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Abstract—Pathfinding algorithms are at the heart of most
games, especially to fulfill increasingly demanding Artificial
Intelligence and Level Design tasks. Recent smartphones and
tablets are equipped with efficient Multi-Processing Systems-
on-Chip (MPSoC) devices, with demanding performance re-
quirements and energy consumption constraints. While not
primarily designed for gaming, such mobile machines are
quickly climbing to the top of the list of preferred gaming
devices, augmented at each new product iteration with state-
of-the-art multimedia subsystems and co-processors. Therefore,
this work aims at designing and evaluating an efficient A*
pathfinding co-processor for reconfigurable gaming devices.
The co-processor is designed using Xilinx High-Level Synthesis
(HLS) compiler and is implemented in the programming
logic of a Xilinx Ultrascale+ Field-Programmable Gate Array
(FPGA) embedded with a 64-bit quad-core ARM Cortex-A53
MPSoC, dual-core Cortex-R5 real-time processors, and a Mali-
400 MP2 graphics processing unit. Extensive performance,
circuit-area and energy consumption results shows that the co-
processor running at only 200MHz can efficiently find paths
approximately four times faster than one ARM processor
running at 1.2GHz for a set of pathfinding benchmarks based
on artificial maps and commercial games such as StarCraft
and Baldur’s Gate, paving the way for novel dedicated gaming
co-processors. Moreover, the co-processor only requires about
one third of the system’s total dynamic power.

Keywords-Pathfinding; FPGA; High-Level Synthesis; Hard-
ware Accelerator;

I. INTRODUCTION

The gaming industry has become one of the most prof-
itable entertainment business, with only the mobile market
expected to reach a revenue around $40 billions in 2017 [1].
Most game developers continue to make games primarily
for the PC and mobile markets, with an increasing interest
for Virtual/Augmented Reality (VR/AR) technologies [2],
[3]. Many recent gaming devices, such as smartphones
and tablets, are equipped with in-house customized Multi-
Processing Systems-on-Chip (MPSoC), often built around
ARM architectures. Such integrated circuit design includes
in a single chip key advanced co-processors and components,
such as GPUs, memories, communication modules, among
others, yielding reduced energy consumption. More recently,
vendors of Field-Programmable Gate Arrays (FPGAs), such
as Xilinx and Altera, have embedded ARM microprocessors

around the programmable logic of their reconfigurable chips,
allowing the extension of the ARM basic functions. Together
with High-Level Synthesis (HLS) compiling tools [4] that
are able to translate C code to Register Transfer Level (RTL)
Hardware Description Language (HDL), such as VHDL or
Verilog, it is not only possible to quickly prototype novel
hardware components, but also to offload code execution
to efficient and dedicated parallel hardware accelerators
implemented on the FPGA-side.

In this paper we propose an efficient A* pathfinding co-
processor suitable for reconfigurable (ARM+FPGA) gaming
devices compliant with the Advanced Microcontroller Bus
Architecture (AMBA4) specification. The co-processor was
implemented and evaluated in the programmable logic of a
modern Zynq Ultrascale+ Field-Programmable Gate Array
(FPGA) from Xilinx [5]. The Zynq Ultrascale+ architecture
is embedded with a 64-bit quad-core ARM Cortex-A53
MPSoC, dual-core Cortex-R5 real-time processors, and a
Mali-400 MP2 graphics processing unit. Thus, game control,
input/ouput logic and graphics processing can be run on
the embedded MPSoC-side, while the FPGA programmable
logic runs the dedicated performance demanding and energy
efficient A* algorithm for the games which may require it.
A well-known 2D pathfinding benchmark [6] is used to
evaluate the A* co-processor. It features artificial bench-
marks and commercial game benchmarks, including maps
from famous games such as Baldur’s Gate, WarCraft 3 and
StarCraft. Each map is a 2D grid (matrix) and must be up
to 512×512 wide. The whole system runs a custom Linux
OS based on Xilinx Petalinux [7] to facilitate the A* co-
processor testing process and to leverage game design in
future iterations. Our A* HLS accelerator not only allow a
fast execution of the A* pathfinding algorithm, but with low
energy consumption, which may help to improve battery life.
Despite the gaming system and its A* co-processor being
FPGA-oriented, an ASIC (Application-Specific Integrated
Circuit) implementation can also easily be produced from
it.

