
Procedural Content Generation of Villages and Road System on Arbitrary
Terrains

Tiago Boelter Mizdal
Programa de Pós-Graduação em Ciência da

Computação - PPGCC
Universidade Federal de Santa Maria

Santa Maria, Brazil
tiagomizdal@gmail.com

Cesar Tadeu Pozzer
Programa de Pós-Graduação em Ciência da

Computação - PPGCC
Universidade Federal de Santa Maria

Santa Maria, Brazil
pozzer@inf.ufsm.br

Figure 1. A village created with our approach.

Abstract— Modeling a terrain with a large amount of details
by hand is an arduous task. Creating roads, villages, buildings
and other details demands a lot of time from an artist. In this
paper we propose a solution that analyzes the terrain, defines
proper areas for the villages and generates the roads
connecting them. The area delimited to each village is given
by the characteristics of the terrain. The road system is
generated using the A* algorithm with our own cost functions
that consider the slope of the terrain. Our method is also able
to create T-junctions and works from a starting point to any
other road. Buildings are placed on each village according to
a seed and their locations are defined in acceptable areas of
the terrain.

Keywords—Procedural generation; villages; road system;
shortest path; weightning function;

I. INTRODUCTION

In many applications, such as video games, simulators
and movies, the scenery must contain a vast amount of
details to provide good user experience. However, creating
all the details manually demands a lot of time and resources.
Procedural generation aims at creating data algorithmically,
with little to none user input. Modeling landscapes, with
rivers, forests, human settlements and roads is a challenging
problem. Several procedural modeling techniques are able
to generate this kind of content, and they usually require
some kind of handmade feature or they have some
limitations.

A formula that shapes a village or a road does not exist
in the real world. Villages are the result of people settling in
convenient locations and roads were created to allow
transportation among the villages. Procedural generation of
villages and road systems tries to deliver a result that mimics
the real life utilizing a pre-defined set of rules and functions.

This paper presents a procedural approach to generate
villages and roads connecting them, in a way that permits
the result to be easily modified by the user to better suit the
application needs. A village generated by our method can
be seen in Fig. 1.

The method proposed in this paper has a global to local
approach. Given a terrain as input, we create a graph and
analyze every node in the grid according to its surroundings,
appointing to each node a number indicating how favorable
it is to create a city. The nodes act as a seed and the villages
are built around them. This way, it is possible to change the
location of a village or add a new one by changing or adding
a seed node.

The algorithm proposed to create the road system is
based on the works of [1] and [4]. It is computed utilizing
the A* algorithm, however we created our own cost
function that aims at minimizing the standard deviation of
the cost of the road. Our approach produces realistic paths
that avoid slopes that are too steep and also presenting a way
to create roads from a given position to other roads.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 556

The contributions of this paper are as follows:
 We propose a solution to define the center of a

village and the area that belongs to it on a given
terrain.

 We introduce a method of generating roads
connecting a set of cities, utilizing our own cost
functions. This method is capable of generating
roads from an initial point to any other road in
the road system, without a destination point,
which creates T-junctions in the process.

 The solutions presented can be easily
manipulated to suit different kinds of
applications.

This paper is organized as follows: Section II presents
related works on the subject, Section III introduces the
workflow, Sections IV, V and VI describe the steps used by
the method proposed and implementations, Section VII
discusses results and Section VIII presents the conclusion
and future work.

II. RELATED WORK

Our approach to generate the road network is based on
[1], where an algorithm to create complex roads from an
initial to a final point that adapts to the characteristics of the
terrain is presented. The goal is to build a path that
minimizes the line integral of a cost weighting function. It
takes in consideration the slope of the terrain and natural
obstacles, like rivers, lakes and forests. It is also capable of
creating bridges and tunnels. In [4], the paper presents a
framework for creating a hierarchical road network
connecting a set of cities. However the cities and their sizes
must be defined by the user and the roads are connected
from a starting point on the edge of a city to a final point on
the edge of another, only merging roads that are very
similar. Our approach is able to create roads from an initial
point to any other road, without the need of a defined final
point, which generates T-junctions, this way creating a road
system that looks more realistic. Our method also connects
cities from their centers.

Reference [2] proposes a local to global approach,
capable of creating villages and road networks. In it, a
building is set at random on a valid position of the terrain,
and then it creates a cycle that consists in adding a road for
that building and adding new buildings. It takes into account
the slope of the terrain, water, other building, other villages,
road connections, types of villages and types of buildings.

CityEngine [5] is a system that addresses the procedural
modeling of complete cities using a set of statistical and
geographical data. The base model of the city relies on aerial
pictures. The roads are created based on L-systems. It
generates the road system and the buildings.

