILLAGES 

In order to create a suitable village, the buildings must 
be place in areas where most of the building’s base is in 
contact with the terrain. Every 3D model has a mask of its 
base, which is defined by the user, hence, we must find a 
place that can fit the model’s mask. An example of a mask 
can be seen in Fig. 9. 

 

 
Figure 9.  A 3D model of a house and its mask on the grid. 

In section II we defined a seed node and the nodes that 
belong to that seed. Given a village, defined by a seed S and 
a set of 3D models which are the buildings. Each village has 
a determined number of building. Each building also has a 
determined radius, where no other building must be placed. 

 To place each building, we randomize a node N 
contained by S. Then we verify if the area around N can fit 
the 3D model’s mask, also checking if it doesn’t overlap a 
road or if it isn’t too close to other buildings. If every 
requirement is met, we place the building and rotate it in a 
way that it will face the nearest road. Then we create a road 
from the front of building using the algorithm 3. We can 

adjust the density of the village by changing the permitted 
distance between each building. 

VII. RESULTS 

We implemented this method in C++, using the Unreal 
Engine 4.19. The tests were executed on a Ryzen 5 1600 at 
3,2GHz. We created a terrain of 700x700 vertices, utilizing 
Perlin Noise [3] and fractional Brownian motion (fBm) with 
eight octaves. We randomized the Perlin Noise vectors 
utilizing an integer seed. Thus, giving a different seed we 
can generate a different terrain. 

Our solution to define the area for the villages and the 
placement of the buildings works on flat terrains (Fig. 10), 
and on uneven terrains (Fig. 11).  

 

 
Figure 10.  A small village created on smooth terrain. 

 
Figure 11.  A village generated on an uneven terrain. 

For irregular terrains, where we cannot place more than 
a couple building per subarea, our method still performs 
well. The villages generated have all the building connected 
and they are as close as possible to each other, Fig. 12 shows 
an area delimited and the resulting village on a rough 
terrain. 

 

 
 (a) 

 
 (b) 

Figure 12.  In (a) the blue areas are the acceptable nodes and the pink 
areas represent the nodes that belong to the village seed. (b) shows the 

resulting village. 
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The generation of roads also works on uneven terrains. 
When the only possible path is by going on a very steep 
terrain, the path generated takes the flatter possible track. 
An example of this can be seen in Fig. 13. 

 

 
Figure 13.  A path climbing a steep terrain. 

One of the most impactful variables on our road 
algorithm is the constant 𝛽, both on the execution time and 
on the path created. The road generation was tested on 
several different terrains, from the point (100,100) to the 
point (600,600), with 𝛽 ranging from 0 to 70. Values larger 
than 70 showed no difference on the path created, only 
increasing the execution time. Table I shows the average 
time in seconds of this test with different values of 𝛽. The 
average time to create eight villages and the road system on 
the terrain is about 30 seconds. 

TABLE I.  EXECUTION TIMES IN SECONDS FOR DIFFERENT 𝛽 
VALUES  

𝛽          Time 

0 0.011326 

5 6.355239 

10 15.17072 

15 21.73047 

20 24.77973 

29 34.52233 

30 37.55081 

31 37.49178 

40 47.00348 

50 56.50435 

70 59.15096 

The data resulted from the tests can be seen in Fig. 14. 
The data of all the tests were averaged and normalized so 
they are shown between 0 and 1. It shows that values of 𝛽 
closer to 30 produces paths with the lowest standard 
deviation with an acceptable execution time. The difference 
in cost and the number of nodes tends to remain constant 
with 𝛽 above 25. 

VIII. CONCLUSION AND FUTURE WORKS 

This paper presented a method to generate villages and 
roads that works on arbitrary terrains. The road generation 
produces realistic paths utilizing a simple cost function, and 
is able to create T-junctions when connecting an initial point 
to any other point belonging to an existing road. The 
solution proposed to delimit the village area works well and 
can be easily modified to suit different kinds of application. 

The road generation only takes into account the slope of 
the terrain and only creates paths that follow the terrain 
geometry. A new research can be made to add more cost 
functions that would approach other obstacles, like water, 
vegetation or different types of terrain and also capable of 
deciding for the generation of bridges and tunnels. 
Modifying the terrain to adapt to the road is another research 
problem. 

When defining the area for the village, algorithm 1 does 
not take into consideration the height difference between the 
nodes. This can be a problem near large cliffs with a small 
area on the XY plane, since the algorithm may still 
recognize that area as acceptable, despite the nodes being 
far away from each other on the Z axis. 

 Another way to improve the villages is by utilizing a 
more complex approach to place the buildings on the 
terrain. This can be done by making use of a method for 
generating land usage [12][13], which separates the village 
land into small portions that belongs to a certain building. 
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Figure 14.  Graph of the average value of standard deviation after several costs. All values were normalizes between 0 and 1.

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

Road from position (100,100) to (600,600)

Standard Deviation Number of Nodes Cost

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers
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