
Dynamic Difficulty Adjustment in a Whac-A-Mole like Game

Bruno E. R. Garcia and Marcio K. Crocomo
Department of Informatics

IFSP - PRC
Piracicaba, SP, Brazil

brunoely.gc@gmail.com, marciokc@ifsp.edu.br

Kleber O. Andrade
Department of Informatics

FATEC - AM
Americana, SP, Brazil

kleber.andrade@fatec.sp.gov.br

Abstract—Based on the Evolutionary Algorithm (EA) pro-
posed by [1], this paper presents a new EA version with
dynamic difficulty adjustment for a Whac-a-Mole like game
used in motor rehabilitation of hand. This new version con-
siders user performance as input and generates the position
and time that the target will stay on screen. In order to
simulate different users needs, a variety of player profiles
were created with diverse horizontal movement speed (ulnar
deviation/radial deviation of the hand) and vertical movement
speed (supination/pronation of hand), as well as distinctive
player attention deficits (response time to the apparition of the
targets). The results show that the developed EA can adjust
the difficulty factors of the game according to the skill set of
each profile.

Keywords-Human-Computer Interactive; Serious Games for
Rehabilitation; Artificial Intelligence; Evolutionary Algorithm;
Dynamic Difficulty Adjustment.

I. INTRODUCTION

In the past years, the game industry has been profiting
more than the movie industry [2], [3]. To keep this po-
sition, they are reinventing their ideas and techniques [4].
Nowadays, researchers are investing efforts in improving
the performance, movements, and strategies of the games
[5]. The game industry is using a lot of AI techniques like:
Fuzzy [6], Decision Trees [7], Artificial Neural Networks
[8], [9], Q-Learning [10] and others. All of these techniques
have been used to improve the quality of the games and the
results of these applications are positives in general [5].

One of the challenges of the game industry is to keep
players interested while playing [1], [11]. For this purpose,
the difficulty adaptation in a game is very important. In order
to keep the player interested, we can’t let him get neither
frustrated or bored during gameplay. So, it is important to
keep the player in balance between the difficulty of the game
and his skill. One way of representing this balance is through
the Flow Channel [12], [13]. Flow channel is defined as the
state of the mind that keeps a person focused on an activity
[12]. The adaptation of the game challenge based on the
player skill level can keep the player in the flow channel.

The importance of the Dynamic Difficulty Adjustment
(DDA) increases in rehabilitation games because we don’t
just have to adjust the difficulty to keep the player interested
in the game while playing, we also have to adjust it to keep

the player in his limits since exploring the limits of the
player is the best way to his rehabilitation [14], [15]. So,
if the game is attractive and explores the player’s skill, the
player rehabilitation tends to be very positive.

It is important to note that a number of factors may
interfere with a game’s difficulty, such as the game’s re-
sponse time, or the player’s required motor skill. In games
aimed at rehabilitation, it becomes important to consider
these factors separately. As an example, a player who has
a motor limitation may be frustrated if the game requires a
high motor coordination capacity but allows a long response
time. On the other hand, if the game requires a quick
response time, but low motor coordination, the same player
may become frustrated. In this paper, we represent these
difficulty factors of a game as chromosomes parameters,
to be dynamically adjusted by an Evolutionary Algorithm
(EA). In doing so, we are able to adapt the game difficulty
for different kind of simulated players. The objective of
this research is not only to verify if our EA can adapt the
difficulty level of the game according to simulated players
skill level, but, more specifically, to verify if the difficulty
factors of the adapted game correctly corresponds to the
set of skills of the simulated player profiles used in our
experiments.

The rest of the paper is structured as follows. In Section
II we discuss related work in games with dynamic difficulty
adjustment. In section III we present the selected game
and the created virtual players used in the experiments. In
Section IV we explain the EA approach used to dynamically
adjust the game difficulty. Section V presents the results.
Finally, Section VI presents the conclusion and ideas for
future work.

II. RELATED WORKS

Although players might enjoy unpredictability or novelty
during gameplay experiences, the DDA will only be effective
if it does not disrupt or degrade the player experience [16].
For this purpose, the algorithm responsible for the DDA
should be able to adapt the game difficulty based on
the player experience. In [17], the researchers developed
Evolutionary Fuzzy Cognitive Maps to adjust gameplay
parameters in real-time according to the current player skill

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 439



level. In a different research [18], the game difficulty was
dynamically adjusted considering the emotional state of
the player, using as input for the game balance the overt
behavior and physiological responses of the player.