There are several papers [12][13] that focus on modeling
the land use. Given a terrain description, they generate
different patterns of land use, including layouts for different
types of areas, sizes, historic background, and density.

III. WORKFLOW

Given a terrain, created by a procedural method, by
hand or extracted from real data sets, our solution works on
three steps.

First, we analyze the terrain, giving each node on the
terrain a value that indicates how probable it is of acting as
seed to generate the city around it, and also define which

nodes belongs to which seeds. Secondly, we select the
nodes that will generate the villages and create a road
system connecting them. The road system begins by
connecting a point in one village to a final point in another,
and then connecting other villages to an existing road.
Lastly, we place the buildings on the villages, selecting the
acceptable spots where a building can be positioned. Fig. 2
presents the flowchart of our method.

Figure 2. Flowchart presenting the three steps taken by our method to

generate the road system and the villages.

IV. FINDING THE LOCATION OF THE VILLAGES

To look realistic, the cities must be placed on locations
that are mostly flat, where buildings can be placed near each
other and roads can be generated between them. This means
that the area in which a village occupy must not have a large
subarea where no buildings or roads can be placed. The area
that is given to a village must be consistent (Fig. 3). As an
example, if a village is near a large gap, buildings belonging
to a single village must not be placed on both sides of the
gap.

Figure 3. The areas in blue show the proper delimitation, the area in red

shows an unfitting approach.

Analyze the
terrain and

define
village areas

Generate the
road system
connecting
the villages

Place the
buildings on
the villages

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 557

With this in mind, we propose a solution inspired by the
algorithms used to calculate the Delaunay Triangulation [6]
and the Crust [7].

Delaunay Triangulation is a method used to triangulate
a set of vertices. One way to solve it is by creating circles
that touch every three vertices of the set. If a circle does not
contain another vertex in it, the three vertex touching the
circle can be triangulated.

Crust is a curve reconstruction method that given a set
of points creates a graph containing the edges of the curve.
It creates a circle touching every two points, and if this circle
doesn’t contain another point or a point from the medial
axis, it is a valid edge.

Given the height map, the vertices become a graph,
where every vertex is a node. To define the locations of
every village, we must first define what nodes on the terrain
can be used to place a building. Every node on the terrain is
evaluated, considering its slope. Therefore, given a
maximum slope, every node is deemed as acceptable or
unacceptable. The slope is given by the cross product
between the normal vector of the node and the vector
perpendicular to the plane XY. Knowing which nodes are
acceptable, we can define which ones are more favorable to
act as seeds for the villages and which nodes each seed can
use. Even the unacceptable nodes can act as seeds, since the
nodes that belong to it can be acceptable.

Given a node N and a maximum node count C. We
create a circle of radius R centered at N. Then, we select the
acceptable nodes that are the farthest in the X and Y axis
from N and create new circles of radius R centered on those
nodes. Note that these new circles will contain N. Now we
count how many acceptable nodes exists that are contained
in three or more circles. If the number of counted nodes is
less than C, we start the loop again, creating new circles
from our last nodes, and counting the number of acceptable
nodes. The complexity of this algorithm is 𝑂(𝑛ଷ), but since
it is limited by a maximum node count that is usually small
compared to the size of the terrain, it still performs fast. The
Algorithm 1 provides a pseudo-code of this method and Fig.
4 presents a resulting area delimited for a seed.

Algorithm 1. Pseudo-code to find the area belonging to a village that can

be created by a seed node N.

This way we guarantee that the maximum distance
between a node to three other nodes is no larger than R, thus
avoiding large gaps and areas without any building. When
we have found which nodes belongs to which seed, we give
the seed a number P corresponding to probability of success.
P is given by the sum of the distances between each node
and N.

By changing the values of R and C we can create
villages with different densities and sizes, allowing the user
to manipulate the way this algorithm behaves. The value of
C is proportional to the size of the village. By setting R to a
high value, the villages will have large subareas where no
building will be placed, creating villages that are sparser.

Figure 4. The yellow nodes represent the selected area. The blue node

is the seed. The white and red nodes are the acceptable and unnaceptable
areas, respectively. The green circles are the center of the expanded

circles.

The format of the village is indicated by P. A low valued
P means that all nodes found are closer to N, and thus able
to create a denser village in an area that resembles a circle.
However, a high value for P means that the nodes are
sparser, and the village would be placed on a larger area,
that adapts to the shape of the terrain. Fig. 5 shows examples
of different values of P.

P value of 8.

(a)

P value of 12.