The aim of this paper is to show the feasibility of
extending the hardware of reconfigurable gaming devices
to execute dedicated algorithms in FPGA hardware. It also
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evaluates the efficiency of the RTL architecture produced
when using Xilinx HLS compiler. Although this work fo-
cuses on the A* algorithm implementation in FPGA logic,
different algorithms can be implemented in the same way,
possibly shifting the gaming industry towards the develop-
ment and implementation of novel dedicated gaming co-
processors. Also, despite the fact that Graphics Processing
Units (GPUs) can be reprogrammed to execute different
algorithms, their power consumption is often higher than
that of FPGAs running dedicated parallel accelerators for
the same algorithms. Moreover, the GPU architecture is
designed to benefit SIMD-like, data parallel, floating-point
demanding applications, while the FPGA configurable logic
blocks can be (re-)programmed with just the necessary
operations and control logic required by a given application
or class of applications. While such FPGA-based gaming
devices do not yet exists, there is a recent trend towards
reviving classic gaming architectures [8]–[11] in FPGA.
Hence, we envision a future where gaming devices hardware
ought to be reconfigurable, enabling a whole new market
place for hardware accelerators suitable for specific games
or a wider range of games.

The rest of this paper is organized as follows: Sec-
tion II describes the state-of-the-art related works. The
reconfigurable gaming system is presented in Section III,
together with the implemented A* co-processor. Extensive
experimental results are presented in Section IV, including
performance, circuit-area and energy consumption results
for a set of artificial and commercial (game) maps. Finally,
Section V concludes and presents ideas for future work.

II. RELATED WORK

In many games, regardless of the platform, characters
need to move within the scenario, whether to patrol around a
point of interest, e.g., a tower, or to chase an enemy. In both
cases it is possible to simply tie the characters to determined
travelling routes. While simple, characters may seem to
be roaming aimlessly or may get trapped [12]. Moreover,
in more complex games, characters are not supposed to
know in advance to which location they should be moving.
Instead, they should venture across the scenario in search
of resources, enemies, etc. Pathfinding, also known as path
planning, is a class of algorithms that can be used to
determine the (sub-)optimal route between a starting point
and a goal. Thus, they can be used to solve the problems
described above, especially in Artificial Intelligence (AI)
tasks that continuously seek for suitable routes between
players and enemies in the game. Thus, the pathfinding
algorithms should execute quickly enough to not stall the
character’s movement.

Hardware accelerators and co-processors are often used
to execute the most timing consuming parts of a specific
application or group of applications. Besides graphics [13],
[14], state-of-the-art games are more than ever bursting with

physics simulation tasks. Thus, Software Developments Kits
(SDKs) and Physics Processing Units (PPUs) have been
developed in the past few years to ease the burden of
physics modelling and to accelerate physics-oriented oper-
ations [15]–[17], such as clothing [18], 3D-object collision
[19] and model-based robotics [20], [21].

Pathfinding is also a common operation embedded into
the AI of many games, networking and route planning
applications. An evaluation of pathfind algorithms has been
presented in [22]. The paper analyzes the Breadth-first,
Depth-First, Ordered, Greedy and A* algorithms on Android
platforms. It presents the size of each computed path, their
execution time and the number of generated/expanded states,
i.e., the number of visited/unvisited cells. Results show that
heuristics-based methods, such as A*, are more efficient in
terms of execution time.

An implementation of an FPGA Bellman-Ford pathfinding
algorithm can be seen in [23]. The architecture distributes
the input graph among adjacency RAMs of several Pro-
cessing Elements (PEs) implemented on a Xilinx Virtex-5
SX95-T FPGA, with each PE in the design being mapped
to a node of the graph. The architecture runs at 143MHz
for a 128 node and 466 edges graph, taking around 2418
cycles to compute a path on such graph. While fast, the
authors assume that the graph topology has already been
supplied to each PE. Also, detailed information about the
host processor architecture or the communication protocol
used among the PEs is not provided, as well as energy
consumption results, which makes it hard to compare to the
work presented here. Moreover, differently from the work
proposed here that executes several distinct benchmarks for
games, only four small graphs were executed.

The work in [24] describes an FPGA implementation
of the A* algorithm, but it does not present several im-
portant results, such as execution time, circuit-area and
energy consumption. Also, only the heuristic cost function
is implemented on the FPGA, while the rest is expected to
run elsewhere.

Differently from all previous work, the work proposed
here designs and evaluates an efficient A* pathfinding co-
processor for reconfigurable gaming devices. Extensive per-
formance and energy consumption results shows that the
co-processor can efficiently execute the A* algorithm ap-
proximately 4× faster than the embedded ARM processors
when running benchmarks based on commercial games such
as StarCraft and Baldur’s Gate.