Games with Evolutionary Algorithm (EA) are the subject
of many studies [1], [11], [19]. It is common using EA
to Procedural Generation of Content (PGC) [20], Dynamic
Difficulty Adjustment (DDA) [1] and others. In the case
of PGC, the content generation tends to be complex and
costly, however, EA has been used to dynamically generate
contents like maps, visual arts and narratives based on player
experience [20]. In other study, EA was used to game
strategy learning. The author created a theory-inspired game
and implemented an EA to generate strategies based on play-
styles [19].

In [1] the authors propose the DDA based on an Evo-
lutionary Algorithm (EA). The game proposed by them is
called “The Catcher” (Figure 1), and has been used for
rehabilitation of patients with motor deficits. In this game,
the player must control the horizontal position of a squirrel
(the main character of the game) and, in doing so, reach
the targets (nuts) that fall vertically on the screen. So, the
player has to worry about moving the controller in only one
dimension.

Figure 1. Screenshot of the game “The Catcher” [1]

The game difficulty is based on the initial distance to the
target and the reaction speed, so, the chromosome defined
by them has 2 genes (distance to the target d and speed of
the target v). The fitness of a chromosome is calculated by
the following equation:

F = Kd · d+Kv · v −Kε · ε. (1)

where, Kd, Kv and Kε are coefficients that set the impact
of all the terms of the equation. d and v reflect the game
distance and velocity, ε represents how far from the target
horizontal position the player is when the round ends.

However, in this paper we adapt the proposed EA in [1]
for a Whac-A-Mole type game, which is also a type of game

that has been used in rehabilitation [21]. This game is similar
to the game proposed in [1] but the difference is that Whac-
A-Mole has a two-dimensional gameplay, since the player
can use the controller to move horizontally and vertically.
So, adaptations are required in EA proposed in that work.
Besides that, observing the results we aim to verify the game
behavior for each different profile (Section V-C).

III. METHODS AND MATERIALS

This section presents the methods and materials used to
perform the game simulator (Section III-A) and the player
simulator (Section III-B).

A. The Game Simulator

This section presents the proposed “Wack-a-Mole” sim-
ulator, which has been developed in C language. In this
type of game, the player’s goal is to control the image of a
hammer on the screen so it can reach the targets that appears
in random positions before they disappear, as illustrated by
Figure 2.

Figure 2. Screenshot of a Whac-A-Mole (5 × 5) type game created in
Unity 3D, but simulated in C language.

Four constants are important to explain the game: W ,H ,C
and R. W and H represents, respectively, the width and
height of the screen in pixels. C represents the number of
columns and R represents the number of rows on the screen,
relative to the screen division that delimits the regions where
the targets can appear. To better understand it, considering
the example in Figure 2, the respective game would have 5
columns and 5 rows (C = 5 and R = 5).

The simulator also uses 2 variables: px and py , that
represents the player (hammer) position on the screen (re-
spectively the coordinates , in pixels, being px the hammer
position horizontally and py the hammer position vertically.
At the beginning of the game, the hammer is placed at the
center of the screen

[
W
2 ,

H
2

]
. Then, a target appears at a

distance from the hammer given by dx and dy (respectively,
the distance on the x-axis and on the y-axis) and stays on
the screen for t seconds before it disappears. Note that dx,

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 440



dy and t are values that define how difficult it is for the
player to reach the target and, for this reason, they are the
ones that must be adapted according to the player skill level,
as explained in Section IV.

We limit the maximum distance from the player that the
target can appear on the screen by the half of screen width
and height, because, supposing the player is at the center of
the screen, the maximum distance that the target may appear
from the player is half the screen. Any distance greater
than that would exceed the screen limit and the value of
the chromosome would not represent the real difficulty of
the match. Because of that, to define the target position we
created two variables gx and gy . First of all, to calculate
the value of them we defined 2 variables to indicate the
target direction (λx and λy) will appear from the player,
both of them have only two values: 1 or -1. In the case of
λx, -1 indicates that the target is on the left the player and 1
indicates that the target is on the right the player. In the case
of λy , -1 indicates that the target is under the player and 1
indicates that the target is above the player, then, to define
the target position we get the player position and depending
on the values of λx and λy , we subtract or add the value of
the respective distances that the target should appear from
the player (dx , in the case of gx and dy , in the case of
gy). Since the values of dx and dy are normalized in the
chromosome, we multiply them by the half of screen size,
as its demonstrated on the equations 3 and 4.