(b)

Figure 5. Both images have the same node count of 8. The seed is in
red and the center number is the value of P. The nodes belonging to the
seed are in blue, and the number in the center of each node corresponds

to the distance between the node and the seed.

Input: N node being evaluated
Input: C maximum number of nodes
Input: R radius of the circles
List<Nodes> circles
List<Nodes> selectedNodes
newCircles N
while selectedNodes.Num() < C
 newCircles findNewCircles(newCircles, R)
 circles.Add(newCircles)
 if newCircles.Num() ≤ 0
 break while
 end if
 selectedNodes findNodesIn3orMoreCircles(circles)
end while
return selectedNodes

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 558

V. GENERATING ROADS

The A* algorithm [8][9][10][11] is a best-first graph
search algorithm that finds the path from an initial to a final
point. We use our own cost function to determine the order
the A* searches the nodes. Since the terrain is arbitrary, our
cost function must allow the graph to be connected. Only
considering steep paths when necessary.

The A* algorithm works as follows. For every point
evaluated, we calculate its cost value to the end and its cost
value to the parent. Given a starting point 𝑝ଵ and a goal
point 𝑝ଶ, we set all costs of 𝑝ଵ to zero, and add it to a list of
points L. Then we start a loop that does the following: While
L is not empty; we select a point 𝑝 in L that has the lowest
cost. If 𝑝 is the goal point, we stop the loop. Then we
evaluate the costs of all points connecting 𝑝, set their parent
as 𝑝 and add them to L; if the point already existed in L,
we only add it if it has a lower cost. Once 𝑝 is equal to 𝑝ଶ,
we find the resulting path by following its parents until we
reach 𝑝ଵ.

Given the terrain, we create a graph with connectivity of
eight. Each vertex is a node and it is connected to its eight
closest neighbors, see Fig. 6 below.

Figure 6. The eight possible connections between all nodes on the grid.

The red arrows represent the sideways distance in XY, and the green
arrows represent the diagonal distance in XY.

Our cost function between two points 𝑝ଵ and 𝑝ଶ takes in
consideration the distance in the XY plane between the two
points, and the slope 𝛼 of the first point. The cost function
is defined by the distance between 𝑝ଵ and 𝑝ଶ plus this same
distance multiplied by one minus the slope 𝛼 multiplied by
a constant 𝛽, as shown in the following equation.

𝐶 = 𝐷𝑖𝑠𝑡𝑋𝑌൫𝑝ଵ,𝑝ଶ൯ + 𝐷𝑖𝑠𝑡𝑋𝑌൫𝑝ଵ,𝑝ଶ൯ × (1 − 𝛼) × 𝛽 (1)

This cost function is applied in the cost of a node to its

goal and to its parent. The slope 𝛼 can be pre-calculated and
is defined by the dot product between the normal vector of
the vertex and the vector perpendicular to the plane XY. We
use the distance only in the XY plane because this distance
can be pre-calculated, allowing the algorithm to run in less
time. The sideways distance to every other vertex is constant
and the same occurs on the diagonal distance (see Fig. 6).
The value of 𝛽 affects the impact that the slope has on the
path. A pseudo-code example of this method can be seen in
Algorithm 2.

All roads created are added to the road system R. In
order to create T-junctions, we utilize a small variation of
the Algorithm 2. We no longer define a goal point, instead
we give the function the start point and all the existing roads.

When calculating the cost of a node to the goal point, we
calculate the cost of the point to the closest node that
belongs to a road. Then, we stop the loop when one of the
nodes that were evaluated is contained in R. An example
can be seen in Algorithm 3.

Algorithm 2. Procedure to find the best path between two points utilizing

our cost function.

Algorithm 3. Procedure to create a road giving a start point and a road
system.

Given a number of possible village locations, we choose
two of these locations to start our road system and create a
path between their seed nodes, utilizing algorithm 2. The
path to the other villages is then created with algorithm 3,
giving their seed nodes and the road system. Fig. 7 shows
an example of this.

Figure 7. Road system created utilizing our method. The road in black
was generated with Algorithm 2. The roads in blue and red were created

using Algorithm 3.

