
Development of an Autonomous Vehicle Controller for Simulation Environments

Vitor Peixoto Menezes, Cesar Tadeu Pozzer
PPGCC - Programa de Pós-Graduação em Ciência da Computação

UFSM - Universidade Federal de Santa Maria
Santa Maria, Brazil

{vmenezes, pozzer}@inf.ufsm.br

Abstract— An autonomous vehicle controller for simulation
and games environments must coordinate the movement and
behavior of multiple vehicles in their chosen path (itinerary)
in the given environment. This work presents the development
of a controller that guides the movement and behavior of
vehicles inserted in a 3D world, so they can respond accordingly
to accomplish the given movement orders. Our proposed
solution to this problem is mainly based on steering behavior,
which were improved with adjustments and predictions to be
able to better manage static and dynamic obstacles in the
simulated environment. It also uses group movement models
using communication and planning between agents as well as
solutions to obstacle deviation in real time in order to avoid
collisions between vehicles while maintaining the behavior as
realistic as possible. We also use accelerating data structures
to enable the solution to run in real time even in very large
terrains with a large number of obstacles.

Keywords-Autonomous vehicle controller; Steering Behavior;
Group Management

I. INTRODUCTION

The reproduction of human behavior in simulated vehicles
by artificial intelligence is of extreme importance in any
virtual environment as it gives the sensation of dynamic
realism. An autonomous vehicle must have intelligent be-
havior with the ability to improvise given adverse situations
by choosing the proper action given its limited view on
the environment. There are multiple adverse situations a
moving agent can face in a virtual 3D scenario such as avoid
static and dynamic obstacles, group movement (convoy) and
parking.

For a vehicle to navigate between two points, it is nec-
essary to obtain the data regarding its surroundings and
define the vehicle’s entire route (itinerary). Once its itinerary
is defined, it still may be blocked by dynamic obstacle
or static obstacles (such as trees, rocks, broken vehicles,
among others) not mapped by the path-finding algorithm.
When planning a path for games or simulations it must be
calculated accordingly to the environment, making possible
to detour every main static object.

The vehicle can act alone or in a group movement
with other entities. Also, there’s the need to sense the
surroundings in order to create a suitable representation for
reasoning about the present scenario. To achieve that, was
used a spatial hashing approach, which greatly improves the

performance for proximity queries. Having a path defined
by a path-finding algorithm, the vehicle must arrive at
its destination managing every aspect of the vehicle, like
turning, speed, direction, among others.

The 3D environment’s representation has some impact
over the planning behavior of the autonomous behavior.
Given that, was used the 3D engine Unity, along with its
physics libraries to support the world representation and its
easy to use terrain and physics tools. The A* path-finding
algorithm was used to generate the best path given a start
and end points considering only the scene’s static objects,
allowing the controller to manage in an intelligent manner
the displacement and behavior of one or more organized
distributed vehicles in the simulated scenario. This is a
complex task given the number of situations that need to
be taken into account.

The main problem that must be solved is the movement
management of one or more vehicles in a pre-calculated
route considering the most basic requirements such as phys-
ical principals and follow a path using reasoning and inter-
vehicle communication. Each solution proposed in this paper
has its own separate implementation allowing the controller
to stack multiple behaviors to perform complex movements.

II. RELATED WORKS

Planning and reasoning over a 3D environment has been
subject of many works in Computer Graphics, AI and
games. When planning for an agent’s movement in a virtual
environment, the AI must take into account all obstacles for
reasoning to find at least one correct path. Since our primary
concern is not graphics quality, we assume the vehicles are
already modeled and the physics engine works properly.

A. Steering Behavior

The Steering Behavior technique [6] allows autonomous
objects to move in a realistic way using a simple manage-
ment of forces. This resultant force is calculated based on
the objects surrounding the agent and the selected behavior
(e.g. path following, flee, wander, seek, etc) dictates the
movement direction. This approach has no performance
impact since it uses simplistic local forces in neighbors that
guide the agent away from the obstacle until it can return
to its original path, instead of recalculate the path in real

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 426

time [7], for instance. Apparently simple, it is capable of
reproducing complex movement patterns and its main field
of application is to reproduce the movement of a group of
independent individuals.

The original implementation [6] shows that is possible
to reproduce local behaviors by simply applying the re-
sultant forces in a response vector and summing with the
instantaneous velocity of the agent. Thereby, the original
implementation does not controls properly the movement of
agents with larger sizes. With that in mind it made clear the
deficiency of this solution for richer environment and the
necessity of a different approach. In section III is presented
the differences between this technique and the one proposed
in the present paper.