To get the real time in seconds that the target will stay on
the screen, we defined two constants tMIN and tMAX that
represent the minimum and maximum time, respectively,
that the target can stay on the screen. After that, we created a
variable gt to represent the time unnormalized, this variable
gets the time from the chromosome and transforms it to
seconds based on tMIN and tMAX , given by the equation
2.

gt = tMIN + t · (tMAX − tMIN ) (2)

gx =

{
px − dxW2 if λx = −1

px + dx
W
2 otherwise

(3)

gy =

{
py − dy H2 if λy = −1

py + dy
H
2 otherwise

(4)

Valid target positions are restricted by a screen division
given by the rectangular areas shown in Figure 2. Having the
hammer position and its distance to the target, we determine
the target position by adding the distance values (dx and
dy to the hammer coordinates (px and py) and verifying in
which area of the screen the target is. Then, we adjust the
target position, given by tx and ty , so the target is located
at the center of its current area.

B. Player Simulators
The constants and variables defined in this section repre-

sent the necessary parameters to start one game match. When
a target appears on the screen, the player must then use the
game controller to move the hammer and try to reach the
target. In this paper, we use a method to dynamically adjust
the difficulty of the matches (Section IV) adapted from the
one proposed in [1] and, for testing it, we use simulation of
players.

In Section V-A, we describe 5 different player profiles
that we create to simulate different kinds of skills. Each
profile has 3 attributes (vx, vy and tr), vx defines the
maximum speed the player can move horizontally, vy defines
the maximum speed the player can move vertically and
tr defines the value that will be subtracted from the time
that the target will be visible on the screen, allowing the
simulation of players with attention deficit that use some
of the time searching for the target instead of moving the
controller. Equation 5 shows how the final time (tf ) is
obtained, which is used to calculate the player movement.

tf =

{
gt − tr if gt > tr

0 otherwise
(5)

After that, we calculate the maximum distance that player
can move the hammer based on its initial velocity capacity
and the size of the screen, like the following equation.

Then, we use 2 variables ∆x and ∆y to represent the
player movement capacity. To calculate it, we multiply vx
and vy with the final time (Equation 5), as shown by
Equations 6 and 7.

∆x = (vx ·W )tf (6)

∆y = (vy ·H)tf (7)

So, ∆X is the maximum distance that the player can move
the hammer horizontally and ∆y is the maximum distance
that the player can move the hammer vertically.

After we have the value of ∆x and ∆y , we are able to
know if the player can reach the target, because, we get the
target position and calculate in which rectangle on the screen
the target is positioned. Then, we get the values of ∆x and
∆y and calculate if the player is able to hit that square, if
yes, the algorithm positions the player at the center of the
square.

If the player is not able to hit the target, we get the values
of λx and λy , and based on his previous position (pxn−1

and
pxn−1

), we position the player as close to the target as he
can, as shown in equations 8 and 9:

pxn = pxn−1 + ∆xλx (8)

pyn = pyn−1
+ ∆yλy (9)

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 441



IV. THE PROPOSED EVOLUTIONARY ALGORITHM

We propose a new version of the EA used in [1] for a
different type of game. In order to do so, we had to make
some adaptations to the EA, based on a Whac-a-Mole like
game.

Since the purpose of our EA is to adjust the difficulty level
of the game, the chromosome structure we use is composed
of 3 values, t, dx and dy , which are the parameters to be used
in one match, directly defining its difficulty, as explained in
Section III-A. If the EA can adjust these values accordingly
to a specific player profile, it indicates that it can adjust
the difficulty level for a specific type of player. The used
population has a total of five chromosomes.

The chromosomes in the first population are initialized
randomly with values varying from 0 to 1 for t, and one of
the following values: 0, 0.4 or 0.8 for dx and dy . The 0.4 gap
was chosen so these values represent, respectively, a distance
of zero, one or two rectangles from the hammer position.
As the target can appear at a maximum distance from the
hammer of half the screen, the 0.4 gap was calculated as 2

C
for dx, and 2

R for dy , which results in 0.4 for both, since
our game presents R = 5 and C = 5. For variations of
the proposed game, where the target can appear in different
positions (different than the 5×5 scene shown in Figure 2),
these values can be easily recalculated.

