
Evaluating competition in training of Deep Reinforcement Learning agents in
First-Person Shooter games

Paulo Bruno S. Serafim, Yuri Lenon B. Nogueira, Creto A. Vidal, Joaquim B. Cavalcante Neto
Department of Computing

Federal University of Ceará
Fortaleza, Brazil

paulobruno@alu.ufc.br; {yuri, cvidal, joaquimb}@dc.ufc.br

Abstract—This work evaluates competition in training of
autonomous agents immersed in First-Person Shooter games
using Deep Reinforcement Learning. The agents are composed
of a Deep Neural Network, which is trained using Deep Q-
Learning. The inputs of the networks are only the pixels of
the screen, allowing the creation of general players, capable
of handling several environments without the need for further
modifications. ViZDoom, an Application Programming Inter-
face based on the game Doom, is used as the testbed because
of its appropriate features. Fifteen agents were divided into
three groups, two of which were trained by competing with
each other, and the third was trained by competing against
opponents that act randomly. The developed agents were able
to learn adequate behaviors to survive in a custom one-on-
one scenario. The tests showed that the competitive training of
autonomous agents leads to a greater number of wins compared
to training against non-intelligent agents.

Keywords-autonomous agents; deep reinforcement learning;
digital games; competitive learning; first-person shooter games

I. INTRODUCTION

Competition has an important role in digital action games,
especially in First-Person Shooter (FPS) games. In those
games, the multiplayer mode is very popular, that called the
attention of the game industry, which introduced characters
that are controlled by Artificial Intelligence techniques, and
that are continuously improved to gain even more autonomy
[18], [20], [7]. Ideally, those autonomous agents can learn
how to behave in an environment by themselves, as opposed
to scripted bots, which behave in accordance with explicitly
programmed rules.

However, creating autonomous agents to play FPS games
in competitive environments is very hard, because the suc-
cess of a player is tied to the failure of the opponent. Thus,
training autonomous agents is necessary for them to develop
adequate behaviors. Although an agent can learn how to play
some scenarios in a single-agent manner, using competition
may be beneficial to its performance.

The main contribution of this paper is to analyze com-
petitive training of autonomous agents against two different
types of opponents, other autonomous agents and non-
intelligent (i.e., randomly acting) players, and observe how

such agents could benefit from training against these differ-
ent types. In this work, we are concerned in a prior moment
of the development of competitive autonomous agent: train-
ing. The novelty presented is performing an experimental
evaluation of those types of competitive training and evaluate
which type of competitive training can be more effective in
relation to the performance of the agents.

Training against non-intelligent opponents can have ad-
vantages, like increasing the velocity of the training and
execution phases since this type of agent does not need
to run its own controller, or ensuring equality in training
for any agent because the behavior developed by the agent
does not rely on the learning dynamics of its opponents. Our
hypothesis is that agents trained by competing against other
autonomous agents will perform better than agents which
trained against non-intelligent opponents. We conjecture that
when agents perform better in competitive tests they will be
more suitable to play competitive modes in a FPS game.

In order to test our hypothesis, we use a Deep Reinforce-
ment Learning model, called Deep Q-Networks [26], [27],
to control the autonomous agents. The agents are placed in
a custom competitive scenario of the API ViZDoom [18],
a research platform based on the game Doom (id Software,
1993). After the definition of the controller, the agents are
divided into different teams and are tested by competing
with each other.

This paper is organized as follows. In Section II, we
summarize some works that use Single-Agent and Multi-
Agent Deep Reinforcement Learning to play digital games.
In Section III, we describe Deep Q-Networks, the main
technique used in Deep Reinforcement Learning problems.
In Section IV, we present the scenario played by the agents
and we describe the settings of the performed experiments.
In Section V, we show the obtained results and discuss them.
Finally, in Section VI we summarize the work presented,
suggesting some future works in Subsection VI-A.

II. RELATED WORK

A. Single-Agent Deep Reinforcement Learning

Mnih et al. [26] were the first to use a Deep Learning
model in Reinforcement Learning. They trained a Deep

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 468



Neural Network using a variant of the Q-Learning algorithm,
and, using only raw pixels from the screen as input, they
were successful in producing agents that could play digital
games. In that pioneering work, a Deep Q-Learning model
learned to play seven Atari 2600 games using as input a brute
high-dimensional input, only the raw pixel data. The authors
also used an adaptation of Q-Learning called Experience
Replay [23], which improved the efficiency of data use,
increased the learning speed and led to a better choice of
parameters to avoid local minima.

Mnih et al. [27] developed Actor-Critic model, an im-
proved variant of their previous technique, and tested it in 49
Atari 2600 games. In 29 of the games they reached human-
level performance.

Since then, a great number of works used Atari 2600
games as testbeds, such as [29], [22], [25], [31], because
the complexity of the games was high, the input of pixels
was straightforward, and the games had a high public appeal.

Kempka et al. [18] developed ViZDoom as a research
platform for Reinforcement Learning problems, which was
based on the game Doom (id Software, 1993). That platform
allows the development of players controlled by Artificial
Intelligence techniques using the screen as their vision.
Recently, ViZDoom has been used in several works of Deep
Reinforcement Learning [20], [7], [1], [30], [39], [32] as
testbed.