III. THE RECONFIGURABLE GAMING SYSTEM

The reconfigurable gaming system prototype based on
FPGA technology is briefly shown in Fig. 1. The key is
to enable the extension of the gaming hardware architecture
(MPSoC) with any dedicated efficient co-processor specified
in High-Level Synthesis (HLS) and implemented on the
FPGA-side, possibly saving computation time and energy.
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Figure 1. The Reconfigurable Gaming System augmented with the proposed
A* Co-Processor.

The game developer community can thus take advantage
of such reconfigurable architecture to design accelerators to
meet specific performance requirements of a game while also
improving the system’s battery life. Moreover, once the co-
processor has been designed, synthesized and implemented,
a bitstream file is produced which enables the co-processor
to be programmed onto the FPGA on the fly, thus creating
a potential new market for game co-processors that can
be bundled with the games they are intended to accelerate
through well-known digital distribution platforms such as
Steam, Apple App-Store and Google Play Store.

In this work we implemented an A* co-processor to
demonstrate the gaming system acceleration proposal on
a Xilinx ZCU102 Development Kit, which represents the
reconfigurable gaming device. It is equipped with a Zynq Ul-
trascale+ FPGA and several peripheral interfaces, including
HDMI DisplayPort, USB3.0, Gigabit Ethernet and SD card.
The Zynq FPGA architecture is split into Processing System
(PS) and Programmable Logic (PL) parts, also shown in
Fig. 1. Besides, the Zynq Ultrascale+ PS integrates a 64-bit
quad-core ARM Cortex-A53 MPSoC, a dual-core Cortex-
R5 real-time processors, and a Mali-400 MP2 graphics
processing unit. The PL part is the reconfigurable logic,
which can be programmed with user-created hardware ac-
celerators using Hardware Description Languages (HDL),
such as VHDL and Verilog, or High-Level Synthesis (HLS)
tools, which are capable of producing Register Transfer-
Level (RTL) architectures from a C/C++ code specification,
as will be shown in Section III-B.

The PS-PL communication interface operates according to
the Advanced eXtensible Interface (AXI4) protocol, which is
part of the AMBA4 specification [25]. The Zynq Ultrascale+
PS-PL has several interfaces operating into the Full-Power
Domain (FPD) or Low-Power Domain (LPD) interface of the
Zynq chip. The FPD-PL interfaces are designed to provide
high-throughput data transmission between the PL and the
PS. The main FPD-PL interfaces are listed as follows:
2× High-Performance (HP) master ports from the FPD
into the PL and 6× High-Performance (HP) slave ports
from the PL into the FPD. Other interfaces (e.g., ACP)

Algorithm 1 A* pseudo-code
Require: map adjacency array g, start s node, target t node
Ensure: (sub-)optimal path array p, if it exists

1: include starting node s to open list
2: while open list is not empty do
3: get node v with lowest cost in open list
4: get neighbors of v
5: for each neighbor n of v do
6: if v is equal to t then . target reached
7: break . end of A*
8: end if
9: compute movement cost of v to n using the input

map weight value and manhattan distance
10: if movement cost is better than set of costs so

far then
11: update open list with n
12: update set of costs so far
13: update result path p
14: end if
15: end for
16: end while

are recommended for medium-grain sized workloads and
adhere to specific cache-coherency policies. The proposed
co-processor interface connects to both master and slave HP
interfaces of the PS, as will be described in Section III-B.

A. The A* pseudo-code

The A* pseudo-code [26] is presented in Algorithm 1.
Like all pathfinding algorithms, it begins from a starting
node s and loops through an open list of nodes that keeps
track of which nodes have been visited so far. At each loop
iteration, the node v with lowest cost is removed from the
open list (if it exists). The cost is based on the input map
weight value on node v and on Manhattan distance (a.k.a
snake distance), which is used as a heuristic to guide the
search towards the goal (target cell). The Manhattan distance
is the sum of the absolute differences of two Cartesian
coordinates (s, t) and thus can be used to estimate how
far a pair of cells are from each other, as can be seen in
Equation 1:

distance(s, t) = abs(s.x− t.x)+abs(s.y− t.y) (1)

Moreover, the open list is actually a priority queue, so
that the visited nodes are ordered according to the lowest
costs (priorities) which are known so far, i.e., the nodes that
are closer to the target cell based on the Manhattan distance
and the input map corresponding cell weight. Thus, the A*
algorithm expands faster towards the target, but does not
always find the shortest path, which is usually not a problem
for games.
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Figure 2. The A* Co-Processor Architecture running at 200MHz and its PS-PL communication interface. The algorithm’s HLS specification in C/C++ is
analyzed to produce the A* Accelerator (PL), which in turn connects to the Full-Power Domain High-Performance ports of the Processing System (PS),
using Smartconnect and Interconnect AXI blocks.

