SBC — Proceedings of SBGames 2018 — ISSN: 2179-2259

Computing Track — Full Papers

BinG: A Framework for Dynamic Game Balancing using Provenance

Felipe Figueira, Lucas Nascimento, Jose da Silva Junior

Computing Institute
Instituto Federal do Rio de Janeiro (IFRJ)
Rio de Janeiro, Brazil
felchado @gmail.com, nascimentol @outlook.com, and
jose.junior @ifrj.edu.br

Abstract—Among different reasons that can lead a player to
stop playing a game, frustration due to challenges that do not fit
to their skills may be one of the most critical. Besides that, the
players’ skills improve along the time, and the previously selected
difficulty level may become inappropriate due to the player’s
improvement. This can result on decreasing the motivation for
the player retention, as they could get bored because of the
easy challenges or frustrated due to the harsh difficulty. In
this paper, we propose a new approach based on gathered
provenance data for dynamically tuning the game’s challenge
according to the current player skills. To do so, we developed
BinG, a framework responsible for collecting and processing data
provenance, allowing for the development of different balancing
models to be used externally by the game. BinG uses the concept
of logical programming to deliver facts and rules observed
during a game session, allowing querying over the database to
understand what happened. Additionally, we conducted a study
using a game developed in-house and a dynamic balancing model
customized to that game through BinG. This study was performed
with five volunteers, who played the game using the default
balancing and our dynamic balancing. Through this experiment,
we showed a performance discrepancy reduction of almost 50 %
for the most skilled player in relation to the less skillful player
when using dynamic balancing.

I. INTRODUCTION

Video games are gradually becoming more complex and
expensive to be developed. The world wide video game market
is a billionaire industry that reached US$ 101.1 billion in
2016 with a forecast of US$ 128.5 billion in 2019 according
to the Global Gamer Market !. The game industry must
continually improve the game quality in order to attract and
maintain the interest of players to generate income and finance
the development of new titles. Several elements can improve
quality such as the story, artwork, genre, physics, artificial
intelligence, and so on. Besides that, publishers normally
try to reach out for the largest public possible, inserting
different types of gameplay elements to provide more content,
which translates as an increase of gameplay hours. However,
according to Gregory [1], the success of a game is intimately
related to how fun and interesting a game is. In this case,
rapidly identifying the fun factor of a game is a top priority
for this marketplace [2]. Additionally, according to Davis et al.
[3], the first moments of the game are critical, as if the player

Uhttps://newzoo.com/insights/articles/the-global-games-market-will-reach-
108-9-billion-in-2017-with-mobile-taking-42/

XVII SBGames — Foz do Iguagu — PR — Brazil, October 29th — November 1st, 2018

Troy Kohwalter, Leonardo Murta, Esteban Clua
Computing Institute
Universidade Federal Fluminense (UFF)
Niteroi, Brazil
tkohwalter,leomurta,esteban @ .ic.uff.br

finds it compelling and interesting, it is more likely that he or
she will continue playing.

One of the key factors for players’ retention is the game
balance. A video game is a formal closed system [4] explicitly
designed for resources manipulation between the virtual world
and the player. This manipulation is known as the game
economy [5]. The availability of these resources in a game
is called balancing. Balancing is a critical factor for game
success [6], being challenging and requiring a great effort to
be reached. However, balance is normally difficult to perceive
as there are not always clean-cut mathematical methods to
balance a game. Moreover, difficulty comes from the necessity
of balancing elements in the game that function completely
different from each other, such as in a fighting game, where
each character has different abilities. A poorly balanced game
allows for the emergence of dominant strategies, limiting other
lesser strategies.

During development, game balancing is normally performed
in a develop-test-develop approach [3], where parameters of
the game are changed and tested. Another common practice
is the beta test approach [3], which is used when the game
is near its release state. The beta testing approach consists in
collecting feedback from a certain number of participants (beta
testers) who play the game in order to find technical issues,
bugs, or gameplay unbalance in the game. Normally, these
beta-testers are volunteers who play an early pre-release build
of the game, being a valuable source of information about
technical issues in the game. This approach allows little control
about the gameplay experience or the environment as they can
play the game at home. Besides that, this type of analysis may
be subjective and dependent on the complexity of the game,
being difficult to reproduce the same decisions and actions that
lead to a desired effect. Both approaches focus on statically
tuning the game to improve its overall quality.

Normally, the player expects the game’s difficulty to be
closer to their skill while playing the game. The player skills
tend to improve with time by getting used to the game’s me-
chanics and the response of the commands. Thus, the game’s
difficulty should also increase as well. On the other hand, the
player gets frustrated or bored when the game becomes too
difficult or too easy, respectively [4]. A solution for such issues
includes dynamically adjusting the game’s difficulty based on
the current players skills, which implies in monitoring players’
actions and their performance throughout the game. Such

408

SBC — Proceedings of SBGames 2018 — ISSN: 2179-2259

approaches are referred in the literature as “dynamic game
balancing (DGB)” and ”dynamic difficult adjustment (DDA)”
[6]. Several approaches for performing such dynamic balanc-
ing have been proposed, including prediction models [6]—[8],
Evolutionary Fuzzy Cognitive Maps [9], neuro-evolution [10],
challenge based prediction [11], and game scenario adaption
[12]. However, most of these approaches are statically defined
and difficult to adapt to other games’ genres and mechanics.
Besides that, they do not take into account the cause and effect
relationships that can emerge during a gameplay.

In a previous paper [13], we presented how provenance can
be used for understanding the relationships among elements
in a game. Previously, Jacob et al. [14] proposed a non
intrusive way for collecting data provenance from a video
stream at the cost of inferring data from processing a video
stream. On the other hand, Kohwalter et al. [15] introduced
the PinG framework for capturing information during a game
session and maps it to provenance terms, which have been
used for analyze an education game [16]. However, neither
approaches automatically evaluates the player’s performance
during a game session for dynamic balancing.