The fitness function we use is similar to Equation 1. It
considers three different factors that reflects: i) the time
that the target stays on the screen (T , Equation 10), ii) the
distance that the target is from the player at the start of the
match (D, Equation 11) and iii) the distance that the player
is from the target at the end of the match (E, Equation
12). While T and I are values that the reflects the match
difficulty, E measures the player success or failure in the
match. When E = 0, the target was reached, otherwise,
E represents how close to the target the player could get.
Equation 13 shows the final fitness function used in our EA.

T = 1− t (10)

D =

(
2
√

(gx − px0
)2 + (gy − py0)2

2
√
W 2 +H2

)
(11)

where px0
and py0 are the coordinates of the hammer at the

start of the match.

E =

(
2
√

(gx − px1
)2 + (gy − py1)2

2
√
W 2 +H2

)
(12)

where px1
and py1 are the coordinates of the hammer at the

end of the match.

F = Kt · T +Kd ·D −Ke · E (13)

.

Kt, Kd and Ke are coefficients that set the weight of the
fitness elements, higher values for Kt and Kd set higher
contribution to the fitness score of solutions that represent
matches with higher difficulty. On the other hand, higher
values for Ke results in higher values for solutions where the
player presents a good performance. To find good values for
these coefficients, we reproduced the ranking system used
in [11], as reported in the experiments from Section V-B.

To evaluate all the individuals in our population, a match
is executed for each chromosome (total of five matches),
using its values as the match parameters (line 6 from
Algorithm 1. After that, each chromosome is associated with
a fitness value. The chromosome with a higher fitness score
is selected, and a new population is formed maintaining
the selected chromosome (elitism) and replacing the other
five with mutated copies of the selected individual (asexual
reproduction) as done in [11] and [1].

The Mutation operator used works as follows: For the dx
and dy parameters, a random value between −0.4, 0 and
0.4 is added. Once again, the 0.4 gap was calculated based
on our current 5x5 game scene, and should be recalculated
for variations of the game as previously explained. After
the randomly generated value is added, the parameter is
adjusted to 0, if it is less than 0, or to 0.8, if it is higher
than 0.8 (since 0.8 represents the maximum distance of two
regions where the target can appear). For the time gene (t)
we generate a random value between 0 and 1, after that, we
define randomly if this value will be positive or negative,
and add it to the original t value. If the resulting time value
is bigger than 1, the algorithm sets the value to 1, and if the
resulting value is less than 0, the algorithm sets it to 0.

The Algorithm 1 presents the execution of the game using
the virtual players and the proposed EA.

V. EXPERIMENTS AND RESULTS

This section presents the created experiments and results
from testing the proposed EA difficulty adjustment in our
proposed game simulator. Section V-A shows the profile
settings used in the experiments. Section V-B presents
experiments conducted for testing the proper implementation
of the EA and adjusting the coefficients used in its fitness
function. Section V-C shows experiments that verifies if the
difficulty presented in our proposed game is consistent with
the ability presented by each tested player profile, when
using the EA with the proper adjusted coefficients. Section
V-D presents experiments with dynamic player profiles, to
see if the EA can properly adjust the game difficulty when
the player skills are changed during playtime.

A. Player Profiles

Simulating different kinds of players is important to
observe how the EA can adjust the difficulty of our game
for players with different set of skills. To simulate different
kinds of players we created 5 different players profiles to

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 442



Algorithm 1 “Whac-A-mole” simulation with EA
Input: NG ≥ 1, N ≥ 1,W > 0, H > 0, C ≤W,R ≤ H
Output: h

1: Load current player profile values: vx, vy and tr
2: Define initial hammer position as px ← w