Different games were also used as testbeds for Deep
Reinforcement Learning [5], [38]. For example, Chen and
Yi [5] tested their model in Super Smash Bros and in Mario
Tennis; and van Seijen et al. [38] tested their technique in
Ms. Pac Man.

Those works present the development of a single agent to
play digital games. In this paper, we will use multiple agents
divided into teams and immersed in a competitive mode
of ViZDoom. Thus, we will be able to evaluate multiple
autonomous agents in a single environment.

B. Multi-Agent Deep Reinforcement Learning

Recently, Deep Learning models were also used in
the area of Multi-Agent Reinforcement Learning (MARL).
Approaches that combine Deep Q-Learning with MARL
are called Multi-Agent Deep Reinforcement Learning
(MADRL), and are divided into three categories: cooper-
ative, competitive and mixed approaches.

Several works in MADRL use digital games as testbeds,
in which the agents develop their skills either by means
of cooperation with one another [16], [10], [9], [28], [19],
[6], [13]; or by means of competition, trying to beat one
another [33], [17], [24]; or, yet, by means of cooperation to
compete, in which some agents need to cooperate in order
to beat other opponents [36], [15], [4], [8], [21].

While competition was already used in some of those
works, none of them provided an analysis of how the
training can be influenced by the types of agents used.

We observed this lack of prior evaluation and present a
comparison of competitive training against two different
types of opponents, autonomous agents and non-intelligent
agents, and how they will affect the performance in a direct
competition.

III. BACKGROUND

A. Deep Q-Network

Reinforcement Learning tasks are sequential decision
problems whose objective is to find the policy that max-
imizes the sum of received rewards. A policy is a set of
actions that should be taken by the agent for every possible
state. The agent analyzes the current state s, and decides
what action, a, to take according to the policy, π. The goal
of the agent is to find the policy in which the expected sum
of discounted rewards, Rt, is maximum

Rt =
T∑

i=t

γ i−tri (1)

where T is the last iteration, t is the current iteration, γ
is the discount factor, which varies in the interval [0,1],
and ri is the reward at iteration i. The discount factor
determines how fast the future rewards decay with respect
to the current reward, which could make immediate rewards
more important than the later ones.

The loss function of a parameterized value function Qθ
is given by [20], [26]:

Lt(θt) = E[(yt −Qθt(s, a))2|s, a, r, s′], (2)

We compute the gradient of the above loss function using
the approximation

∇θtLt(θt) ≈ (yt −Qθt(s, a))∇θtQθt(s, a). (3)

The Q-learning updates, using the loss function estima-
tions of (2), are stable and perform well in practice [27].

IV. EXPERIMENTS

A. Environment

A custom scenario was created to analyze the ability of
an agent that is engaged in a gun shooting competition with
other players. In that type of FPS game, the winner kills the
opponent more times than it gets killed. In this environment,
the two competitors (Fig. 1), which are positioned at oppo-
site sides of a rectangular room, can take one out of three
possible actions: move left, move right, and shoot.

(a) Green agent. (b) Red agent.

Figure 1. Both agents as seen from opponent’s view.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 469



Since this scenario is executed in a client-server con-
nection, some adjustments need to be made to ensure a
fair competition. Thus, the environment is executed in a
synchronous mode, keeping a fixed frame rate; and, every
time an agent gets killed, it is respawned at a random
position in its side of the room.

An episode starts with both agents at opposite sides of the
scenario (Fig. 2). An agent dies if it is shot once. The goal
of an agent is to maximize the number of times it kills the
opponent. A secondary implicit goal is to stay alive as long
as possible, since dying means that the opponent scored.

1) Evaluation Metrics: The evaluation metrics were cho-
sen to maintain consistency with the scenarios already
present in ViZDoom. An agent scores 60 points every time
it kills an opponent, and it dies if it is shot once, without
scoring any point. When an agent dies, it is respawned in a
random location at its side of the room. After 300 steps (see
Subsection IV-D for details about a step), the agents receive
as reward their accumulated scores and an episode ends.

If an agent performs one action per frame, the difference
between the previous states and the current one is so subtle
that learning will become hard. To solve this problem, we
used a frame repeat value of eight frames. That means an
action is chosen, repeated through eight frames and only
then another action is chosen [2].

B. Hyperparameters

The following parameters were chosen empirically. Start-
ing with the values presented in [20], the Q-Learning
discount factor, γ, was set to 0.99 and the learning rate
was equal to 0.0001. An ε-greedy policy [35], with linear
decay from 1.0 to 0.1, was used to balance the trade-off
between exploration and exploitation. The network biases
were initialized with a value of 0.1 and all the weights were
initialized with random values using Xavier’s Initialization
[11]. To reduce overfitting, we used the Dropout technique
[34] during training with a probability of 0.7.

The basic environment of ViZDoom, as described in
[32], was used to evaluate some minor variations. Since the
results did not show meaningful variations in performance,
the following parameters were chosen to increase training
speed. The RMSProp algorithm [37] was used to train the
network with mini-batches of size 64. Experience Replay
[23] was used to reduce correlation between consecutive
frames. A replay memory keeps track of the latest one
hundred thousand frames and a randomly chosen sample
is passed to the network every update.