The goal of this paper is to present BinG (Balance in
Games), a framework to collect provenance information from
a game session to understand the underlying relationships
found among the different elements presented in the game
(such as items and enemies). This provenance information is
then used to produce new parameters for balancing the game
according to the current player’s skills. We choose to use
PinG [15] for capturing provenance data in order to avoid
precision problems from the non-intrusive approach. BinG
allows the usage of different balancing model, which can be
activated when desired by the developer in order to produce
new balancing factors to be adjusted in the game. Furthermore,
BinG is implemented as an external module, being called
through an interface inside the game. This implies in fewer
modifications in the game in order to use it. BinG uses the
tracked provenance data to produce a database of facts and
rules according to a defined schema, allowing the usage of
logical and imperative programming paradigm as well. We
developed a game and a dynamic balancing model to validate
BinG. We conducted a study with five participants that played
the game using the default game balancing and our dynamic
balancing. At the end, we analyzed the results in order for
finding evidences about the effectiveness of dynamic balancing
in relation to default balancing. We found that employing BinG
for dynamic balancing reduced the average discrepancy in
41.33% and 47.18% for time lived and score achieved in the
game, respectively, among participants in relation to default
balancing.

This paper is organized as follows: Section II presents the
related works, while Section III presents the underlying BinG
framework and its components. Section IV presents a use
case for using BinG. Section V presents the materials and
methods used for the experiment and Section VI presents our
evaluation. Section VII discuss some threats to the experiment.
Finally, Section VIII concludes this paper and points to future

XVII SBGames — Foz do Iguagu — PR — Brazil, October 29th — November 1st, 2018

Computing Track — Full Papers

works.

II. RELATED WORK

Data collection from player’s session and its analysis is
crucial for performing dynamic difficulty adjustment. Different
approaches were developed aiming at collecting and analyzing
game flux. However, for the best we know, there is no
approach similar to BinG in the literature for performing a
fair comparison.

Chandler and Noriega [17] present a framework used to
evaluate, based on the past collected data, knowledge about
success and failure in modern games. In that work, they claim
that a game must be challenging but not too hard or too easy,
suggesting an automatic difficulty level based on the user’s
skills. However, the aim of this framework is to help game
designers to find pitfalls and errors during development.

The majority of DDA systems are based on prediction and
intervention as the fundamental strategy. Hamlet [6] takes
advantage of the flow model developed by Csikszentmihalyi
[18], that defines the player’s states in skill and challenge
dimensions. According to this, they suggest that game chal-
lenge should match the current player’s skill, increasing the
preference of certain states in relation to others. Hamlet tries
to predicts the player’s state and adjust the game dynamically
to prevent inventory shortfalls.

Hawkins et al. [7] use player’s risk profile for predicting
their performance inside a probabilistic DDA model. Accord-
ing to them, cautious players wait longer for more evidence,
increasing the likelihood of success in detriment of game time.

Missura and Girtner [8] use prediction in a probabilistic
framework. They try to predict the desired difficulty by for-
mulating the tasks in a game as an online learning problem on
partially ordered tasks. All the approaches based on predictions
does not considers the cause and effect relationships.

Tijs et al. [19] proposed performing dynamic difficult bal-
ancing by using the player’s emotional stage during gameplay.
The main drawback of this approach is breaking the flow
state in the game [4], as the player needs to answer questions
from time to time to adjust the game difficulty. Vasconcelos
de Medeiros and Vasconcelo de Medeiros [20], on the other
hand, used offline collected player’s data for procedural level
design balancing. Unfortunately, due to their static approach,
the increase on the player’s skills was not taken into account.

When considering artificial intelligence based approach,
Prez et al. [9] use fuzzy and probabilistic causal relationships
through cognitive maps to dynamically increase or decrease
the spawn rate of obstacles in the game as well as power
ups. Olesen et al. [10] use Neuro Evolution of Augmenting
Topologies in real time for adjusting game challenge. Using a
developed game, they analyzed the factors that contribute in
the level of difficulty and developed a model based on these
factors. However, the main drawback of these approaches is
that they consider the actual game state for performing such
difficulty adjustments, without considering past history states
during the session.

409

SBC — Proceedings of SBGames 2018 — ISSN: 2179-2259

III. BING FRAMEWORK

A well balanced game is one of the crucial factors for its
success. Achieving balance in a game involves understanding
how each of the game elements impacts in the player’s
performance, and adjusting its mechanics accordingly. BinG is
a framework that employs provenance to represent the cause
and effect relationship among the pieces of information in the
game, allowing the detection of possible balancing issues and
reacting to them dynamically. According to Freire et al. [21]
provenance data is the historical documentation of an object or
the documentation of the process life cycle of digital objects.
In the context of the game, Kohwalter et al. [15] proposed a
mapping of provenance elements, where entities are inanimate
game objects, such as weapons and obstacles, while agents
are characters such as NPCs and players, and activities are
actions or interactions performed by actors among them or
with entities, such as attacking or using an healing item. Figure
1 presents this relationships among those elements.

Agent Role [0 1..* | Behavior Controller
1.9
K T
ossible
Character 44 1.* P
+name "
p Action
:;;:::Utes perform +reason
+Hocation 0.5 +trigger
0.* = |+time influence
- . +effect
has generate 0.*
= < Activity (o, =
0.. 1. generate °
Object 0..% 1
Entity e Event
<} +ype 0.7 0. | +trigger
+mportance —g—ergra_t: .Hjmgeg
+Hocation +effect
+attributes Hocation

Figure 1. Provenance in Games [15] UML class diagram. Gray classes
represent generic provenance classes.

Performing dynamic balancing requires understanding how
the relationships among elements in a game change across
time based on changes to the player’s skills and modifying
the behavior of these elements appropriately. For this, BinG
uses provenance data collected from the game, producing
knowledge over this information that can be used during the
process of dynamic balancing. BinG is implemented as an
external module that is called by the game as necessary, being
it at the end or during a game session, without jeopardizing
the gameplay. As a result, BinG provides new balancing
parameters according to the balancing model used. Conceiving
BinG as an external module reduces the coupling with the
game. BinG’s infrastructure can be see in Figure 2.