2 and py ← h
2

3: Randomly initializes the population of the EA
4: Initialize hit counter h← 0
5: for i← 0 to i < NG step 1 do
6: for j ← 0 to j < N step 1 do
7: Get the values dx, dy and t to be used in this match
8: Calculate gt, gx and gy (Equations 2, 3 and 4)
9: Calculate tf , pxn

and pyn (Equations 5, 8 and 9)
10: if player is able to reach the target then
11: Increment hit counter h← h+ 1
12: end if
13: Use Equation 13 to evaluate chromosome
14: end for
15: Select chromosome with higher fitness
16: Make N copies of the selected chromosome
17: Apply mutation operator in N − 1 chromosomes
18: Define as the new population the set of N chromo-

somes obtained from the two previous steps
19: end for

use with our player simulator, explained in Section III-B.
Profile 1 simulates a player with good performance to
move the controller horizontally and bad performance to
move the mouse vertically, profile 2 simulates a player
with good performance in moving the controller vertically
and bad performance in moving the controller horizontally,
profile 3 simulates a player which really does not have
a good performance in moving the controller in any axis,
profile 4 simulates a player which has a better performance
than profile 3, however, this profile also does not have
a good performance in moving the controller and he has
attention deficit and profile 5 simulates a player with good
performance in moving the controller in both ways, but has
attention deficit. All of these profiles are represented in Table
I.

TABLE I
PLAYER PROFILES USED IN THE EXPERIMENTS

Profile vx vy tr

1 0.60 0.01 0.00
2 0.01 0.60 0.00
3 0.03 0.03 0.00
4 0.25 0.25 3.00
5 0.60 0.60 3.00

B. EA adjustments

Our first experiment aimed to adjust the Kt, Kd and Ke

coefficients of our fitness function so the EA can work

properly. For this purpose, the experiments in [11] were
repeated. First, we define that each coefficient may one of the
5 different values (1,2,4,8,16). Since we have 3 coefficients
to adjust, we have a total of 125 possible combinations (53).
For each combination, we run a sequence of 30 tests for each
player profile. Each test consists in running 30 generations
of the EA using the given coefficient combination. After
that, we calculate the player profile skill score (Θ), which
is the rate of matches in which the player successfully hits
the target , calculated by Equation 14, and also the game
overall difficulty (Ψ), calculated by Equation 15.

Θ =
h

NGN
(14)

where h is the hit counter, calculated in line 11 of Algorithm
1.

Ψ =
1

NG

NG∑

i=0




1

3


1−

N∑
j=0

t

N
+

N∑
j=0

dx

XN
+

N∑
j=0

dy

Y N





 (15)

X =

⌊
C

2

⌋
2

C
(16)

Y =

⌊
R

2

⌋
2

R
(17)

where, bzc is the floor function, gives the largest integer less
than or equal to z.

Using the obtained values, we can plot a dot like the ones
shown in Figure 3. The closest a dot is to the diagonal line
in the picture the better, because the most likely it is that
the game kept the player in the flow channel area, explained
in Section I) (greater game difficulty for players with good
skill level, and lower game difficulty for players with lower
skill level). However, a good set of coefficients should be
able to keep all player profiles near the flow channel. So, to
obtain a good combination of values for our coefficients, the
same ranking system presented in [11] was used and, from
this method, we detected that the set of coefficients Kt =
2,Kd = 4 and Ke = 8 was presented in each top 38, 46,
37, 30, 4, coefficients for every player profile, respectively.
Then, we selected this set of coefficients to be used in our
EA. Figure 3 shows the plot of a dot for each player profile
obtained as previously explained using the given coefficients
set.

Figure 4 represents a simple test using profile 5 and the
EA with the adjusted coefficients, in which we can see
that the EA is working as expected, since the tendency
line indicates an improvement of the fitness values as the
generation number increases.

The used heuristic aims to find a set of coefficients that
results in dots that are close to the diagonal line for all the

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 443



� ��� ��� ��� ��	 �
�����������

�

���

���

���

��	

�

�
��

��


���
��
��
��

���������
���������
���������
���������
���������

Figure 3. Dispersion diagram obtained using Kt = 2,Kd = 4 and
Ke = 8 for each player profile.

� �� �� �� �� ��
�����������

���

���

���

���

��	

��
��
��

�


�����������
������������

Figure 4. Fitness diagram with trend line from profile 5.

different player profiles (Figure 3). By doing that, we expect
that players represented by these profiles will have a lower
chance of feeling frustrated or bored when playing. We can’t,
however, be certain of that, since we are not working with
real players, but simulated player profiles. Furthermore, we
still can’t determine if the type of difficulty presented by
the game is consistent with the set of abilities presented by
each tested player profile, which is what we hope to validate
from the solutions found by our EA.