B. The A* Co-Processor and Interface

The A* co-processor (accelerator) is designed using
Xilinx HLS compiler, which transforms a C/C++ speci-
fication into a RTL implementation suitable for running
into Xilinx FPGAs, as shown in Fig. 2. In general, the
HLS compiler synthesizes C/C++ functions into blocks
in the RTL hierarchy, with the top-level function argu-
ments translated into RTL I/O ports, arrays translated into
BlockRAMs (or Distributed RAMs) and the control logic
(if-else, switch, for-loop, etc.) turned into a Finite State
Machine (FSM), with the loops remaining rolled by default.
Whenever possible, the datapath is created with as many
parallel operations as possible, as long as there are FPGA
resources available. The accelerator communicates to the
Processing System Full-Power Domain (FPD) through mas-
ter (M AXI HPM0 FPD) and slave (S AXI HP0 FPD)
High-Performance ports, using interconnect AXI IP blocks
Smartconnect and Interconnect. In this way, game maps
stored in the SD card file system can be copied into
DDR and mapped onto the accelerator ports for pathfinding
processing.

The AXI4 protocol interfaces supported by the HLS com-
piler include the AXI4-Stream (axis), AXI4-Lite (s axilite)
and AXI4-Master (m axi). The AXI4-Stream protocol is
the fastest, because it can transfer sequential streams of
data, with no limitation on the burst length. It is focused
on a data-flow paradigm, where the concept of an address
is not present. Therefore, it requires a Direct Memory
Access (DMA) core on the PL-side connected to a PS
high-performance port, translating memory mapped data to
stream and vice-versa. The DMA is controlled by the PS
via memory-mapped AXI4-Lite interface, connected to a PS
general purpose port. This stream protocol is not used in
this work due to the need to control DMA, which would
also make the PS programming more difficult for non-
experienced embedded systems programmers. Also, a DMA

controller would consume resources on the FPGA that could
be further used on the co-processor’s datapath, memory
and/or logic control. The AXI4-Lite, on the other hand, is
the slowest and, as such, should be applied only for simple,
low-throughput memory-mapped communication. Thus, this
protocol is used in this work to signal the start of the
co-processor and to gather status information, indicating
whether the core is idle or the computation has finished.
Also, it is used to set the base address, the start and target
cells of the path that the core needs to search for.

Lastly, AXI4-Master (also known as AXI4-Full), provides
high-performance memory-mapped PS-PL data transfers.
This protocol implements burst mode data transfers, i.e., it
can burst up to 256 words of data based on a single memory-
mapped address, connected to a PS high-performance port.
If more data needs to be transferred, the protocol must be
granted bus access again in order to burst more data. This
protocol is used in this work to transfer the map adjacency
array that represents the input graph map, as well as to
transfer back to the host (ARM) the resulting path. Using this
protocol, the programmer just needs to specify the address
of the input grid array to the core, and the address where
the resulting path should be stored.

C. The A* HLS implementation

The A* HLS hardware accelerator implementation oper-
ates given the input graph (map) base address ∗g, the output
path base address ∗p, the start s and target t cell coordinates,
and the compiler directives (pragmas), as shown in Listing 1.
The HLS compiler implements an AXI4-Full interface port
which is used to transfer the adjacency array map data and
the resulting path back to their respective base addresses in
external memory (e.g., DDR). Also, an AXI4-Lite interface
port is implemented to transfer the addresses themselves and
to transfer the other parameters of the function, such as the
start and target cells. The memcpy function call indicates
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Listing 1. A* HLS implementation.
1 #define N_NODES (512*512) //2D grid size 512x512
2 static uchar graph_m[N_NODES]; //adjacency array
3 static int path[N_NODES]; //resulting path array
4 static int costs[N_NODES]; //path costs array
5 void aStar(volatile uchar *g, volatile int *p, int s, int t) {
6 #pragma HLS INTERFACE m axi depth=N_NODES port=g offset=slave
7 #pragma HLS INTERFACE m axi depth=N_NODES port=p offset=slave
8 #pragma HLS INTERFACE s axilite port=g bundle=AXI_Lite
9 #pragma HLS INTERFACE s axilite port=p bundle=AXI_Lite