The component that interacts with the game is the Importer.
When desired, this component is invoked by the game, sending
a provenance data to be processed. The collected provenance
data is performed by the game using the PinG framework,
storing the data into a XML file. The Importer component
is responsible for reading the provenance file and recreating
the graph of vertices and relationships among these vertices,
according to the model presented in Figure 1.

XVII SBGames — Foz do Iguagu — PR — Brazil, October 29th — November 1st, 2018

Computing Track — Full Papers

The Data Analysis component is called after processing the
vertices and relationships. This is one of the most important
components in BinG and is responsible for transforming
gathered data to use it for the generation of new balancing
parameters for the elements in the game. The concept of
knowledge involves understanding how the behavior of game
elements and their relationships changes across time and
impacts in the performance of the player. In this case, we
choose to represent this knowledge as facts and rules in
a logical programming paradigm, specifically using Prolog.
Prolog is a general-purpose declarative programming language
strongly based on first order logic. We believe that using
a logical programming paradigm is the most straightforward
way for expressing the reasoning process. The Data Analysis
component converts PinG provenance data into facts in Prolog
automatically. However, rules are defined by the game design
through an external schema 2.

The knowledge produced can be used by a Balancing
Model to analyze facts and rules, reacting accordingly. At this
point, the developer can use this information for developing
the dynamic balancing module through adjustments in the
balancing factors of all elements in the game before the game
release. This module can be written using Python, Prolog,
or both. In addition, all the Prolog results are available for
Python, allowing for developing complex dynamic balancing
models. The possibility of mixing procedural and logical
paradigms, and extracting the best of each one, is one of the
key factors in BinG.

After the new balancing parameters are processed, they are
returned to the game. Due to the BinG’s low coupling, the
usage of dynamic balancing modules from other similar games
becomes possible.

IV. USE CASE

In this section, we present an instantiation of BinG for an
in house game developed called MorphWing. Considering the
mechanics of the MorphWing game, we describe a dynamic
balancing model and how it changes the MorphWing game
elements.

A. Game

We projected and developed a 2D shooting game prototype,
called MorphWing, using Unity3D [22] game engine in order
to evaluate our proposed approach for dynamic difficulty
balancing. It is important to state that it is just a use case. Any
other game type could be used by just replacing the balancing
model. The main goal of the player in MorphWing is to stay
alive for the longest time possible. They do so by avoiding
getting hit by enemies and preventing a countdown timer to
hit zero. Destroying enemies increases the player’s score and
time limit. Items are spawned during the game, which can
positively or negatively affect the player. A screenshot of the
game is presented in Figure 3. In MorphWing, the player loses
health points when touching an enemy or when being hit by

>The format and parameters of this schema can be found at

https://github.com/josericardojr/BinG.

410

SBC — Proceedings of SBGames 2018 — ISSN: 2179-2259

Collected

Computing Track — Full Papers

Provenance Vertices

Importer >
Relationships

Data Analysis

Balancing

Facts Parameters

Balancing

Model
Rules

Figure 2. BinG architecture.

their projectiles. In both cases, the player gets invincible for
a brief moment, without taking damage.

Figure 3. MorphWing screenshot, presenting a spawned item (Speed Up) and
some types of enemies.

MorphWing has four different types of enemies and a
maximum of four enemies can be on the player’s screen at
the same time. The characteristics and behavior of each type
of enemy are as follow:

o Straight: moves on a straight direction until it reaches
the other side of the screen, disappearing afterwards.

o Chaser: chases the player by moving towards him, caus-
ing damage until destroyed.

o Boomerang: after appearing from a random corner of
the screen, moves straight for a moment, stops, shoots
4 bullets in the up, down, left and right directions, and
moves back toward its spawn point, disappearing when it
reaches its spawn point again. As just one enemy of this
type is on screen, we called time to prepare the interval
for this enemy to shoot. Higher interval means the player
has more chance to hit it.

« Round Shooter: after appearing from a random corner
of the screen, moves straight for a moment, stops, then
shoots bullets clockwise in 8 directions on a circular
pattern, starting by the top.

In addition to the enemies, MorphWing also spawn items
that can cause negative or positive effects to the player. These
items, after spawned, disappear after some time if they are
not collected by the player. In total, up to three items can be
presented on the screen simultaneously. The items available are
Damage Up and Damage Down, that temporarily increases or
decreases the players damage output, respectively, and Speed
Up and Speed Down that temporarily increases or decreases
the players movement speed, respectively.

XVII SBGames — Foz do Iguagu — PR — Brazil, October 29th — November 1st, 2018

B. Balancing Model

Considering the mechanics of the MorphWing game, a
dynamic balancing model should consider changing enemies’
parameters such as their speed and damage inflicted to the
player. However, it must be made in a way that the user
does not perceive it. Considering the behavior of each type of
enemy in the game, Table I presents the characteristics that can
be changed by our dynamic balancing model during the game.
MorphWing uses the default balancing values (Def. column)
when the model is not used. When using the dynamic balance
model, the range for each characteristic is described by Min
and Max columns.

TABLE 1. ENEMIES CHARACTERISTICS THAT ARE CHANGED ALONG THE

GAME, WITH THEIR DEFAULT (DEF.), MINIMUM (MIN.), AND MAXIMUM
(MAX.) VALUES.