C. Neural Network Settings

1) Initial Layers: The input of the neural network is a
matrix of real numbers, representing a 64 × 48 pixels gray
scale image, which is then passed to the first convolutional
layer (Fig. 3). That layer has a kernel size of four, a
stride of size two, which halves the size of the input, and

(a) Green agent point of view. (b) Red agent point of view.

Figure 2. Agents’ point of view of the same frame in the environment.

computes 32 features. The outputs are then fed into a second
convolutional layer which will compute 64 features. This
layer also has a kernel size of four and a stride of size two,
halving the size of the input. Both convolutional layers use
the ReLU activation function [14], [12].

2) Final Layers: After passing through the second con-
volutional layer, the 64 images of size 16 × 12 pixels are
flattened into arrays of size 192, and are fully connected
to a layer of 512 neurons (Fig. 3). This layer has the
goal to gather all the features previously discovered in the
convolutional layers. The results are sent to the output layer,
which has three neurons, one for each possible action that
can be taken by an agent.

3) Input and Output: The raw colored 640× 480 pixels
image of the screen is preprocessed into a smaller one with
reduced size and color so that the input of the network is
a 64 × 48 pixels gray scale image (Fig. 4). Therefore, the
input layer has 64 by 48 neurons with values varying from
0.0, representing black, to 1.0, representing white.

The output layer consists of three neurons, one for each
possible action on the environment: move left, move right,
and shoot. Every output neuron represents the q-value for
each action.

4) Summary: The network is illustrated in Fig. 3 and its
topology is summarized in Table I.

TABLE I. NEURAL NETWORK TOPOLOGY.

Layer Kernel Stride Filters Input Output
Conv1 4 × 4 2 × 2 32 64 × 48 32 × 24
Conv2 4 × 4 2 × 2 64 32 × 24 16 × 12

FC 12288 512
Output 512 3

D. Overview of a Single Step

In every execution step of the model, the views of the
screens are pre-processed and passed to the networks of
each agent. The network indicates which action should
be taken. Both actions are then sent to the environment,
which executes them and continues to the next step. This
description is illustrated in Fig. 5.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 470



Figure 3. Summary of the neural network used in the controller of the agents.

Figure 4. Screen (left) and pre-processed (right) images of agent’s point
of view.

Figure 5. Layout of an execution step of the model.

V. RESULTS AND DISCUSSION

A. Training

Fifteen agents were divided into three groups of five
agents each. The groups were named Blue Team, Red Team,
and Orange Team. The agents of Blue and Red Teams were
trained in competition among them, in which each agent
from Blue Team faced a single agent from Red Team. Thus,
the agents of Blue and Red Teams learned their behaviors
based on competition against other autonomous agents. The
third group was trained by competing against opponents that
act randomly, that is, they randomly take one of the three
possible actions with equal probability (Fig. 6).

Every agent was trained during 50 epochs of 200 episodes
each. An episode ends after 300 steps have passed. At

the end of every episode, the agents are tested during
50 episodes, that is, they play the environment again, but
only using the learned behaviors. All figures presenting the
training results were taken from the test set. Before training,
the agents are initialized with random weights according
to the settings described in Section IV, which means that
they do not have any previous knowledge about adequate
behaviors, and making all of them different from each other.

1) Blue Team vs. Red Team: In this training, both agents
are autonomous agents capable of learning, following the
settings presented in Section IV. We can observe in all
training results (Fig. 7) that all agents presented an ascending
mean score curve. This indicates that all agents were capable
of learning adequate behaviors to reach the goal of the pro-
posed scenario: killing the opponent a great number of times.
Thus, we can observe that training through competition
between autonomous agents is adequate to learn behaviors
inside a First-Person Shooter environment as presented in
this work.

It is interesting to note that the agents from Blue Team
had a greater performance over the agents of the Red Team
during almost all training time. However, there was a single
case in which an agent from Red Team was better at the
end of training: agent R2 had a greater performance over
agent B2. This happened because one of two possibilities:
agent R2 had a fast and significant improvement or agent
B2 showed a decrease in its behaviors. This case will be
analyzed with more details in Section V-D.

The only difference in implementation of both teams is
that agents of Blue Team are the servers of the multiplayer
connection, and the agents of Red Team are the clients. To

Figure 6. Training scheme for each team.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 471



(a) Agent B1 vs. Agent R1. (b) Agent B2 vs. Agent R2. (c) Agent B3 vs. Agent R3.

(d) Agent B4 vs. Agent R4. (e) Agent B5 vs. Agent R5.

Figure 7. Mean score of agents from Blue and Red teams during training. In every chart the dotted blue line indicates the mean score of an agent from
Blue Team and the dashed red line indicates the mean score of an agent from Red Team.

evaluate this dynamic of connection, we alternate the server
and the client after each epoch. This led to a result in which
the server always had the best performance (Fig. 8). These
results suggest that the servers may be receiving some kind
of privileged information.

Figure 8. Results of alternating server and client players.