A road with a lower standard deviation σ is a path that
has less steep parts that deviate from the average slope of
the road. By changing 𝛽 the user can control how the

Input: 𝑝ଵ starting point
Input: 𝑝ଶ goal point
List<Point> L
List<Point> possibilities
L.Add(𝑝ଵ)
while L.Num() > 0
 select the point P in L that has the lowest cost
 possibilities eight closest neighbors of P
 for each Point S in possibilities
 S.parent P
 S.costToParent DistXY(S, P) + DistXY(S, P)*(1-slope)*𝛽
 S.costToGoal DistXY(S, 𝑝ଶ) + DistXY(S, 𝑝ଶ)*(1-slope)*𝛽
 end for
 if possibilities contains 𝑝ଶ
 break while
 end if
 Add possibilities to L
end while

Input: 𝑝ଵ starting point
Input: List<Roads> R all existing roads
List<Point> L
List<Point> possibilities
L.Add(𝑝ଵ)
while L.Num() > 0
 select the point P in L that has the lowest cost
 possibilities eight closest neighbors of P
 for each Point S in possibilities
 S.parent P
 T closest node that belongs to R
 S.costToParent DistXY(S, P) + DistXY(S, P)*(1-slope)*𝛽
 S.costToGoal DistXY(S, T) + DistXY(S, T)*(1-slope)*𝛽
 end for
 if possibilities contains a node in R
 break while
 end if
 Add possibilities to L
end while

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 559

algorithm behave, creating a path that better suit the user
needs. The value of 𝛽 also affects the standard deviation.
This method was extensively tested in order to give an
insight about the impact that 𝛽 has on the road. Fig. 8 shows
different roads created with different values of 𝛽.

 𝛽 = 0 𝛽 = 1
 (a) (b)

 𝛽 = 10 𝛽 = 28
 (c) (d)

 𝛽 = 50 𝛽 = 70
 (e) (f)

Figure 8. Roads created with differents value of 𝛽. All roads have the
same starting and ending points.

VI. CREATING THE VILLAGES

In order to create a suitable village, the buildings must
be place in areas where most of the building’s base is in
contact with the terrain. Every 3D model has a mask of its
base, which is defined by the user, hence, we must find a
place that can fit the model’s mask. An example of a mask
can be seen in Fig. 9.

Figure 9. A 3D model of a house and its mask on the grid.

In section II we defined a seed node and the nodes that
belong to that seed. Given a village, defined by a seed S and
a set of 3D models which are the buildings. Each village has
a determined number of building. Each building also has a
determined radius, where no other building must be placed.

 To place each building, we randomize a node N
contained by S. Then we verify if the area around N can fit
the 3D model’s mask, also checking if it doesn’t overlap a
road or if it isn’t too close to other buildings. If every
requirement is met, we place the building and rotate it in a
way that it will face the nearest road. Then we create a road
from the front of building using the algorithm 3. We can

adjust the density of the village by changing the permitted
distance between each building.

VII. RESULTS

We implemented this method in C++, using the Unreal
Engine 4.19. The tests were executed on a Ryzen 5 1600 at
3,2GHz. We created a terrain of 700x700 vertices, utilizing
Perlin Noise [3] and fractional Brownian motion (fBm) with
eight octaves. We randomized the Perlin Noise vectors
utilizing an integer seed. Thus, giving a different seed we
can generate a different terrain.

Our solution to define the area for the villages and the
placement of the buildings works on flat terrains (Fig. 10),
and on uneven terrains (Fig. 11).

Figure 10. A small village created on smooth terrain.

Figure 11. A village generated on an uneven terrain.

For irregular terrains, where we cannot place more than
a couple building per subarea, our method still performs
well. The villages generated have all the building connected
and they are as close as possible to each other, Fig. 12 shows
an area delimited and the resulting village on a rough
terrain.

 (a)

 (b)

Figure 12. In (a) the blue areas are the acceptable nodes and the pink
areas represent the nodes that belong to the village seed. (b) shows the

resulting village.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 560

The generation of roads also works on uneven terrains.
When the only possible path is by going on a very steep
terrain, the path generated takes the flatter possible track.
An example of this can be seen in Fig. 13.

Figure 13. A path climbing a steep terrain.

One of the most impactful variables on our road
algorithm is the constant 𝛽, both on the execution time and
on the path created. The road generation was tested on
several different terrains, from the point (100,100) to the
point (600,600), with 𝛽 ranging from 0 to 70. Values larger
than 70 showed no difference on the path created, only
increasing the execution time. Table I shows the average
time in seconds of this test with different values of 𝛽. The
average time to create eight villages and the road system on
the terrain is about 30 seconds.

TABLE I. EXECUTION TIMES IN SECONDS FOR DIFFERENT 𝛽
VALUES

𝛽 Time

0 0.011326

5 6.355239

10 15.17072

15 21.73047

20 24.77973

29 34.52233

30 37.55081

31 37.49178

40 47.00348

50 56.50435

70 59.15096

The data resulted from the tests can be seen in Fig. 14.
The data of all the tests were averaged and normalized so
they are shown between 0 and 1. It shows that values of 𝛽
closer to 30 produces paths with the lowest standard
deviation with an acceptable execution time. The difference
in cost and the number of nodes tends to remain constant
with 𝛽 above 25.