Enemy Characteristic = Def. Min. Max.
Straigh Velocity 1.70 1.02 4.59
Chaser Health f.’oinl 5.00 3.60 8.50
Velocity 0.70 0.51 1.19

Boomerang Time to Prepare 0.80 0.28 2.04
Bullet Speed 500 1.75 1275

Round Bullet Cooldown 0.70 0.60 1.33
Bullet Speed 5.00 225 9.50

In our model, the characteristics presented in Table I
changes based on a unique balance factor for each enemy,
through a linear function described as Equation 1,

Fbfy=m+ (n—m)=*bf ()

where m and n are the minimum and maximum values
presented in Table I, respectively, and bf is the balancing
factor (ranging from 0.0 to 1.0). The dynamic balancing model
is responsible for choosing the best bf according to the current
player’s skill.

We employ Algorithm 1 to find a balancing factor for each
enemy type. In our model, each type of enemy possesses
a corresponding numerical identifier (enemyld). In order to
retrieve the performance of each enemy type against the
player, we first retrieve the number of times that each type of
enemy hit the player (function enemyHits()). Additionally,
we retrieve the number of times each enemy tried to attack
the player (function enemyAttacks()). With both values, we
can calculate the hit rate of that enemy and understand how
effective this type of enemy can cause damage to the player.
BinG uses this hit rate value to increase or decrease the
difficulty of this enemy for the next session. We use the
function balance Factor() to count for the intrinsic mechanics
each enemy presents in order to weight this hit rate value. We

411

SBC — Proceedings of SBGames 2018 — ISSN: 2179-2259

can increase the difficulty of certain types of enemies faster
than others, because they are inherently easier. The same is
applied to the opposite situation: in the case of a specific
enemy type not causing damage to the player, BinG uses
the (missHit()) function that slightly increases its balancing
factor to make it more challenging. Finally, it is important
to state that a calculated balance for each type of enemy is
applied for all its balancing characteristics presented in Table
L

Algorithm 1: Finding an enemy balancing factor.

Data: enemyld

Result: enemyBalance

if enemyAttacks(enemyID) > O then

eHits = enemyHits(enemyID);

eAttacks = enemyAttacks(enemyld);

hitRate = 1 - (eHits / eAttacks);

enemyBalance = hitRate * balanceFactor(enemyID);

else

enemyBalance = missHit(enemyID) *
balanceFactor(enemyID);

end

As presented in Section III, data being interchangeable be-
tween a logical (Prolog) and procedural (Python) programming
language is one of the keys of BinG, allowing it to extract
the best of each paradigm depending on the desired task. In
Algorithm 1 both enemyAttacks() and enemyHits() func-
tions use logical programming (Prolog) for retrieving these
values. As explained in Section III, relationships (activities)
performed by each element in the game are automatically
represented as facts. Besides, rules evaluated automatically
for each vertex by BinG can be created during the dynamic
balancing model definition through a schema. In our case,
some of the facts and rules used are described in Listing 1.
In this case, some rules describe the context of each vertex in
the data provenance in Listing 1. Additionally, we defined two
rules to be used during dynamic balancing. In fact, the func-
tion enemyAttacks(enemylID) (implemented in Python) in
Algorithm 1 uses the rule enemyAttack(ENEMY ID) (im-
plemented in Prolog), by counting the total of vertex returned
by this rule.

o)

% Facts from
hit (vertexl,
hit (vertex3,
hit (vertex4,

relationships
vertex2) .
vertexl) .
vertexl) .

o)

% Automatic Rules

vertexType (vertex3,
vertexType (vertex2,
vertexType (vertexl,

straight) .
chaser) .
round) .

XVII SBGames — Foz do Iguagu — PR — Brazil, October 29th — November 1st, 2018

Computing Track — Full Papers

vertexType (vertex4, straight).

% Manual Rules

beingHit (X, Y) :- hit (Y, X).

enemyAttack (ENEMYID) :—- setof (Y,
— (vertexType (X, player),
— beingHit (X,Y),vertexType (Y, ENEMYID)),
— OUT) .

Listing 1: Example of logical programming used by our
dynamic balancing model.

Besides the harm that enemies can cause to the player, the
types, amount, and distance of the items in relation to the
player can contribute to the player’s performance. If the item
is spawned using a random position where the player is unable
to reach until the item disappears, then it becomes useless. In
addition, randomly selecting an item to be spawned can also
be useful for the player depending on the actual state of the
game. In order to avoid such problems, we also implemented
the process for spawning items using the dynamic balancing
model. The Algorithm 2 describes how we can perform such
dynamic balancing for the items.

Algorithm 2: Item spawn through dynamic balancing.

Data: playerPosition
Result: item

foreach item € ItemTypes do

foreach enemy € EnemyTypes do
rate = hitRate(enemy);
item.distance += rate * itemWeight(item.type,
enem.typey);
end
item.probability = defaultChance(item.type) *
item.distance ;

end
item = weightProbability(items);

The dynamic balancing for the items uses the items’ dis-
tance to the player as well as the type of the item to be
spawned. Each type of item spawns in a certain distance
relative to the player’s current position, considering a mini-
mum (1 unit radius) and maximum (5.1 units radius) distance.
The distance is defined by the relation that the spawned
item had with helping the player overcome specific enemies
(function itemWeight()), and the current difficulty values of
the enemies (function hitRate()). If an enemy’s difficulty is
currently high and the spawned item helped dealing with this
enemy, then the item will start appearing farther from the
player to maintain the challenge against this type of enemy.
For example, the function itemWeight() for the item that
increases the player’s speed is higher for Chaser enemy, as
it allows the player to move fast and evade this kind of

412

SBC — Proceedings of SBGames 2018 — ISSN: 2179-2259

enemy. When using default balancing, the items are randomly
spawned in any position on the game field.

In addition to the distance, each item type has its spawn
frequency determined dynamically during the game. Items that
helped the player against a certain type of enemy have a higher
probability to be spawned as soon as the level of difficulty of
the enemy increases. That means, when an item is going to
be spawned, its type is calculated based on the actual level
of difficulty of all kinds of enemies. So, the probability of
spawning an item is represented by its default chance to be
spawned weighted by the level of difficulty for all enemies.
At the end, we calculate the item to be spawned (function
weight Probaility()), leading to higher frequency for the ones
with higher probability.