2) Orange Team vs. Random Opponents: The ascending
curves observed in Fig. 9 indicates that learning occurred,
that is, the agents were capable of learning adequate be-
haviors to play the environment. Moreover, in general,
all agents finished the training with a mean score above
150, showing that they were capable to kill the opponents
multiple times in a single episode. Thus, we can show that
training by competing against opponents that act randomly
is also adequate for an autonomous agent to learn in the
presented scenario.

3) Consideration About Learning: We can observe by the
ascending curves in training results (Fig. 7, Fig. 9), that
all agents were capable of learning adequate behavior to
compete in the test environment presented. Specifically, the
agents learned behaviors like moving towards the opponent
and shooting to kill (Fig. 10).

It is important to note that the same behavior of moving
towards the direction of the opponent can lead to a kill (Fig.
10) or a death (Fig. 11). The only difference is how fast
the shot is, whomever shoots first gains a kill score. This
characteristic clearly shows that the difficulty of learning a
behavior to increase the score can be harder than it looks.

In the case of Blue and Red teams, the agents of the two
teams learned to move towards the opponent and shooting
it when in front of it. When both agents move towards
the opponent simultaneously, they are moving in opposing
directions. Thus, if an agent shoots at the moment when
they intersect, it will miss the shot, since the opponent will
have already passed it when the bullet arrives. As we can
see in Fig. 12, the agents were also capable of learning to
anticipate the movement of the opponent, to kill it.

As both agents have a similar view of the same en-
vironment, it is expected that agents of all three teams
develop similar behaviors. The behaviors described above
were learned by agents from all teams. Specifically, the
reaction speed and the accuracy of the shots were the main
factors which defined the winner of an episode.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 472



(a) Agent O1. (b) Agent O2. (c) Agent O3.

(d) Agent O4. (e) Agent O5.

Figure 9. Mean score of agents from Orange Team during training. In every chart the continuous orange line indicates the mean score of an agent from
Orange Team.

.

Figure 10. From left to right, 1st frame: the agent starts in the left side of the room. 2nd frame: it moves right, towards the opponent. 3rd frame: it
finds the opponent and shoots. 4th frame: the opponent dies.

Figure 11. From left to right, 1st frame: the agent starts in the left side of the room. 2nd frame: it moves right, towards the opponent. 3rd frame: it
finds the opponent. 4th frame: it dies before shooting the opponent.

Figure 12. From left to right, 1st frame: the agent starts in the right side of the room. 2nd frame: it moves left, towards the opponent. 3rd frame: it
shoots in the limit of passing through the opponent. 4th frame: the opponent dies.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 473



B. Competition Against Random Opponents

Once all training is finished, the agents were tested in
competition against opponents that act randomly. During
the tests there was no learning. This is meant only for
performance measurement, not for training.

Every agent of all teams played 200 matches against
opponents that act randomly. In the end, the mean score
of every agent was calculated. The Blue Team had a mean
score of 113.64, the mean score of Red Team was 78.60,
and the mean score of Orange Team was 156.84.

We can see that Red Team had the worst performance,
which is in accordance with the results showed in training
scores (Fig. 7, Fig. 9). However, the agents from Orange
Team had results much greater than Blue Team, as opposed
to the performances shown along training.

Initially, this result could be considered unexpected, since
we expected a performance improvement through competi-
tive training between autonomous agents. However, there is
a possibility that the Orange Team performed better because
it was more used to random opponents. A detailed discussion
will be made in Section V-D.

C. Competition Against Autonomous Agents

This time, a competitive environment between agents will
be considered. Two autonomous agents from different teams
are put in the scenario for a dispute between themselves.
Again, there was no more learning at this moment, only the
use of the network trained in Subsection V-A.

Every agent played 200 matches against all 10 agents from
the other teams. In every match was established a victory
result, if the agent had more kills than the opponent, a defeat
result, if the agent killed less than the opponent, and draw,
if both agents had the same number of kills. Afterwards, the
percentage of victories was calculated for every matchup.

1) Blue Team vs. Red Team: After the training between
these teams, Blue Team had better results, except for agent
B2. In competition against random opponents, Blue Team
also had better results. Thus, it is expected that Blue Team
has a better result in tests against agents from Red Team.

In Table II we can see the percentages of victory for
every agent in its match ups. The results are according to
the expectations, since the performance of Blue Team was
better than Red Team. The only exception was agent B2,
which had a worse against all opponents. The case of agent
B2 will be analyzed in Section V-D.

Thus, we show that autonomous agents which has a better
performance against other autonomous agent during training
will indeed have better results when competing with each
other. Similarly, agents that have a worse performance after
training, which is the case of agent B2, will also have worse
results in tests.

2) Blue Team vs. Orange Team: When observing the
results of training, we observed that Blue and Orange Teams
had similar mean scores. Nevertheless, Orange Team had

TABLE II. VICTORY PERCENTAGE IN EVERY COMPETITION BETWEEN
THE AGENTS FROM BLUE AND RED TEAMS. THE LEFT PERCENTAGE

REPRESENTS THE COLUMN AGENT (BLUE) AND THE RIGHT
PERCENTAGE REPRESENTS THE ROW AGENT (RED). THE COMPLEMENT

OF 100% SUM IS THE DRAW PERCENTAGE. IN BOLD ARE THE BEST
PERFORMERS OF EVERY MATCHUP.