C. Comparing types of challenges found for each player
profile

With the adjusted fitness function for our EA, we got the
average values for each chromosome parameter, considering
all generations and all 30 tests run in the previous experiment
for each given profile. This reflect the average settings used
by the game considering all matches with the simulated
player. The results are shown in Figures 5, 6, 7, 8 and 9.

As described on section V-A, the first profile has good

skills in moving the control horizontally and poor ability to
move it vertically. As we can see in Figure 5, the average
settings for the game matches make the target appears in a
distant position in the horizontal axis (high dx value), close
position in the vertical axis (low dy value). These settings
for the game matches this type of player skills. The time
(t) that the target stays visible is a low value, which is also
coherent with the player skills, since profile 1 does not have
attention deficit (tr = 0).

t dx dy
	
��
���

�

����

���

����

�

�
�

���
��
�

��

����

����

����

Figure 5. Average values for parameters t, dx and dy used in the matches
for player profile 1.

Profile 2 is very similar to the first one, but with inverted
skills: good skills in moving control vertically and poor
ability to move horizontally. Figure 6 shows the results that,
once again, match the player profile skills.

t dx dy
	
��
���

�

����

���

����

�

�
�

���
��
�

��

����
����

����

Figure 6. Average values for parameters t, dx and dy used in the matches
for player profile 2.

The third player profile does not have good movement
skills. Observing the Figure 7, we can see that, once again,
the algorithm matches the player skill by using low values
for the distances in both axis.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 444



t dx dy
	
��
���

�

����

���

����

�

�
�

���
��
�

��

����

���� ����

Figure 7. Average values for parameters t, dx and dy used in the matches
for player profile 3.

The last two profiles, 4 and 5, represent cases of attention
deficit. Figures 8 and 9 present the results of our tests, that
shows that the EA was able to adapt the matches so that
the average time that the target is visible is now, in both
scenarios, higher than in the time found for the previous
profiles (1,2 and 3). Also, the distance the target appears
is, in average, bigger for profile 5 than for profile 4, which
is expected since profile 5 has better movement skills than
profile 4.

t dx dy

��������

�

����

���

����

�

	
��

���
�
��

��

����
����

����

Figure 8. Average values for parameters t, dx and dy used in the matches
for player profile 4.

The results presented in this section let us verify that our
current EA is capable of adjusting the existing challenges
in the game to properly adjust to the skill level of a static
player profile (a player whose skill level remains the same
during gameplay).

t dx dy

��������

�

����

���

����

�

	
��

���
�
��

�� ����

����

����

Figure 9. Average values for parameters t, dx and dy used in the matches
for player profile 5.

D. Change in players skill level during gameplay

Players often change their skill level during gameplay,
usually improving their skills as they learn from the game.
To simulate this scenario, an experiment was conducted
simulating a game with 750 matches, what corresponds to
150 EA generations. In order to simulate that the player
improved his abilities, every 50 generations we changed the
value of vx and vy as follows: First 50 generations: 0.03,
generation 51 to 100: 0.12 and generation 101 to 150: 0.36.
We kept the value of tr as 0 through all generations. The
results from this experiment are presented in Figures 10 and
11.

Figure 10 shows a moving average graph using a subset
of size 10 for the average parameters (t, dx and dy) in each
generation. We can see that there is a tendency to improve
the target distance as the matches advance, as expected,
since the player skill level is also improving. We can also
notice that there is an increase in t on the second set of
50 generations (profile with vx and vy with value 0.12). To
better visualize what happened, we created a second graph
(Figure 11), showing the average of the used parameters
in each set of 50 generations, each one corresponding to
a different profile configuration. It is possible to visualize
that each set of parameters corresponds to the player skill
level. Although the values of dx and dy are slightly higher
for the last 50 generations (101 to 150), we point out that
the skill level of the player in these last 50 generations
are significantly higher than the values used for the profile
in generation 51 to 100, since value 0.36 to vx and vy
represents a player who can move the controller 3 times
faster than a player with value 0.12 of vx and vy . However,
the results show that the difficulty level was improved in the
last 50 generations by decreasing the time available to the
player to reach the target, as he got faster.

To simulate a scenario where the EA should adapt the

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 445



�� �� �� 	� ��� ��� ���

����������

���

���

���

���

��	

���
t������������������
dx�������������������
dy�������������������

Figure 10. Genes evolution by moving average 10.