Finally, our dynamic balancing model also changes the ef-
fectiveness of the player’s weapon shot according to Equation
2.

_
(bhy % bf * L

time

Dmg, = (2)

, where h,, and bh,, represent the number of times the player
hit and were hit by an enemy.

The damage that the player’s weapon inflicts is changed
along the sessions based on the amount of times their shots
hit an enemy during the last session by the duration of the last
game, in seconds. In conclusion, the effectiveness of player’s
weapon is changed according to their rate of hits over time
based in the last session performance. The higher the rate, the
lesser the damage, and vice-versa. The damage varies from 0.7
to 2 points of damage, being 1 point of damage the default
value.

V. MATERIALS AND METHODS

We are interested in knowing how the level of difficulty im-
pacts in the player’s performance during the game, considering
the default and dynamic balancing. For this, we used the game
and the model described in Section IV to evaluate how BinG
can be used for performing dynamic balancing. Our evaluation
is focused on answering the following research questions:

RQI: How is the overall impact in the player’s perfor-
mance when using dynamic balancing?

RQ?2: Does the balancing factor changes across sessions
in terms of enemy’s difficulty?

RQ3: Does adjusting the player’s damage based on
his/her current skills contributes to his/her performance?

RQ4: Does the usage of dynamic balancing for items
contributes to the player’s performance?

In order to answer these questions, we conducted an
experiment with participants having different game abilities
and skills to see their performance while using the game’s
default balancing and BinG’s dynamic balancing. To ease
the analysis, we chose to call BinG between sessions for
performing dynamic balancing. The experiment was conducted

XVII SBGames — Foz do Iguagu — PR — Brazil, October 29th — November 1st, 2018

Computing Track — Full Papers

with 5 participants (named P1-P5) who have never played
MorphWing before. Table II shows the general demographic
of the participants.

TABLE II. PARTICIPANTS’ CHARACTERISTICS.

Participant Classification Play / Week Gender
Pl Don’t Know <1 hour M
P2 Median <1 hour M
P3 Don’t Know 3 - 4 hours M
P4 Hard Core >7 hours M
P5 Casual <1 hour F

Participants were instructed on the overall experiment setup
to get their (informed) consent. The following step of the
experiment involves giving instructions to each of the par-
ticipants, explaining about the enemies in the game and
their behavior, as well as the items and their effects. We
also answered any questions that came out during this step.
Subsequently, the player had the chance to play the game once
in order to understand its mechanics. After this first session,
we asked the participant to play the game six times using the
default balancing, which were considered for the evaluation.
After giving a break of two hours for letting the participant
to rest, we asked the participant to play the game for seven
times with the dynamic balancing activated. As the dynamic
balancing occurs at the end of the session, the first session is
used as a training session to initialize the model, being the
last six sessions considered for the evaluation. We used six
sessions in order to get more data samples without tiring so
much the participant.

It is important to state that, in order to avoid bias, the
participant was unaware of the balancing used during the
sessions (default or dynamic balancing). Finally, we conducted
an exit interview with each participant. Enemies and items
spawn point, as well as the number of enemies by type,
have been fixed across all the sessions during this experiment
to avoid bias due to random enemy and spawn point item
location. Their types and effects were also fixed.

VI. RESULTS

Here we present our evaluations results structured around
our research questions.

A. How is the overall impact in the player’s performance when
using dynamic balancing?

We choose to consider how long the participant lived as
well as his/her score in order to verify the impact of dynamic
balancing over the participant’s performance. As six sessions
are being considered during the experiment (for default and
dynamic balancing), we calculated the average time and score
for each participant as well as their standard deviation. The
results are presented in Table III.

According to Table III, the default balancing presents
a high variation for both time (column 7'%me) and score
(column Score) among the participants. For instance, P3 was
the participant that survived the longest in the game (157.01
seconds), leading to the highest score (35,755.00 points).

413

SBC — Proceedings of SBGames 2018 — ISSN: 2179-2259

On the other hand, P1 was the participant that survived the
less (28.80 seconds), achieving the smallest score (4,299.17
points). The difference between times is 128.21 (157.01 -
28.80) seconds, while for the score is 31,465.83 (35,765.00
- 4,299.17) points. In fact, just two participants (P2 and P3)
had an average time above the mean, while just P3 had the
score above the mean. By looking at Table III, it is possible
to state that P3 is the participant with the highest skill among
the participants. In fact, when asked about the difficulty of the
game for P3, he scored it as too easy.

On the other hand, when considering the usage of BinG
for dynamic balancing, another behavior emerges. First of
all, it is possible to see in Table III that the average time
is almost half of the one resulted from the default balancing
and score. Additionally, the difference between the highest
and lowest values are 36.76 (62.97 - 26.21) seconds and
9,059.17 (13,214.17 - 4,155.00) points for time and score,
respectively. P3 continues as the most skilled participant in the
game but now it does not diverge too much from the others,
as the difference from him to P4 (the second most skilled
participant) was 19.74 seconds and 4,245.84 points for time
and score, respectively. Based on this result, it is possible to
observe that the game increased the level of difficulty for P3.
In fact, when asked about the difficulty of the game using
the dynamic balancing, P3 scored it as medium in terms of
difficulty. Based on the premise stated in the beginning of this
paper that players gets better across the time, our model fulfills
the criteria of increasing the game difficult instead of make it
more easier. The model can also facilitate the game, according
to the developer desires, but it goes beyond the scope of this

paper.

TABLE III. PARTICIPANTS’ TIME LIVED AND SCORE PERFORMANCE FOR
DEFAULT AND DYNAMIC BALANCING.