VIII. CONCLUSION AND FUTURE WORKS

This paper presented a method to generate villages and
roads that works on arbitrary terrains. The road generation
produces realistic paths utilizing a simple cost function, and
is able to create T-junctions when connecting an initial point
to any other point belonging to an existing road. The
solution proposed to delimit the village area works well and
can be easily modified to suit different kinds of application.

The road generation only takes into account the slope of
the terrain and only creates paths that follow the terrain
geometry. A new research can be made to add more cost
functions that would approach other obstacles, like water,
vegetation or different types of terrain and also capable of
deciding for the generation of bridges and tunnels.
Modifying the terrain to adapt to the road is another research
problem.

When defining the area for the village, algorithm 1 does
not take into consideration the height difference between the
nodes. This can be a problem near large cliffs with a small
area on the XY plane, since the algorithm may still
recognize that area as acceptable, despite the nodes being
far away from each other on the Z axis.

 Another way to improve the villages is by utilizing a
more complex approach to place the buildings on the
terrain. This can be done by making use of a method for
generating land usage [12][13], which separates the village
land into small portions that belongs to a certain building.

ACKNOWLEDGMENT

This study was financed by the Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior - Brasil
(CAPES) - Finance Code 001. We also thank the
Brazilian army for the support through the SIS-ASTROS
project.

Figure 14. Graph of the average value of standard deviation after several costs. All values were normalizes between 0 and 1.

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70

Road from position (100,100) to (600,600)

Standard Deviation Number of Nodes Cost

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 561

REFERENCES

[1] E. Galin, A. Peytavie, N. Maréchal, and E. Guérin, "Procedural

generation of roads." Computer Graphics Forum, vol. 29, no. 2,
Oxford, UK: Blackwell Publishing Ltd, 2010. pp. 429-438.

[2] A. Emilien, A. Bernhardt, A. Peytavie, M. Cani, and E. Galin.
"Procedural generation of villages on arbitrary terrains." The Visual
Computer 28, no. 6-8. 2012. pp. 809-818.

[3] K. Perlin. An image synthesizer. ACM SIGGRAPH Computer
Graphics, 19(3):287–296, 1985.

[4] E. Galin, A. Peytavie, E. Guérin, and Bedřich Beneš. "Authoring
hierarchical road networks." In Computer Graphics Forum, vol. 30,
no. 7, pp. 2021-2030. Oxford, UK: Blackwell Publishing Ltd, 2011.

[5] Y. Parish, and P. Müller. "Procedural modeling of cities." In
Proceedings of the 28th annual conference on Computer graphics
and interactive techniques, pp. 301-308. ACM, 2001.

[6] M. De Berg, M. Kreveld, M. Overmars and O. Schwarzkopf.
"Computational geometry." In Computational geometry, pp. 1-17.
Springer, Berlin, Heidelberg, 1997.

[7] N. Amenta, M. Bern and D. Eppstein. "The crust and the β-skeleton:
Combinatorial curve reconstruction." Graphical models and image
processing 60, no. 2 (1998): 125-135.

[8] A. Botea, M. Müller and J. Schaeffer. "Near optimal hierarchical
path-finding." Journal of game development 1, no. 1 (2004): 7-28.

[9] N. Sturtevant and M. Buro. "Partial pathfinding using map
abstraction and refinement." In AAAI, vol. 5, pp. 1392-1397. 2005.

[10] K. Khantanapoka and K. Chinnasarn. "Pathfinding of 2D & 3D
game real-time strategy with depth direction A∗ algorithm for multi-
layer." In Natural Language Processing, 2009. SNLP'09. Eighth
International Symposium on, pp. 184-188. IEEE, 2009.

[11] S. D. Goodwin, S. Menon and R. G. Price. "Pathfinding in open
terrain." In Proceedings of International Academic Conference on
the Future of Game Design and Technology, p. 8. 2006.

[12] S. Groenewegen, R. M. Smelik, K. Jan de Kraker, and R. Bidarra.
"Procedural City Layout Generation Based on Urban Land Use
Models." In Eurographics (Short Papers), pp. 45-48. 2009.

[13] T. Lechner, P. Ren, B. Watson, C. Brozefski, and U. Wilenski.
"Procedural modeling of urban land use." In ACM SIGGRAPH
2006 Research posters, p. 135. A

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 562