B. Real Time Path Planning

Sud et al. [7] proposed a solution for real time path-
finding for multiple agents in a dynamic environment. It is
introduced a new type of data called Multi-Agent Navigation
Graph (MaNG) and its data is computed using discrete
Voronoi diagrams. Voronoi diagrams have been extensively
used for path planning computing in static environment [8],
[9] and is being extended for dynamic environments.

The Voronoi diagrams codifies the connectivities of space
resulting in the path with the widest space for the agent to
pass. To reproduce this calculations in a dynamic scene, it
is processed the Voronoi diagram of each agent treating the
others as obstacles making it very costly when increasing
the number of agents.

It treats complex movements given several vehicles mov-
ing in a same region, simultaneous movement of multiple
agents and coordinate planning. It is not appropriated to our
problem since it is not needed the best result and the cost
of this approach increases exponentially with the size of
the terrain. There are other solutions that does not use such
computational power and offers satisfactory solution [6].

C. Information Flow and Cooperative Vehicle Formation
Control

Existing approaches in the cooperative vehicle formation
control are usually divided in two categories. The first is
a ”leader-follower” approaches, which the vehicle convoy
follows a leader and mimics its steps. The second approach
is ”virtual leaders” [10], [11], [12], which the vehicle for-
mation is clustered in one or more fictitious vehicles where
the aggregated trajectory act as leader.

Fax et al. [1] solves the single task vehicle’s group
cooperation problems using channels of communications
to coordinate its actions. The intention is to consider a
highest number of possible connections between vehicles
to understand how the information flow topology affects the
stability and the system performance. The communication
model uses a topology that is similar to a graph. Gathering
the graph theory, the control theory and dynamic system

theory, it was studied the interaction of the communication
network and the vehicle dynamics to compose strategies of
information exchange.

III. PROPOSED SOLUTION

Our solution allows a group of vehicles to move between
one position to another. To start a movement (Fig. 1), the
vehicles and a destination point must be selected and sent
to the Movement Manager, which has two tasks. The first
task is to invoke the path-finding algorithm to calculate a
rough route (itinerary) and the second is to initialize the
vehicles controller by sending the vehicle’s convoy order
and the calculated itinerary. The path-finding algorithm uses
the position of the first vehicle as origin and the destination
point and takes into account only the objects mapped in the
navigation graph.

User

Origin
Destination

Rough Route
(Itinerary)

Vehicles
Destination

Movement
Manager
Rough Route
Vehicle Order

Force Vehicle n
Controller

Physics
Module

Vehicle 1
Controller

Physics
Module

Force

A*

Navigation
Graph

Static obstacles
Soil, rivers

Environment

Figure 1. Solution overview. Basic steps to start a movement.

The vehicle behavior (controller) handles the decision
making for one vehicle in a 3D virtual environment and is
divided in three modules (Fig. 2): sensor, physics and behav-
ior. The sensing module simply detects objects in the vicinity
of the vehicle allowing better decision making. The physics
module implements the interface used by the behavior and
has the most basic physical function to standardize the
application of forces in the model and stabilize the vehicle’s
movement, so all the vehicles use the same implementation.
The behavior module dictates the taken decision by the
vehicle in a given situation.

The vehicle’s order is chosen by the user and the con-
trollers manage themselves so they can navigate over the cal-
culated itinerary. The environment is sensed by the behavior
in order to modify most of the vehicle’s properties based
on the terrain surface and obstacles. The communication
between vehicles happens when a vehicle needs to avoid
colliding with another (Fig. 5) by acting based both on the

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 427

Figure 2. Visual description of the controller’s modules and their functions.

scenario and their current state. Static obstacles are also
detected so they can be avoided.

A. Physics module

To achieve a physically accurate simulation, it must be
used a sophisticated physics engine and the same phys-
ical pattern for all vehicles. They use the following im-
plementations for better visual and physical consistency.
This module implements the vehicle’s interactions with the
Unity’s physics API along with its colliders by modeling the
application of forces on the objects.

1) Forces - Acceleration and Brake: Forces are essential
for every physical simulation. The wheels are simulated
using the WheelCollider component that handles the wheel’s
physical simulation allowing the application of force. The
force’s magnitude is proportional to its acceleration, vehi-
cle’s mass, friction forces between the ground and the tire,
engine power and relative to the center of mass so the vehicle
stays stable while moving. Accelerating is performed by
applying a force directly on the tire in the direction of the
movement.