Default Balancing Dynamic Balancing

Fu g Time Score Time Score
Pl 28.80 4,299.17 26.21 4,155.00
P2 69.46 14,118.33 35.21 6,871.67
P3 157.01 35,765.00 62.97 13,214.17
P4 48.52 13,030.83 43.23 8,968.33
P5 30.13 5,030.83 28.28 4,949.17
Average 66.78 14,448.83 39.18 7,631.67
Std. Dev. 59.48 14,452.25 23.58 5,610.79

In Figure 4, it is possible to see the answer of the partic-
ipants about their perception of the difficulty for default and
dynamic balancing (where 1 is too easy and 5 to hard). It
is possible to see that neither of the participants found the
game to be too easy after playing with the dynamic difficulty
balancing. On the other hand, their perception of difficulty
increased for P2, P3, and P4, being the same for P1 and
P5. This is an indication of a possible tweak needed in our
model in order to keep it at a medium difficulty. Finally, one
interesting aspect to notice is that, according to Table II, P3
and P1 did not know his classification. Although, P3 was the
most skilled participant, achieving the best time and score,
possibly being classified as a hardcore player. In contrast, P1
was the worst for both time and score.

XVII SBGames — Foz do Iguagu — PR — Brazil, October 29th — November 1st, 2018

Computing Track — Full Papers

B Default
@ Dynamic

Level of Difficulty

P1 P2 P3 P4 PS5
Participant

Figure 4. Perception of default and dynamic balancing difficulty by the
participants.

B. RQ2: Does the balancing factor changes across sessions
in terms of enemy’s difficulty?

Besides investigating the time and score variation from
default to dynamic balancing, it is also important to understand
how this balancing factor varied across the sessions. Table IV
presents the Kill Rate (KR) by each type of enemies for the
default and the dynamic balancing, considering all sessions
of a participant. The KR is defined as enemies killed per
enemies spawned. It is possible to observe that the Chaser
enemy is the one that had the highest kill rate among the
participants. P3, for instance, reached almost 100% of kill rate.
The dynamic model implemented for BinG could detect this
unbalance and increased the difficulty for this type of enemy
accordingly, changing the enemies’ characteristics. In fact, it is
also important to remember that, besides changing the enemy’s
characteristics parameters, the damage caused by the player’s
weapon is also slightly changed, as described in Section I'V-B.

On the other hand, the opposite (i.e., enemies becoming
easier) can also be observed on Table IV. When looking at
P1, the kill rate for both Straight and Round enemies have
increased from 0.26 to 0.32 and from 0.44 to 0.71, respectively.
It is important to remember that the total of enemies spawned
by each type for both default and dynamic balancing was
the same. In fact, when looking for the total kill rate for all
enemies for both default and dynamic balancing, they are very
close to each other. It indicates that, in general, the difficulty
of the whole game using default and dynamic balancing stays
the same.

Figure 5 presents this variation along the six sessions for
the lowest (P1) and highest (P3) score participant in order to
see how the balance factors change along time and influences
the player. When looking at Figure 5(a), it is possible to
observe that at the first session, P1 was only able to kill Chaser
enemies (a 100% kill rate), having difficulty to deal with the
other kind of enemies. It indicates that this participant had no
skill to deal with the behavior presented by the Straight, Round
and Boomerang enemies as their kill rate were zero. Based on
this observation, our proposed dynamically balancing model
started to decrease the Boomerang and Straight enemies level
of difficulty. However, in order to not increase so much
the game difficulty, the Chaser difficulty stayed almost as
the same. Based on this new parameters for the difficulty,

414

SBC — Proceedings of SBGames 2018 — ISSN: 2179-2259

Computing Track — Full Papers

TABLE IV. PARTICIPANTS’ PERFORMANCE ON KILLING ENEMIES (KILL RATE) FOR DEFAULT AND DYNAMIC BALANCING.

Default Balancing

Dynamic Balancing

Participant Straight Chaser Boomerang Round Straight Chaser Boomerang Round
Kill Rate Kill Rate
Pl 0.26 0.78 0.23 0.44 0.32 0.72 0.19 0.71
P2 0.63 0.96 0.37 0.90 0.65 0.89 0.41 0.77
P3 0.73 0.98 0.44 0.98 0.59 0.95 0.30 0.90
P4 0.79 0.96 0.32 0.87 091 0.87 0.38 0.81
P5 0.64 0.76 0.13 0.59 0.57 0.71 0.25 0.83
Total 3.05 4.4 1.49 3.78 3.04 4.14 1.53 4.02

entage Variation

Dynamic difficulty balancing for enemies in P1’s sessions.

++®: s Straight Difficulty **®Ch

et Straight KR

(b) Dynamic difficulty balancing for enemies in P3’s sessions.

Figure 5. Dynamic difficulty balancing for enemies. KR states for kill rate.

in session two P1 was able to deal more easily with the
Straight enemies. In fact, P1 even increased the kill rate for
the Round enemies. Based on this, we observed that keeping
the difficulty for Boomerang and Straight enemies highly
impacted the performance of this participant in the whole
game. This observation happened again when BinG slightly
increased the difficulty for the Straight enemy, as even BinG
constantly increased the difficulty for the Round enemy, the
amount of enemies killed in session three decreased. Besides
that, it is possible to observe a direct relationship between the
performance of P1 when changing the difficulty of Boomerang
enemy. A slightly increase on its difficulty clearly impacted
on the performance of the participant for this type of enemy.
On the other hand, both Round and Chaser enemies were
not highly impacted by changing its difficulty even when
increasing or decreasing the difficulty for Straight enemy. It is
important to notice that this kind of analysis cannot be done by
just looking at the numbers of enemies killed. The provenance
information of cause-and-effect relationships that is used by
BinG is a key feature for achieving such result.