B1 B2 B3 B4 B5

R1 53,5% × 31,0% 38,0% × 48,0% 60,5% × 27,0% 58,0% × 30,5% 57,0% × 28,5%

R2 53,5% × 33,0% 33,0% × 56,5% 58,0% × 29,0% 57,5% × 30,5% 62,5% × 29,0%

R3 57,5% × 25,0% 25,5% × 57,5% 54,5% × 30,0% 55,5% × 27,0% 56,0% × 29,5%

R4 53,0% × 27,5% 30,0% × 57,0% 53,0% × 31,0% 53,5% × 32,5% 54,5% × 33,0%

R5 58,0% × 27,0% 33,0% × 47,5% 50,0% × 31,5% 51,5% × 32,0% 56,0% × 30,5%

better results against random opponents. The next step is to
verify if the performance of Orange Team was indeed better
than the performance of Blue Team in a direct competition.

The results in Table III show that agents from Blue Team
had better results than the agents from Orange Team, except
for agent B2. This agent will be analyzed in Section V-D.

Blue Team, even having an inferior performance against
random agents, had better results than Orange Team in direct
competition. Thus, we observe that training against other
autonomous agents makes Blue Team perform better against
other autonomous agents.

Since Blue Team had a superior performance over the Red
Team during training, we can observe that agents which had
better results in training against other autonomous agents
will have a better performance against other intelligent
agents. However, the training against random opponents does
not guarantee a superior result against intelligent agents.

TABLE III. VICTORY PERCENTAGE IN EVERY COMPETITION BETWEEN
THE AGENTS FROM BLUE AND ORANGE TEAMS. THE LEFT

PERCENTAGE REPRESENTS THE COLUMN AGENT (BLUE) AND THE
RIGHT PERCENTAGE REPRESENTS THE ROW AGENT (ORANGE). THE

COMPLEMENT OF 100% SUM IS THE DRAW PERCENTAGE. IN BOLD ARE
THE BEST PERFORMERS OF EVERY MATCHUP.

B1 B2 B3 B4 B5

O1 53,0% × 37,5% 29,5% × 55,0% 49,5% × 35,5% 53,0% × 33,5% 48,0% × 35,5%

O2 46,0% × 38,5% 31,5% × 54,5% 55,5% × 31,0% 60,0% × 29,0% 45,0% × 39,0%

O3 53,0% × 29,0% 28,0% × 59,0% 48,5% × 35,0% 51,5% × 35,0% 48,5% × 35,5%

O4 51,5% × 35,5% 28,0% × 59,5% 57,0% × 31,5% 54,5% × 33,0% 49,0% × 34,5%

O5 60,0% × 26,0% 28,0% × 55,5% 52,5% × 32,5% 64,5% × 25,5% 57,5% × 29,5%

3) Red Team vs. Orange Team: Both in training and in
results against random opponents, the Red Team had an
inferior performance in comparison to the Orange Team.
Thus, it is expected that the Red Team also perform worse
in a direct competition.

However, as can be seen in Table IV, the performance
of the Red Team was better in all cases. Thus, we can
observe that training against other autonomous agents, Blue
Team, made Red Team perform better in a direct competition
against autonomous agents trained with random opponents.

Since Red Team had an inferior performance than Blue
Team during training, we can observe that agents which had

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 474



the worst results in competition against other autonomous
agents will have a worse performance in competition against
other intelligent agents. However, training against random
opponents does not guarantee a superior performance against
intelligent agents.

TABLE IV. VICTORY PERCENTAGE IN EVERY COMPETITION BETWEEN
THE AGENTS FROM RED AND ORANGE TEAMS. THE LEFT PERCENTAGE
REPRESENTS THE COLUMN AGENT (RED) AND THE RIGHT PERCENTAGE
REPRESENTS THE ROW AGENT (ORANGE). THE COMPLEMENT OF 100%
SUM IS THE DRAW PERCENTAGE. IN BOLD ARE THE BEST PERFORMERS

OF EVERY MATCHUP.

R1 R2 R3 R4 R5

O1 52,0% × 25,0% 46,5% × 34,0% 56,0% × 28,0% 57,5% × 29,5% 43,5% × 38,0%

O2 58,5% × 23,0% 56,0% × 29,0% 50,0% × 38,0% 51,5% × 34,0% 43,5% × 34,0%

O3 55,5% × 28,0% 55,0% × 26,5% 55,0% × 29,0% 50,0% × 33,5% 43,5% × 38,5%

O4 47,0% × 28,5% 40,0% × 37,0% 48,0% × 27,0% 58,5% × 29,5% 50,5% × 33,5%

O5 56,0% × 27,0% 61,5% × 25,0% 58,0% × 29,0% 56,5% × 27,0% 49,5% × 39,5%

D. Final Discussions

1) Agent B2: During training between Blue and Red
teams, the only case in which an agent from Blue Team
finished the training with a mean score less than a Red agent
was agent B2. In Fig. 7b, we can see a sudden drop in the
results of the last epochs. Two possibilities will be evaluated:
agent B2 had a significant decrease in its behaviors or agent
R2 had an increase in relation to its opponent.