Braking is performed by applying a force directly on the
tire in the reverse direction of the movement. This module
implements two kinds of brake. The first is a progressive
brake, where the force is increased over time to simulate
a slow brake and is used when the safe distance from any
obstruction ahead of the agent is met. The second is a hard
brake, where the maximum brake force is applied making
the tire stop spinning instantaneously and is used when exists
the danger of eminent collision.

2) Wheel Direction: It is defined by the angle between
the current direction and the desired direction. The function
receives as parameter one point in the 3D space and cal-
culates how much the wheel’s front axis must rotate so the
agent faces the desired direction. Since an angle alone can
not define the entire movement because it does not contain
information about the rotation axis sign, it is computed the
signed based on the parameters. Using both informations, it
is applied a gradual rotation on the vehicle’s wheels so the
vehicle can face the target.

To assure the stability of any real life vehicles in turns
is a complex task and is achieved by a set of specialized
vehicle’s parts called stabilizer bars and are implemented for
better physical accuracy. These bars connect each wheel of
the same axis and have the purpose to force each side of the
vehicle to stabilize the heights of the wheels counteracting
the centrifugal forces of the vehicle rounding the curve.
When one wheel is pushed up, the bar transfers part of
that force to the other wheel, so its suspension is also
compressed. That limits the rotation of the car body in that
axis, making it less likely to roll over.

B. Sensing Module

Sensors are specialized colliders that collect information
about the objects in the vicinity of the vehicle. The im-
plementation presented in this paper for this module uses a
circle to represent static or dynamic obstacle and a rectangle
(Vision) in front of the vehicle (Fig. 3) to detect and verify
the most eminent obstacle for detour.

Figure 3. Collision test using sensors.

Smaller agent’s dimension can be simplified with only a
test ray but vehicles have bigger dimensions thus the need
to adjust the vision with a collider positioned in its front
and proportional to its size (Fig. 4). These configurations
allow the vehicle to act with higher precision and physically
accuration.

Figure 4. Difference between sensing the environment with a ray of vision
and a rectangle.

To map a very large number of obstacles and allow real
time access in the vehicle’s surroundings is implemented

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 428

the Spatial Hash Algorithm [13]. It uses a data structure
that subdivide the 3D space in nodes representing position
ranges and maps in each node the respective objects within
the range. The implementation uses multiple hashs, each
representing sets of trees, rocks and other kinds of static
obstructions.

C. Behavior Module

In a given situation the vehicle must behave as it is being
controlled by a human being. In this context, was selected
the situations found in a movement defined by a set of points
that required proper thinking of the driver and for each one
was developed a solution. It is important to emphasize that
the simulator’s problem is to move a group of vehicles in a
convoy or individually, with equal paths or not, but aways
following its itinerary.

1) Collision Avoidance: The first issue was to avoid mul-
tiple obstacles that were not mapped by the path-finding. The
proposed solution uses a variation of the steering behavior
algorithm so it can work in vehicles. It was explained earlier
that the steering behavior works with the sum of forces, but
vehicles can not rotate instantaneously and theirs dimensions
must be also simulated.

A vehicle’s rotation must be gradual and must be applied
on its wheels, not on its body. To handle this restriction, the
blockage detection must be modified based on the vehicle’s
properties such as current speed, dimensions and maximum
wheel rotation to allow the maneuver.

It is also important to analyze dynamic objects and predict
their movement so the agent can avoid collisions. Since
dynamic objects are neither mapped on the path-finding
data nor on the static objects, multiple vehicles can still
collide with each other. This problem appears when two
different convoys cross each other’s paths in ”X” shape, for
example. Since vehicles should not collide in any simulation
we propose a communication system that makes one vehicle
to stop while the other pass by allowing the crossing without
any major issues.

While moving, each vehicle is a dynamic obstacle and
is represented with a sphere sensor with its radius being
twice the vehicle’s biggest dimension. It is compared the
direction the vehicle is heading to the direction of all other
vehicles that are not in the convoy and inside the sensor. If
it is detected that moving in the current direction will occur
a collision the vehicle that first detected sends a message
forcing the other to stop, and lock himself using a simple
lock which prevents deadlock (both stopping). The vehicle
that receives the message stops its movement resulting in
the whole convoy to stop while registering them as static
obstacle. That makes other agents to treat them as a static
objects in the collision deviation logic.