For P3, in Figure 5(b), the chart is completely different. As
this participant was the most skilled one, the difficulty for all
types of enemies had a high variation from session to session,
but a tendency to increase (see the decreasing slope in most

XVII SBGames — Foz do Iguagu — PR — Brazil, October 29th — November 1st, 2018

of the curves). Using the data collected in the first session,
it was possible to see that Chaser and Round enemies were
the easiest for P3, achieving a kill rate of 100% and 83%,
respectively. In this case, in order to be challenging to the
player, these enemies increased their difficulty abruptly from
the first to the second session. On the other hand, P3 had
difficulty when dealing with Boomerang and Straight enemies,
leading to a decrease in their difficulty. Based on this new
balancing parameter for Boomerang and Straight, P3 had a
hard time for killing them, as observed in session 3. On the
other hand, his kill rate for both Chaser and Round enemies
increased. In fact, it is possible to conclude that difficulty
changes for Boomerang and Straight enemies highly impacted
in P3’s kill rate, meaning they had a tidy relationships over
the P3’s performance when they were together. In this case,
reaching a challenging game for this participant involves
changing the Boomerang and Straight enemies’ difficulty.
This analysis clearly shows that achieving balancing for
different players involves changing different parameters for the
same game. The reduced standard deviation found in Table III
for dynamic balancing in relation to default balancing is based
on lowering and increasing the enemies’ level of difficulty. It
is important to state that we only performed enemy’s dynamic
balancing using just six sessions. We believe that increasing
the number of sessions tends to reach an equilibrium state
for these balancing factors, reducing even more the standard
deviation. This hypothesis is subject of future work.

C. RQ3: Does adjusting the player’s damage based on his/her
current skills contributes to his/her performance?

As presented before, our balancing model also changes the
player’s weapon damage based on how well the participant
is at hitting the enemies. In this case, slightly changing the
effectiveness of the player’s weapon damage output would
contribute to increase the performance of the participant with-
out letting him know that the game is helping him/her. In
Figure 6, it is possible to see the variation of the effectiveness
of the damage caused by the player’s weapon along the six
sessions for each participant. It is important to notice that there
is a high variation in this damage between sessions for P1
and PS5 in relation to the others. For instance, the player’s
weapon damage changed from 1 in session 1 to 2 in session
4. This indicates that this participant was having troubles
with defeating the enemies. In fact, according to Figure 7,
that shows all enemies kill rate for each participant across

415

SBC — Proceedings of SBGames 2018 — ISSN: 2179-2259

all sessions, it is possible to see a decreasing kill rate from
session 1 to session 2. On the other hand, when looking at
P1, he started the game with the lowest kill rate, leading to a
high increase at his weapon damage.

2,5

2 Ps o o

_—

Bullet Damage

0,5

Session 1 Session 2 Session 3 Session 4 Session 5 Session 6

a-a@ump | P2 e=@mmp3 P4 e=@mmps

Figure 6. Participant’s bullet damage variation across sessions.

0,8
0,7 ‘\

Kill Rate
o
”

Session 1 Session 2 Session 3 Session 4 Session 5 Session 6

-—t—p P2 emBmmp3 P4 emumps

Figure 7. Participant’s kill rate for all enemies across the sessions.

One important fact to observe is that, although there is a
high variation on the weapon damage among the participants
in Figure 6, their kill rate almost converged. When looking at
Figure 7, a high variation on the kill rate for each participant is
observed in session 1. At the end, in session 6, this difference
is much smaller, indicating they are converging, even when
each one had different skills. Giving the same opportunities
for players with different skills is one of the key factors during
balancing a game.

D. RQ4: Does the usage of dynamic balancing for items
contributes to the player’s performance?

Finally, the items available during the game can contribute
greatly for the performance of the participant. Depending on
the challenges the participant is facing, it is important to spawn
the most indicated item that could help him/her to overcome
the obstacles. In addition, spawning an item that cannot be
reached by the player makes it useless. Table V shows the
total of items spawned and items collected, by minute, for each
participant considering all sessions using default and dynamic
balancing. From Table III, P1 is the participant which survived
less in comparison with the other participants when using both
default and dynamic balancing, making him an appropriate

XVII SBGames — Foz do Iguagu — PR — Brazil, October 29th — November 1st, 2018

Computing Track — Full Papers

candidate to be helped. However, the frequency of items that
cause negative effects to the player (Damage Down and Speed
Down) is almost the same as the positive ones (Damage Up
and Speed Up) for the default balancing. On the other hand,
when using the dynamic balancing, the number of negative
items spawned decreased, while the number of positive items
increased in order to lower the game difficulty. In addition,
neither of these negative items have been collected by the
participant in the dynamic balancing as they were spawned
farther from the player.

On the other hand, when looking at P3, the participant
who lived longer according to Table III, a high number of
positive items had been spawned, contributing even more for
this participant to stay alive longer. In this case, in order
to challenge this participant, the number of positive items
should be lowered. It is what happened when looking at
spawned items during the the dynamic balancing sessions.
The number of positive items spawned decreased by almost
half of the initial value. Additionally, the number of Speed
Up items increased, indicating this participant was having
problem for dodging enemies. During the analysis process,
BinG concluded that he was a skilled player at killing enemies
so the effectiveness of his damage had been lowered by this
item.

VII. THREATS TO VALIDITY

Normally, players get better in a game as they play it. Thus,
a threat to validity is related to players playing all the sessions
in the same day from both the Default and Dynamic balancing
in sequence. In order to mitigate some bias toward learning”
the game, we changed the order of the experiments (Default
and Dynamic) with some participants. Another possible threat
is related to when the dynamic balancing occurred, which was
only before a game session started and not in real time. This
did not allow BinG to adapt during a game session or try to
correct its initial assumptions on the fly for that game session
and only after it concluded.

Finally, the low number of participants in the experiment
can also be viewed as another threat. However, we tried to
compensate this by performing a detailed analysis of the data.