In the tests made in Subsection V-C, the agent B2 was
also the only exception in comparison with other agents from
Blue Team. Since B2 had worse results in all tests and agent
R2 did not show a significant improvement in the tests in
relation to other agents from Red Team, we observe that a
degeneration occurred on the behavior of agent B2.

2) Better Performance of Orange Team Against Random
Opponents: When trained in an environment against op-
ponents that act randomly, the Orange Team had the best
results. Since Blue and Orange Teams had similar mean
scores, we expected that both had similar results also in this
test. To explain this difference, two possibilities arise: the
agents from Orange Team learned indeed better behaviors,
or they just learned how to respond to random opponents?

The results of the tests against Blue Team (Table III) show
that the agents from Orange Team had worse results, except
the agent B2. Thus, the second hypothesis gains strength,
since we cannot say that the agents from Orange Team
learned better behaviors than the agents from Blue Team.

Analyzing the results against Red Team, we have even
stronger evidence. Comparing the mean score results during
training and the mean score against random opponents, the
Orange Team clearly had an advantage over Red Team.
However, in direct competition, the Red Team had better
results in all cases. These facts further strengthen that the
performance of agents from Orange Team was better because
they were trained against random opponents.

3) Competition and Intelligence: The goal of this work
is to evaluate if training through competition against au-
tonomous agents leads to better results than the training
against non-intelligent agents. Since the agents from Blue
Team had better results in direct competition against agents
from Orange Team, we can state that agents which train
against intelligent agents and can present better results,
having a better performance in direct competition than
agents trained against non-intelligent agents.

Since Red Team, even having a general performance
worse than Blue and Orange teams during training and
against random opponents, had better results than Orange
Team in direct competition, we can say that agents which
train against intelligent opponents, will have better results
in direct competition than agents that trained against non-
intelligent opponents.

VI. CONCLUSION

This paper presents an experimental evaluation of training
between autonomous agents against two different types of
opponents, other autonomous agents, and non-intelligent
agents. To achieve this goal, we used a Deep Q-Network
model, which was trained to learn how to play a competitive
custom scenario of ViZDoom. The training results showed
that all agents learned adequate behaviors and kill the
opponent multiple times in a single episode. They also
learned behaviors like moving towards the opponent and
shooting at it, and very complex behaviors like anticipating
the opponent’s movement. Thus, these agents are able to be
tested in competition against other agents.

The main goal of this work was to show that train-
ing through competition against autonomous agents im-
proves the performance of agents over training against
non-intelligent agents. The three teams of agents were
trained against two different types of opponents. Two teams
trained against autonomous agents and one team trained
against random opponents. The tests executed for agents
who trained through competition against autonomous agents
clearly showed a better performance over agents trained by
competing against non-intelligent agents. The results indi-
cate that, although training against non-intelligent agents has
advantages, training by competing against other autonomous
agents will lead to a better performance.

A. Future Works

This work serves as a guideline for evaluating competitive
training between autonomous agents. Some features could
be modified to evaluate new aspects of this type of training,
such as training one agent against all the agents of another
team, allowing competition between agents of the same
team, creating different types of non-intelligent agents, and
modifying specific aspects of the environment, like adding
hitpoints for every agent. All of these points can lead to

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 475



interesting behaviors and have an effect on the performance
of the agents. Some other suggestions are presented below.

1) Testing Different Architecture Settings: The controller
presented in this work does not limit the architecture to the
settings used. Choosing different architecture settings is not
only possible, but can lead to interesting results. However,
these changes will affect the basis of the agents involved
and all training needs to be done from the beginning, which
will take time. Particularly, increasing the size of the neural
network could be beneficial, since more features could be
learned and passed throughout the layers. However, a larger
network leads to greater complexity, which will decrease
learning speed, as well as training will be harder and could
make learning unfeasible.

2) Adding External Information: One characteristic of the
agents presented in this work is the ability to learn receiving
as input only the pixels of the screen. There are models that
give additional information to the agents [3], [20] and can
improve their behaviors. However, augmented information
should be used with care, because it is interesting that an
agent learns some features by itself, without the need for
external manipulation.

3) Using Different Types of Agents: ViZDoom’s envi-
ronment needs as input only the actions corresponding to
keyboard and mouse activities. Thus, agents that do not use
neural networks could also be evaluated in the game. The
needed adaptations are specific for each case and the results
will not necessarily be the same. Additionally, comparing
agents with different types of controllers can raise interesting
questions to be analyzed.

4) Verifying the Problems of Agent B2: As seen in
Subsection V-D1, a single agent presented very different
results than the others. The review of the results and the
source code indicates that this problem can be related to
internal dynamics of the environment, since all agents have
almost the same implementation. To solve this problem, a
more specific analysis should be performed.

ACKNOWLEDGMENT

The authors would like to thank CNPq, the National
Council for Scientific and Technological Development, and
the Graduate program (MS and PhD) in Computer Science
at the Federal University of Ceará (MDCC/UFC) for their
financial support.