10 #pragma HLS INTERFACE s axilite port=s bundle=AXI_Lite
11 #pragma HLS INTERFACE s axilite port=t bundle=AXI_Lite
12 #pragma HLS INTERFACE s axilite port=return bundle=AXI_Lite
13 #pragma HLS ARRAY_PARTITION variable=graph_m cyclic factor=4 dim=1
14 #pragma HLS ARRAY_PARTITION variable=path cyclic factor=4 dim=1
15 #pragma HLS ARRAY_PARTITION variable=costs cyclic factor=4 dim=1
16 //AXI4 burst mode copy
17 memcpy(graph_m,(const int*)g,N_NODES*sizeof(uchar));
18 int n1,n2,n3,n4;
19 int new_cost1,new_cost2,new_cost3,new_cost4;
20 int prior1,prior2,prior3,prior4;
21 int neig[4] = {-1,-1,-1,-1}; //neighbor array
22 list_t perim; //perimeter array−list
23 init_list(&perim); //init ‘‘perim’’ list size to 0
24 init(path,costs); //init ‘‘path’’ and ‘‘costs’’ static arrays to −1
25 put_item_prior(&perim, s, 0);
26 costs[s] = 0;
27 while (!is_empty(&perim)) { //A* main−loop
28 int v = remove_first(&perim);
29 if (v == t) //early exit
30 break;
31 neighborhood(neig, v); //get all 4 neighbor cells of v
32 n1 = neig[0]; //north neighbor
33 n2 = neig[1]; //east neighbor
34 n3 = neig[2]; //south neighbor
35 n4 = neig[3]; //west neighbor
36 if (n1 >= 0) { //north neighbor analysis
37 if (graph_m[n1] > 0 && graph_m[n1] < 255){
38 new_cost1 = costs[v] + graph_m[n1];
39 prior1 = new_cost1 + heuristic(n1, end_node);
40 if (costs[n1] < 0 || new_cost1 < costs[n1]) {
41 append_item_prior(&perim, n1, prior1);
42 costs[n1] = new_cost1;
43 path[n1] = v;
44 } } }
45 if (n2 >= 0) { //east neighbor analysis
46 if (graph_m[n2] > 0 && graph_m[n2] < 255){
47 new_cost2 = costs[v] + graph_m[n2];
48 prior2 = new_cost2 + heuristic(n2, end_node);
49 if (costs[n2] < 0 || new_cost2 < costs[n2]) {
50 append_item_prior(&perim, n2, prior2);
51 costs[n2] = new_cost2;
52 path[n2] = v;
53 } } }
54 if (n3 >= 0) { //south neighbor analysis
55 //removed for the sake of simplicity
56 } } }
57 if (n4 >= 0) { //west neighbor analysis
58 //removed for the sake of simplicity
59 } } } }
60 //AXI4 burst mode copy
61 memcpy((int*)p,path,N_NODES*sizeof(int));
62 }

that the graph adjacency array (graph m) should be trans-
ferred in burst mode, whenever possible. The HLS compiler
automatically implements the protocol handshaking signals,
which greatly simplifies the design process of the PS-PL
interface. Beyond that, it also produces C-Drivers that can
be compiled and used by the ARM programmer to control
the co-processor. These drivers are basically C function calls
to control each pathfinding core (e.g., set start node, target

node, adjacency array base address, start execution, etc.).
As described in Section III-A, the A* algorithm [26] uses

Manhattan distance as heuristic to guide the search towards
the goal (target cell). Such distance calculation is performed
by a separate function, which is inlined into the top-level
function. Furthermore, the open list is implemented as a
priority queue (perim) to keep track of the perimeter cells
which are closer to the target cell. The queue is also specified
in HLS as a C-struct, containing the queue size and a pair of
arrays: one that holds the item value and the other that holds
the item priority. Each array can store up to 262144 items,
which is equivalent to the input map maximum size, i.e.,
512×512. Each array is mapped onto a BlockRAM of the
target FPGA. Inserting an item with a given priority is O(n)
in the worst case, because the item needs to be inserted in
the position according to its priority. Removing the lowest
priority item, i.e., lowest cost node, is O(1).