���� ������ �������
���

���

���

���

��	

���

���


����

����

���


����
����

����

����
����

t
dx

dy

Figure 11. Average of the 50 generations used by each profile configura-
tion.

difficulty level of the game when a player, for some reason,
has a severe decrease in his motor abilities, we repeated the
previous experiment using a different order in the changes
made to the values of the profile every 50 generation,
changing the values of vx and vy as follows: First 50
generations: 0.12, generation 51 to 100: 0.36 and generation
101 to 150: 0.03. Once again, we kept the value of tr as 0
through all the experiment. The results are shown in Figures
12 and 13, and allow us to get to the same conclusions as
before: that the EA can dynamically adjust the difficulty
level based on the player abilities when they are changed
during gameplay.

VI. CONCLUSION

The results from the performed experiments show that our
initial proposal is valid. The developed EA can perform the
DDA successfully for the simulated players profiles, adjust-
ing different elements which influence the game difficulty

�� �� �� 	� ��� ��� ���

����������

���

���

���

���

��	

���
t������������������
dx�������������������
dy�������������������

Figure 12. Genes evolution by moving average 10.

���� ������ �������
���

���

���

���

��


���

����

���� ����

���


����

���	

���
 ����

����

t
dx

dy

Figure 13. Average of the 50 generations used by each profile configura-
tion.

according to the skill set of each player profile. In summary,
the conclusions we draw from the results of this research are:

1) The technique used in [1] for obtaining a DDA can be
adapted for different games;

2) The different game difficulty elements can be properly
adjusted according to changes of the player profile
skill set during gameplay;

Demonstrating that the research conducted in [11] and [1]
can be adapted for different types of games is important to
the research field of rehabilitation games. The results of the
present research adds to [11] and [1], by showing that the
DDA technique can be used in the creation of games that
could help in the player rehabilitation process by adapting
the game parameters to player specific difficulties during
playtime.

We believe that the results are also promising for other
applications of serious games, since we can argue that in
educational games it is also important to adjust the game

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 446



difficulty level according to the player knowledge, and
furthermore, adjust different difficulty levels for different
topics, according to the player knowledge level in each of
these topics.

Continuations of this research can include: i) performing
tests with real players, evaluating the impact of our proposal
on clinical rehabilitation sessions; ii) testing the used tech-
nique in an educational game; iii) the creation of a larger
set of profiles in order to simulate more types of players
with more realistic behaviors; and iv) performing tests with
different sizes of game scenarios.

ACKNOWLEDGMENT

The authors would like to thank the scholarship grant
awarded to Bruno Ely Reis Garcia by the Institutional Schol-
arship Program of Scientific and Technological Initiation of
the Federal Institute of Education Science and Technology of
São Paulo (PIBIFSP) and Fernanda Goulart for the English
review.

REFERENCES

[1] K. O. Andrade, R. C. Joaquim, G. A. P. Caurin, and M. K.
Crocomo, “Evolutionary algorithms for a better gaming
experience in rehabilitation robotics,” Comput. Entertain.,
vol. 16, no. 2, pp. 4:1–4:15, Apr. 2018. [Online]. Available:
http://doi.acm.org/10.1145/3180657

[2] MPAA, “2016 Theatrical Market Statistics
Report,” Mpaa.Org, 2017. [Online]. Avail-
able: http://www.mpaa.org/wp-content/uploads/2017/03/
MPAA-Theatrical-Market-Statistics-2016 Final-1.pdf

[3] Newzoo, “2018 Global game Market Report: Trends, Insights,
and Projections Towards 2021,” 2018, pp. 1–25. [On-
line]. Available: https://resources.newzoo.com/hubfs/Reports/
Newzoo 2018 Global Games Market Report Light.pdf

[4] G. B. David Wesley, Innovation and Marketing in the Video
Game Industry avoiding the performance trap, 2016.

[5] M. Carrozo, “How Artificial Intelligence is changing the
gaming industry.” [Online]. Available: https://unbabel.com/
blog/ai-changing-gaming-industry/

[6] T. Khalil, Y. S. Raghav, and N. Badra, “Optimal Solution of
Multi-Choice Mathematical Programming Problem Using a
New Technique,” American Journal of Operations Research,
vol. 06, pp. 167–172, 2016.