REFERENCES

[1] S. Alvernaz and J. Togelius, “Autoencoder-augmented
neuroevolution for visual doom playing,” CoRR, vol.
abs/1707.03902, 2017. [Online]. Available: http://arxiv.org/
abs/1707.03902

[2] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling,
“The arcade learning environment: An evaluation platform for
general agents,” Journal of Artificial Intelligence Research,
vol. 47, pp. 253–279, 2013.

[3] S. Bhatti, A. Desmaison, O. Miksik, N. Nardelli,
N. Siddharth, and P. H. S. Torr, “Playing doom
with slam-augmented deep reinforcement learning,”
CoRR, vol. abs/1612.00380, 2016. [Online]. Available:
http://arxiv.org/abs/1612.00380

[4] A. O. Castañeda, “Deep reinforcement learning variants of
multi-agent learning algorithms,” Master’s thesis, School of
Informatics University of Edinburgh, 2016.

[5] Z. Chen and D. Yi, “The Game Imitation: A Portable
Deep Learning Model for Modern Gaming AI,” CS231n:
Convolutional Neural Networks for Visual Recognition,
2016. [Online]. Available: http://cs231n.stanford.edu/reports/
2016/pdfs/113 Report.pdf

[6] A. Das, S. Kottur, J. M. F. Moura, S. Lee, and D. Batra,
“Learning cooperative visual dialog agents with deep rein-
forcement learning,” in 2017 IEEE International Conference
on Computer Vision (ICCV), Oct 2017, pp. 2970–2979.

[7] A. Dosovitskiy and V. Koltun, “Learning to act by predicting
the future,” CoRR, vol. abs/1611.01779, 2016. [Online].
Available: http://arxiv.org/abs/1611.01779

[8] M. Egorov, “Multi-Agent Deep Reinforcement Learning,”
CS231n: Convolutional Neural Networks for Visual
Recognition, 2016. [Online]. Available: http://cs231n.
stanford.edu/reports/2016/pdfs/122 Report.pdf

[9] J. Foerster, I. A. Assael, N. de Freitas, and S. Whiteson,
“Learning to communicate with deep multi-agent reinforce-
ment learning,” in Advances in Neural Information Process-
ing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett, Eds. Curran Associates, Inc.,
2016, pp. 2137–2145.

[10] J. N. Foerster, Y. M. Assael, N. de Freitas, and
S. Whiteson, “Learning to communicate to solve riddles
with deep distributed recurrent q-networks,” CoRR, vol.
abs/1602.02672, 2016. [Online]. Available: http://arxiv.org/
abs/1602.02672

[11] X. Glorot and Y. Bengio, “Understanding the difficulty of
training deep feedforward neural networks,” in Proceedings
of the Thirteenth International Conference on Artificial Intel-
ligence and Statistics, ser. Machine Learning Research, Y. W.
Teh and M. Titterington, Eds., vol. 9. Chia Laguna Resort,
Sardinia, Italy: PMLR, 13–15 May 2010, pp. 249–256.

[12] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier
neural networks,” in Proceedings of the Fourteenth Inter-
national Conference on Artificial Intelligence and Statistics,
ser. Proceedings of Machine Learning Research, G. Gordon,
D. Dunson, and M. Dudı́k, Eds., vol. 15. Fort Lauderdale,
FL, USA: PMLR, 11–13 Apr 2011, pp. 315–323.

[13] J. K. Gupta, M. Egorov, and M. Kochenderfer, “Cooperative
multi-agent control using deep reinforcement learning,” in Au-
tonomous Agents and Multiagent Systems, G. Sukthankar and
J. A. Rodriguez-Aguilar, Eds. Cham: Springer International
Publishing, 2017, pp. 66–83.

[14] R. H. R. Hahnloser, R. Sarpeshkar, M. A. Mahowald,
R. J. Douglas, and H. S. Seung, “Digital selection and
analogue amplification coexist in a cortex-inspired silicon
circuit,” Nature, vol. 405, pp. 947 EP –, Jun 2000. [Online].
Available: http://dx.doi.org/10.1038/35016072

[15] M. Hausknecht and P. Stone, “Deep reinforcement learning
in parameterized action space,” in Proceedings of the Interna-
tional Conference on Learning Representations (ICLR), May
2016, pp. 1–12.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 476



[16] M. J. Hausknecht, “Cooperation and communication in multi-
agent deep reinforcement learning,” Ph.D. dissertation, Grad-
uate School of The University of Texas at Austin, 2016.

[17] H. He, J. Boyd-Graber, K. Kwok, and H. D. III, “Opponent
modeling in deep reinforcement learning,” in Proceedings of
The 33rd International Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, M. F. Balcan and
K. Q. Weinberger, Eds., vol. 48. New York, New York, USA:
PMLR, 20–22 Jun 2016, pp. 1804–1813.

[18] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and
W. Jaskowski, “Vizdoom: A doom-based AI research
platform for visual reinforcement learning,” CoRR, vol.
abs/1605.02097, 2016. [Online]. Available: http://arxiv.org/
abs/1605.02097

[19] X. Kong, B. Xin, F. Liu, and Y. Wang, “Revisiting the
master-slave architecture in multi-agent deep reinforcement
learning,” CoRR, 12 2017.