Furthermore, notice that the processing code for all four
neighbors (north, east, south and west) of cell v under
evaluation are specified in Listing 1, from lines 36 to 59,
with the processing code for the south and west neighbors
omitted for the sake of simplicity. The code for each neigh-
bor cell is written in a different if clause to ensure that the
HLS compiler can produce a datapath and its given control
logic capable of processing each neighbor separately, i.e., in
parallel. The ARRAY PARTITION pragma directives enables
the programmer to split the given arrays onto different
BlockRAMs automatically, in order to allow parallel ac-
cesses to different positions of the original array. Otherwise,
every array access would have to be serialized, which would
hurt the overall A* co-processor performance. For instance
graph m, path and costs static arrays in Listing 1 are spread
onto four BlockRAMs, so that all the four neighbors of a cell
can potentially be analyzed in parallel. On the other hand,
access to the perimeter array-list (perim) is serial, because
in fact it implements priority queue that hinders parallel
insertions/deletions. Still, several expressions and memory
accesses in the code can be processed in parallel, as will
be shown in Section IV-B. The whole A* HLS source code
has been made available in github [27] so that this work
can be reproduced by different research groups. It includes
the HLS code for array-backed lists and graph management.
Nevertheless, the HLS code is partially shown in Listing 1
to better explain the idea and the concepts behind this work.

IV. EXPERIMENTAL ANALYSIS

The design process of the A* co-processor using HLS
encompasses three main development stages. First, the co-
processor must be specified in C/C++ using the HLS com-
piler subset of ANSI-C allowed operations and transformed
into synthesizable VHDL (or Verilog) RTL hardware de-
scription. The second stage is the architecture specification,
which connects the co-processor to the processing system
using different types of interconnects. The last stage is the
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(a) Maze 32-5. (b) Random 40-4. (c) Room 64 5. (d) WC3 golem. (e) BG AR0411. (f) SC CatwalkAlley.

Figure 3. Examples of artificial and commercial maps, and path examples.

processing system development, which builds on top the
designed architecture and uses Xilinx customized petalinux
OS. All the experiments were executed in the Zynq-FPGA
architecture described in Section III-B.

A. Benchmark

In this work, the 2D grid world benchmark [6] is used to
evaluate the A* pathfinding co-processor. It provides several
maps that are available to all researchers to use, allowing
the comparison of results. This Benchmark set contains
commercial games maps, city/street maps and also artificial
benchmarks. As the focus of this work is a gaming co-
processor, game maps, random maps and artificial mazes
were used. As previously explained, the 2D grid maps must
be up to of 512×512 wide to fit in the co-processor memory.
This limitation has virtually no impact on this benchmark
since almost all maps are less than or equal to 512× 512.
It is important to notice that the original benchmark results
are based on Dijkstra’s algorithm and allows movements on
all 8 directions of each cell, i.e., including diagonals, while
our A* implementation allows movements on 4 directions
only (north, east, south, west). This is because our A* co-
processor tries to analyze all for directions in parallel and
could not be properly synthesized for all eight directions due
to timing constraints. Fig. 3 presents a set of examples of
the maps used in the experiments, organized into Artifically
created maps and commercial game maps. Each map cell
with unitary cost (1) represents a passable terrain, while
others represent non-passable terrain, i.e., obstacles. Maze
maps reproduce labyrinths with varying corridor widths
(1,2,4,8,16 and 32), as can be seen in Fig. 3a. Random
maps are generated randomly with varying probabilities
(0.10,0.15,0.20,0.25,0.30 and 0.40) of producing obstacles
(Fig. 3b). In turn, Room maps reproduce square rooms with
varying sizes (8 × 8, 16 × 16, 32 × 32 and 64 × 64). An
example of a 64× 64 room map can be seen in Fig. 3c.
Fig.s 3d, 3e and 3f represent scenarios adapted from com-
mercially available games WarCraft3, Baldur’s Gate and
StarCraft, respectively.

B. Performance analysis

In the first experiment set we evaluate the acceleration
of the A* co-processor in comparison to executing the A*
algorithm on one ARM core of the MPSoC. Each map (297

in total) was executed 30 times for both A* co-processor
(hardware) and A* algorithm on the ARM (software), which
resulted in a total of 297 × 30 executions each. This is
to evaluate the representativeness of the results obtained.
Hence, the coefficient of variation was calculated for each
map. This statistical measure was used because there is
a great variation between the execution times of different
maps. Considering the A* co-processor, the results obtained
are extremely reliable where the average coefficient of varia-
tion (CV) for all maps was only 0.0006% (with the smallest
CV=0.0002 and the largest CV=0.0114), which shows that
execution times are very close to the average. Similarly,
the results obtained for the A* algorithm on the ARM are
very reliable, where the average coefficient of variation for
all maps was only 0.0450% (with the smallest CV=0.0079
and the largest CV=0.4124), despite the great difference
between them. The reason for the difference is, basically,
that, while the execution on hardware is totally dedicated
without overhead, the execution on software requires the
creation of threads (or processes) which interferes with
execution time. Table I presents the whole execution time
(297 × 30) for each case: using the co-processor and not
using it (ARM only). Observe that searching for paths using
the A* accelerator takes about 75% less time than using one
ARM core, i.e., the co-processor is almost 4× faster.