[7] M. W. Masato Konishi, Seiya Okubo, Tetsuro Nishino, “De-
cision Tree Analysis in Game Informatics,” Springer Interna-
tional Publishing, 2018.

[8] S. Y. Chong, M. K. Tan, and J. D. White, “Observing
the Evolution of Neural Networks Learning to Play
the Game of Othello,” Trans. Evol. Comp, vol. 9,
no. 3, pp. 240–251, 2005. [Online]. Available: http:
//dx.doi.org/10.1109/TEVC.2005.843750

[9] G. A. P. Caurin, A. A. G. Siqueira, K. O. Andrade, R. C.
Joaquim, and H. I. Krebs, “Adaptive strategy for multi-user
robotic rehabilitation games,” Proceedings of the Annual In-
ternational Conference of the IEEE Engineering in Medicine
and Biology Society, EMBS, no. 1, pp. 1395–1398, 2011.

[10] K. D. O. Andrade, G. Fernandes, G. A. Caurin, A. A.
Siqueira, R. A. Romero, and R. D. L. Pereira, “Dynamic
player modelling in serious games applied to rehabilitation
robotics,” in Proceedings - 2nd SBR Brazilian Robotics
Symposium, 11th LARS Latin American Robotics Symposium
and 6th Robocontrol Workshop on Applied Robotics and
Automation, SBR LARS Robocontrol 2014 - Part of the Joint
Conference on Robotics and Intelligent Systems, JCRIS 2014,
oct 2015, pp. 211–216.

[11] K. O. Andrade, T. B. Pasqual, G. A. P. Caurin, and M. K.
Crocomo, “Dynamic difficulty adjustment with Evolutionary
Algorithm in games for rehabilitation robotics,” in 2016 IEEE
International Conference on Serious Games and Applications
for Health, SeGAH 2016, Orlando, FL USA, 2016, pp. 1–8.

[12] M. Csikszentmihalyi, Flow: The Psychology of Optimal
Experience. New York, NY: Harper Perennial, March 1991.
[Online]. Available: https://www.researchgate.net/publication/
224927532 Flow The Psychology of Optimal Experience

[13] J. M. Thomas and R. M. Young, “Annie: Automated gen-
eration of adaptive learner guidance for fun serious games,”
IEEE Transactions on Learning Technologies, vol. 3, no. 4,
pp. 329–343, 2010.

[14] P. Langhorne, F. Coupar, and A. Pollock, “Motor recovery
after stroke: a systematic review,” pp. 741–754, 2009.

[15] N. A. Borghese, M. Pirovano, R. Mainetti, and P. L. Lanzi,
“An integrated low-cost system for at-home rehabilitation,”
in Proceedings of the 2012 18th International Conference
on Virtual Systems and Multimedia, VSMM 2012: Virtual
Systems in the Information Society, 2012, pp. 553–556.

[16] R. Hunicke, “The case for dynamic difficulty adjustment
in games,” in Proceedings of the 2005 ACM SIGCHI
International Conference on Advances in Computer
Entertainment Technology, ser. ACE ’05. New York,
NY, USA: ACM, 2005, pp. 429–433. [Online]. Available:
http://doi.acm.org/10.1145/1178477.1178573

[17] L. J. F. Prez, L. A. R. Calla, L. Valente, A. A. Montenegro,
and E. W. G. Clua, “Dynamic game difficulty balancing in
real time using evolutionary fuzzy cognitive maps,” in 2015
14th Brazilian Symposium on Computer Games and Digital
Entertainment (SBGames), Nov 2015, pp. 24–32.

[18] T. J. W. Tijs, D. Brokken, and W. A. IJsselsteijn, “Dynamic
game balancing by recognizing affect,” in Fun and Games,
P. Markopoulos, B. de Ruyter, W. IJsselsteijn, and D. Row-
land, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2008, pp. 88–93.

[19] Guanci Yang, “Game Theory-Inspired Evolutionary Algo-
rithm for Global Optimization,” MDPI, 2017.

[20] J. Forsblom and J. Johansson, “Genetic Improvements to
procedural generation in games,” University of Boras, 2017.

[21] Y. Tokuyama, R. P. C. J. Rajapakse, S. Miya, and K. Konno,
“Development of a whack-a-mole game with haptic feedback
for rehabilitation,” in 2016 Nicograph International (NicoInt),
July 2016, pp. 29–35.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 447