The vehicle that made the other to stop continues the
movement (Fig. 5) and once it detects that the first has

already passed, it sends another message that restarts the
other vehicle’s movement.

Figure 5. A vehicle predicted a collision and sent a message to the other
forcing it to stop.

The obstacle deviation is not a path-finding algorithm.
It only takes over the agent modifying its direction until
the obstacle is avoided to finally return to its original path.
There are some cases where the deviation does not generate
a suitable result, it usually occurs in objects with corners
such as ”L” or ”T” shaped obstructions [6].

2) Speed control: The speed control is calculated based
on two limits: the vehicle’s engine maximum speed and the
user desired speed. The vehicle adjusts its speed respecting
both limits and takes into account the ground surface.

When following another vehicle in a convoy the speed
must be proportional to the distance of the next vehicle
in formation. Also, must be maintained a minimum safe
distance between vehicles allowing it to brake safely. The
safe distance is calculated every frame using the current
speed and the brake force every frame.

3) Parking: Parking is performed when the head vehicle
(Fig. 6) in the formation reaches the last itinerary point or
when the minimum distance of a parked vehicle is hit. The
speed is reduced overtime by the distance from the agent
and its destination, that being another parked vehicle, object
or a final point.

4) Precise path following: Given a pre-computed path
from a path-finding algorithm, the vehicle must follow its
path precisely, passing through all the waypoints. When it
arrives at one of the waypoints, the vehicles must verify the
existence of another in the path and if it is the last, it has
arrived in its final destination and must park.

To rotate the vehicle towards its destination the wheel’s
rotation angle must be calculated. The angle from the current
direction to the desired direction is calculated with the
following formula:

θ = arccos(
~v1 · ~v2
| ~v1|| ~v2|

)

In the formula above, ~v1 is the current agent’s direction
vector and ~v2 is representing the desired direction vector.

5) Group movement: The communication between ve-
hicles for moving in convoy is of extreme importance for
exchanging reports of the present situation of each vehicle

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 429

[1]. The group movement exists based on the constant
communication from the head to tail vehicles (Fig. 6). They
share information about current speed, destination, itinerary
progress and status (eg.: waiting, broken, parked). Each
agent act based on its arrangement in the convoy and on
the gathered information.

To start a group movement, it must be selected the desired
vehicles and the destination. Then it is computed by the path-
finding algorithm the detailed route that is shared between
all the vehicles. When the itinerary is defined, it is also
designated the convoy vehicle’s arrangement by the order
that they are disposed on the list of vehicles selected by the
user.

Figure 6. Convoy arrangement.

6) Assuring convoy arrangement: To assure the vehicle’s
arrangement, the comparison between the progress of two
subsequent vehicles is made. When comparing the relative
position of each, it enables the possibility to set a vehicle
to wait for its successor until the right order is achieved to
continue the movement.

The verification of the right vehicle arrangement can
be made comparing the progress on the itinerary of both
vehicles as emphasizes the formula:

progress =
distFromLastPoint

subPathLength

A sub path is a set of two sequential points of the itinerary.
To calculate the progress of each vehicle the distance from
the first point (distFromLastPoint) and the sub path length is
needed. The vehicle’s action choice takes into account this
progress comparison.

IV. RESULTS

This work was based on the needs of a reliable and stable
vehicle controller in an environment shared with other static
and dynamic objects. The result is a system that controls
the movement of generic vehicles in a virtual environment,
allowing the simulation of any model of automobile.

When a vehicle is following its path, obstacles may stand
between the automobile and its destination. In these cases the
vehicle takes a detour from the original path to avoid such
objects (Fig. 7). The detour takes place when a obstacles is
sensed by the sensors and is detected a possible collision.
The strength of the detour is proportional to the distance
from the obstacle to the vehicle.

Figure 7. This image illustrate a vehicle turning away from an obstacle
represented by the white shpere. The blue line represents resultant force.
The red spheres and lines represent the rough path calculated by the path-
finding.

The messages exchange allows vehicles to avoid colliding
with another by making one wait for the passage of the other
(Fig. 8).

Figure 8. This image illustrate a stopped (waiting) vehicle while the other
is following its path. The green lines are the rough path. The yellow line
is the vehicle’s projected position over the itinerary and the magenta line
represents the target position over the itinerary.

The controller supports the displacement of a group of
vehicles. These movements uses the same path to every
vehicle and assure a minimum spacing between them (Fig.
9). In case that the vehicles are in a different order from the
user’s input, the convoy will reorganize itself to match the
correct order.