[20] G. Lample and D. S. Chaplot, “Playing FPS games with
deep reinforcement learning,” CoRR, vol. abs/1609.05521,
2016. [Online]. Available: http://arxiv.org/abs/1609.05521

[21] J. Z. Leibo, V. Zambaldi, M. Lanctot, J. Marecki, and
T. Graepel, “Multi-agent reinforcement learning in sequential
social dilemmas,” in Proceedings of the 16th Conference
on Autonomous Agents and MultiAgent Systems, ser.
AAMAS ’17. Richland, SC: International Foundation for
Autonomous Agents and Multiagent Systems, 2017, pp.
464–473. [Online]. Available: http://dl.acm.org/citation.cfm?
id=3091125.3091194

[22] Y. Liang, M. C. Machado, E. Talvitie, and M. Bowling, “State
of the Art Control of Atari Games Using Shallow Rein-
forcement Learning,” Proceedings of the 2016 International
Conference on Autonomous Agents & Multiagent Systems, pp.
485–493, 2016.

[23] L.-J. Lin, “Reinforcement learning for robots using neural
networks,” Ph.D. dissertation, Carnegie Mellon University,
Pittsburgh, PA, USA, 1993, uMI Order No. GAX93-22750.

[24] M. McKenzie, P. Loxley, W. Billingsley, and S. Wong,
“Competitive reinforcement learning in atari games,” in AI
2017: Advances in Artificial Intelligence - 30th Australasian
Joint Conference, Melbourne, VIC, Australia, August 19-20,
2017, Proceedings, 2017, pp. 14–26. [Online]. Available:
https://doi.org/10.1007/978-3-319-63004-5 2

[25] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P.
Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu,
“Asynchronous Methods for Deep Reinforcement Learning,”
arXiv, vol. 48, pp. 1–28, 2016. [Online]. Available:
http://arxiv.org/abs/1602.01783

[26] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,
I. Antonoglou, D. Wierstra, and M. A. Riedmiller,
“Playing atari with deep reinforcement learning,”
CoRR, vol. abs/1312.5602, 2013. [Online]. Available:
http://arxiv.org/abs/1312.5602

[27] V. Mnih, K. Kavukcuoglu, D. Silver, A. a. Rusu, J. Veness,
M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,
G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis,
“Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015. [Online].
Available: http://dx.doi.org/10.1038/nature14236

[28] G. Palmer, K. Tuyls, D. Bloembergen, and R. Savani,
“Lenient multi-agent deep reinforcement learning,” CoRR,

vol. abs/1707.04402, 2017. [Online]. Available: http://arxiv.
org/abs/1707.04402

[29] E. Parisotto, L. J. Ba, and R. Salakhutdinov, “Actor-
mimic: Deep multitask and transfer reinforcement learning,”
CoRR, vol. abs/1511.06342, 2015. [Online]. Available:
http://arxiv.org/abs/1511.06342

[30] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell,
“Curiosity-driven exploration by self-supervised prediction,”
CoRR, vol. abs/1705.05363, 2017. [Online]. Available:
http://arxiv.org/abs/1705.05363

[31] J. Romoff, E. Bengio, and J. Pineau, “Deep Conditional
Multi-Task Learning in Atari,” ICML 2016, vol. 48, 2016.

[32] P. B. S. Serafim, Y. L. B. Nogueira, C. A. Vidal, and J. B.
Cavalcante-Neto, “On the development of an autonomous
agent for a 3d first-person shooter game using deep reinforce-
ment learning,” in Anais do XVI Simpósio Brasileiro de Jogos
e Entretenimento Digital, 2017.

[33] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. van den Driessche, J. Schrittwieser, I. Antonoglou,
V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,
J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap,
M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis,
“Mastering the game of Go with deep neural networks and
tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.
[Online]. Available: http://dx.doi.org/10.1038/nature16961

[34] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural
networks from overfitting,” Journal of Machine Learning
Research, vol. 15, pp. 1929–1958, 2014. [Online]. Available:
http://jmlr.org/papers/v15/srivastava14a.html

[35] R. S. Sutton and A. G. Barto, Introduction to Reinforcement
Learning, 1st ed. Cambridge, MA, USA: MIT Press, 1998.

[36] A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus,
J. Aru, J. Aru, and R. Vicente, “Multiagent cooperation
and competition with deep reinforcement learning,” CoRR,
vol. 12, 11 2015.

[37] T. Tieleman and G. Hinton, “Lecture 6.5—RmsProp: Divide
the gradient by a running average of its recent magnitude,”
Coursera: Neural Networks for Machine Learning, 2012.

[38] H. van Seijen, M. Fatemi, J. Romoff, R. Laroche, T. Barnes,
and J. Tsang, “Hybrid reward architecture for reinforcement
learning,” ArXiv e-prints, Jun. 2017.

[39] Y. Wu and Y. Tian, “Training agent for first-person shooter
game with actor-critic curriculum learning,” in International
Conference on Learning Representations (ICLR), 2017, pp.
1–10.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 477