Table I. Total execution time of the A* accelerator and the ARM when
running all the 30×297 maps.

Co-Processor ARM
Total execution
time (in seconds) 543.80 2096.83

The speedup results are organized into artificial and
commercial maps, as can be seen in Fig. 4 and Fig. 5. It
can be observed that in almost every map benchmark the
A* co-processor is about four times faster when compared
to one ARM-core alone, with only a few lower speedup
results presented in each benchmark map. The best speed
up achieved was 4.10 for Maze-8-1 map, while worst was
2.58 for Baldur’s Gate AR0413 map, both depicted in Fig. 6.
This good performance was achieved through a efficient
exploitation of parallelism in all four directions, while at
the same time producing a long path, as depicted in Fig. 6a.
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(a) Maze maps.

(b) Random maps.

(c) Room maps.

Figure 4. Speedup results for artificially generated 512×512 grid maps, corresponding to (i) maze maps with variable cooridor width, (ii) random maps
and room maps (iii) with random openings between them.

(a) Warcraft3 maps.

(b) Baldur’s Gate maps.

(c) StarCraft maps.

Figure 5. Speedup results for commercial game 512×512 grid maps, corresponding to (i) Baldur’s Gate, (ii) WarCraft 3 and (iii) StarCraft commercial
games.

On the other hand, the small drop in performance for some
maps can be observed when running the accelerator on maps
that feature narrow corridors and that produce very short
paths, as the one depicted in Fig. 6b. Narrow corridor maps
harms parallelism exploitation, as not all four directions
can often be explored in parallel. Moreover, using the co-
processor to determine short paths might not be as efficient
as using it to find long paths, especially due to the PS-PL
communication overhead. Still, in all maps, the co-processor
always presented better speedup results in comparison to
using one ARM core.

C. Circuit-area analysis

When considering the different resources of the pro-
grammable logic (FPGA), the BRAM (a.k.a, BlockRAM)

Table II. FPGA resources utilization.

Resource Utilization Available Utilization %
LUT 7665 274080 2.80%
LUTRAM 410 144000 0.28%
FF 6868 548160 1.25%
BRAM 617 912 67.65%
BUFG 2 404 0.50%

is the most used resource, as presented in Table II and in
Fig. 7.

This is due to the fact the every array in the HLS spec-
ification is translated to FPGA-specific BlockRAM slices
or implemented as Distributed RAMs using the Lookup
Tables that are distributed across the FPGA. The HLS
compiler and the Vivado synthesis tool decide how the
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(a) Maze 8-1, with path length of
5039 cells.

(b) BG AR0413, with path length
of 687 cells.

Figure 6. Examples of maps with best (a) and worst (b) speedups.

arrays should be implemented based on performance, circuit-
area and energy consumption trade-offs, which is a well-
known difficult multi-objective optimization problem. Most
electronic design automation tools, such as the ones used
in this work, must rely on heuristics to overcome the VLSI
design complexity.

Figure 7. FPGA occupancy results, with the Y-axis representing the FPGA
resources.

Followed by the BRAM, the Look-Up Table (LUT) was
the second most used resource, while the Flip-Flops was
the third most used resource. The LUT can be used to
implement any logic function required by the design, which
explains its high FPGA occupancy. The Flip-Flops are basic
components to small memory elements, such as registers.
Thus, most existing variables specified in HLS must have
been translated to FFs, while everything else was possibly
translated to a logic function implemented in LUT, such as
arithmetic operations, multiplexers, decoders, etc.

Finally, observe that more than one A* co-processor
would not fit in the Zynq FPGA used in this work
(XCZU9EG-2FFVB1156) mainly because of the lack of
BlockRAM resources left in the chip. The input map is
represented as an array of 262144 8-bit cells, which cor-
responds to a grid of 512 rows and 512 columns, with each
cell value ranging from 0 to 255. The priority queue alone
specifies two arrays: one that stores the item priority and
another that stores the item value, both 18-bit integers, which
suffices to store the values of the input map cell identifier
and each list item priority value. Also, the length of both

arrays needs to be equivalent (in the worst case) to the
number of cells in the input map, i.e., 262144 cells each.
Hence, the A* co-processor requires at least 2 × 262144
18-bit array positions to store the priority queue, 262144
8-bit array positions to store the input map, 262144 32-bit
array positions to store the produced path and 262144 32-
bit array positions for the costs associated to the path, with
negative values included to indicate unreachable cells. While
Vivado HLS supports a wide range of the C language, some
constructs are not synthesizable, such as system calls for dy-
namic memory allocation. Thus, every co-processor design
(including A*) must be fully self-contained, specifying all
required resources before synthesis.