A movement ends when the vehicles achieve their final
position (itinerary’s last point, parked vehicle or object) and
park (Fig. 10).

V. ACKNOWLEDGMENTS

We thank the Brazilian Army for the financial support
through the SIS-ASTROS project.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 430

Figure 9. Vehicle group movement following the same path.

Figure 10. Vehicles parking in the correct convoy order.

VI. CONCLUSION

The objective of this paper was to provide a solution for
autonomous vehicle in a virtual environment. Our solution
provides an approximation of humanoid agent controllers for
vehicles.

The goal of elaborating a generic vehicle controller was
achieved once it’s possible to reproduce the behavior of
vehicles using this approach. It can be used in any virtual
environment where there are the existence of vehicles and
the need to reproduce its movement in a robust way. The
controller offers vehicles decision making in any virtual
environment including speed control, path following, group
movement and obstacle deviation. The vehicle’s physics is
implemented using a robust physics engine and includes
functionalities such as acceleration and braking.

Given a precomputed path by any path-finding algorithm,
the controller assures that a moving agent achieves its
destination. For that, the controller senses the immediate
situation of the surroundings and acts based upon it.

The obtained results showed satisfactory feedback when
exhaustive tests were executed in a complex virtual 3D
environment, the controller found and reached its destination
in every execution. This work shows a solution for vehicles
group movement. Multiple increments are possible such as
a more precise planning when avoiding obstacles, roads
behavior, highway, built-in path-finding algorithm, among
others.

REFERENCES

[1] J. A. Fax and R. M. Murray, “Information flow and coop-
erative control of vehicle formations,” IEEE transactions on
automatic control, vol. 49, no. 9, pp. 1465–1476, 2004.

[2] H. Wang, J. K. Kearney, J. Cremer, and P. Willemsen,
“Steering behaviors for autonomous vehicles in virtual en-
vironments,” in null. IEEE, 2005, pp. 155–162.

[3] A. Botea, M. Müller, and J. Schaeffer, “Near optimal hier-
archical path-finding,” Journal of game development, vol. 1,
no. 1, pp. 7–28, 2004.

[4] A. M. Bloch, D. E. Chang, N. E. Leonard, and J. E. Marsden,
“Controlled lagrangians and the stabilization of mechanical
systems. ii. potential shaping,” IEEE Transactions on Auto-
matic Control, vol. 46, no. 10, pp. 1556–1571, 2001.

[5] D. P. Scharf, F. Y. Hadaegh, and S. R. Ploen, “A survey
of spacecraft formation flying guidance and control (part ii):
Control,” 2004.

[6] C. W. Reynolds, “Steering behaviors for autonomous charac-
ters,” in Game developers conference, vol. 1999. Citeseer,
1999, pp. 763–782.

[7] A. Sud, E. Andersen, S. Curtis, M. Lin, and D. Manocha,
“Real-time path planning for virtual agents in dynamic envi-
ronments,” in ACM SIGGRAPH 2008 classes. ACM, 2008,
p. 55.

[8] J.-C. Latombe, Robot motion planning. Springer Science &
Business Media, 2012, vol. 124.

[9] H. M. Choset, S. Hutchinson, K. M. Lynch, G. Kantor,
W. Burgard, L. E. Kavraki, and S. Thrun, Principles of robot
motion: theory, algorithms, and implementation. MIT press,
2005.

[10] T. R. Smith, H. Hanßmann, and N. E. Leonard, “Orienta-
tion control of multiple underwater vehicles with symmetry-
breaking potentials,” in Decision and Control, 2001. Proceed-
ings of the 40th IEEE Conference on, vol. 5. IEEE, 2001,
pp. 4598–4603.

[11] N. E. Leonard and E. Fiorelli, “Virtual leaders, artificial
potentials and coordinated control of groups,” in Decision
and Control, 2001. Proceedings of the 40th IEEE Conference
on, vol. 3. IEEE, 2001, pp. 2968–2973.

[12] M. Egerstedt, X. Hu, and A. Stotsky, “Control of mobile plat-
forms using a virtual vehicle approach,” IEEE transactions on
automatic control, vol. 46, no. 11, pp. 1777–1782, 2001.

[13] C. T. Pozzer, C. A. de Lara Pahins, and I. Heldal, “A hash
table construction algorithm for spatial hashing based on
linear memory,” in Proceedings of the 11th Conference on
Advances in Computer Entertainment Technology. ACM,
2014, p. 35.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 431