D. Dynamic Energy consumption analysis

The system’s (ARM + A*) dynamic energy consumption
is estimated based on Vivado vectorless power engine [28],
which feeds the design inputs with probabilistic signals
over time to gather switching activity information about
the circuit. The result is the average power consumption of
the logic elements within the design. While the vectorless
estimation is not as accurate as a post-route simulation, it
still provides reasonable power estimation results. Table III
presents the average dynamic power consumption of the A*
co-processor (Clocks, Signals, Logic and BRAM) and of
the ARM processing system (PS). It can be observed that,
together, the system’s average dynamic power consumption
is 4.157 Watts. Hence, the ARM represents about 65% of
the dynamic power, while the A* co-processor represents the
rest, thus being less power-hungry than the PS, on average.

Table III. Average power estimation (in Watts) with default toggle rate set
to 12.5% and static probability set to 0.5, in vectorless mode.

Clocks Signals Logic BRAM PS
Dynamic
Power (W) 0.062 0.433 0.081 0.884 2.697

The main reason for such efficiency is due to the dedicated
RTL architecture in FPGA, which performs as many parallel
operations as possible, in shorter time. Using the execution
times given in Table I and the average dynamic power in
Table III it is possible to estimate the energy consumption
when using the A* co-processor to find paths in comparison
to using one ARM core, as shown in Fig. 8. Observe that
the A* consumes about 85% less energy than the PS when
running the 297×30 maps.

V. CONCLUSION & IDEAS FOR FUTURE WORK

This paper presented an efficient A* pathfinding co-
processor suitable for FPGA-based mobile gaming de-
vices using the Advanced Microcontroller Bus Architecture
(AMBA4) specification. The co-processor was designed,
implemented and evaluated in a Zynq Ultrascale+ Field-
Programmable Gate Array (FPGA) from Xilinx, running
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Figure 8. Dynamic energy analysis (in Joules) for the A* co-processor and
the ARM (PS) core.

at 200MHz (about 1/6 of the MPSoC speed). Yet, the
co-processor is about four times faster than one ARM
microprocessor, enabling the computation of paths in 1/4
of the time and requiring about 35% of the system’s total
dynamic power. Moreover, this paper analyzed the feasibility
of extending the hardware of mobile devices to execute
pathfinding algorithms and to evaluate the efficiency of the
RTL hardware produced using Xilinx HLS compiler.

The results clearly show the benefits of using HLS tools to
build a pathfinding co-processor, both due to the low energy
consumption (bellow 1.46 Watts) but mainly due to its high
performance, being up to 4× faster than the ARM micropro-
cessor alone, for an input map of 512×512 cells. Although
the co-processor could have been specified directly in hard-
ware description languages, such as VHDL, the development
time would possibly be much longer, requiring many testing
and verification steps, as usually in any integrated circuit de-
sign process. Therefore, specially for mobile devices based
on ARM microprocessor, the adoption of co-processors can
allow the development of more complex games without the
fear of harming its performance and stalling it. Furthermore,
the specification of a co-processor using HLS improves the
portability of the hardware accelerator and reduces its time-
to-market, enabling its implementation in different, more
capable FPGA devices, which could possibly fit more co-
processors working in parallel.

In the future, the A* co-processor will include an AXI4-
Stream interface for faster PS-PL communication, enabling
even higher-throughput transfers of larger input graphs and
paths, without the burst length limit of AXI4-Full interfaces.
Also, arbitrary precision data types will further be used in the
co-processor specification in order to avoid the overhead of
specifying unnecessary bits, such as when an integer variable
is used to store boolean (true or false) values. Moreover,
the co-processor is planned to be implemented directly in
VHDL to better enable us to evaluate the quality of the
RTL architecture produced by the HLS compiler, including
its performance, circuit-area and energy consumption when
compared to a VHDL optimized design. Finally, we plan to
compare our FPGA A* implementation to a GPU OpenCL
implementation. As usually, we expect the GPU to require
much more energy then the FPGA, which would hurt the
gaming device battery life.
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