VIII. CONCLUSION AND FUTURE WORK

This paper presented BinG, a framework for performing
dynamic balancing in games using logical programming. Our
framework facilitates the process of detecting balancing is-
sues and acts appropriately in real time through a pluggable
balancing model. Moreover, we showed how this balancing
model could be developed and used in a game developed from
scratch. Besides that, we analyzed how dynamic balancing
influences the player’s performance based on a study with
five participants, who played the game using the default game
difficulty and the dynamic balancing. This analysis has been
guided by understanding how the participant’s performance
varies when changing the entities behavior characteristics in
the game. At the end, we showed that using dynamic balancing
tends to give more opportunities for participants with lower

416

SBC — Proceedings of SBGames 2018 — ISSN: 2179-2259

Computing Track — Full Papers

TABLE V. FREQUENCY OF ITEMS SPAWNED | COLLECTED BY MINUTE FOR EACH PARTICIPANT USING DEFAULT AND DYNAMIC BALANCING.

Default Balancing

Dynamic Balancing

Participant Damage Damage Speed Speed Damage Damage Speed Speed
Up Down Up Down Up Down Up Down

Pl 243]1.04 1.74]035 208[1.39 2.08]0.00 4961229 0.38]000 3.05]153 0.38]0.00

P2 230 | 1.87 230|043 259|216 2.45]0.00 369|341 0.00]0.00 4.83]|4.26 0.57|0.00

P3 461|461 185|045 210|191 3.25]0.70 2291207 095]0.00 381]334 0.64]0.00

P4 3.09 | 2.89 227|0.62 1.44]1.03 2.68|0.82 3.01 278 0.46]0.00 532463 0.69|0.00

P5 1.33 | 1.33 2.66|0.00 3.65|299 1.33]0.33 283248 0.71]0.00 3.89|3.54 1.41]0.00

skills, reducing the average survival time and achieved score.
In addition, we found less standard deviation over these
parameters when compared to the default balancing.

BinG allows the usage of different balancing models as
desired by developer. However, we envision a way that players
themselves choose the desired balancing model as an extended
option for difficulty selection. In this case, instead of using
statically defined parameters for the available levels of difficult
in the game, the player can indicate how the difficulty should
increase dynamically through BinG.

We are currently working on expanding the schema file,
allowing more complex rules to be extracted automatically.
In addition, we are also researching a way to couple machine
learning in BinG to detect patterns during a game session. The
detected patterns could be available to be used by the dynamic
balancing model. Furthermore, we are also implementing a
tool to allow a real time simulation of the balancing model.
We believe this tool can easy the process of validating the
balancing model parameters in a faster way, without the
necessity to run the game every time for testing the model.

ACKNOWLEDGMENT

The authors would like to thank CAPES, NVidia, CNPq,
and FAPERJ for the financial support.

REFERENCES

[1] J. Gregory, Game Engine Architecture, Second Edition. CRC Press,
2014.

[2] L. Jacob, E. Clua, and D. de Oliveira, “Oh gosh!! why is this game so
hard? identifying cycle patterns in 2d platform games using provenance
data,” Entertainment Computing, vol. 19, pp. 65 — 81, 2017.

[3] J. P. Davis, K. Steury, and R. Pagulayan, A survey method for assessing

perceptions of a game: The consumer playtest in game design. Game
Studies 5, 2005.
[4] J. Schell, The Art of Game Design: A Book of Lenses. =~ Morgan

Kaufmann Publishers, 2008.

[5] T. G. Hallam, “David g. luenberger: Introduction to dynamic systems,
theory, models, and applications. new york: John wiley & sons, 1979,
446 pp,” Behavioral Science, vol. 26, no. 4, pp. 397-398, 1981.

[6] R. Hunicke, “The case for dynamic difficulty adjustment in games,”
in Proceedings of the 2005 ACM SIGCHI International Conference on
Advances in Computer Entertainment Technology, ser. ACE °05. New
York, NY, USA: ACM, 2005, pp. 429-433.

[7]1 G. Hawkins, K. Nesbitt, and S. Brown, “Dynamic difficulty balancing
for cautious players and risk takers,” Int. J. Comput. Games Technol.,
vol. 2012, pp. 3:3-3:3, Jan. 2012.

[8] O. Missura and T. Girtner, “Predicting dynamic difficulty,” in Advances
in Neural Information Processing Systems 24, J. Shawe-Taylor, R. S.
Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger, Eds. Curran
Associates, Inc., 2011, pp. 2007-2015.

[9] L. J. F. Prez, L. A. R. Calla, L. Valente, A. A. Montenegro, and
E. W. G. Clua, “Dynamic game difficulty balancing in real time using
evolutionary fuzzy cognitive maps,” in 2015 14th Brazilian Symposium
on Computer Games and Digital Entertainment, Nov 2015, pp. 24-32.

XVII SBGames — Foz do Iguagu — PR — Brazil, October 29th — November 1st, 2018

[10] J. K. Olesen, G. N. Yannakakis, and J. Hallam, “Real-time challenge
balance in an rts game using rtneat,” in 2008 IEEE Symposium On
Computational Intelligence and Games, Dec 2008, pp. 87-94.

F. Mourato, F. Birra, and M. P. dos Santos, “Difficulty in action
based challenges: Success prediction, players’ strategies and profiling,”
in Proceedings of the 11th Conference on Advances in Computer
Entertainment Technology, ser. ACE "14. New York, NY, USA: ACM,
2014, pp. 9:1-9:10.

A. Rietveld, S. Bakkes, and D. Roijers, “Circuit-adaptive challenge
balancing in racing games,” in 2014 IEEE Games Media Entertainment,
Oct 2014, pp. 1-8.

T. C. Kohwalter, F. M. de Azeredo Figueira, E. A. de Lima Serdeiro,
J. R. da Silva Junior, L. G. P. Murta, and E. W. G. Clua, “Understanding
game sessions through provenance,” Entertainment Computing, vol. 27,
pp. 110 — 127, 2018.

L. B. Jacob, T. C. Kohwalter, A. F. V. Machado, E. W. G. Clua, and
D. d. Oliveira, “A non-intrusive approach for 2d platform game design
analysis based on provenance data extracted from game streaming,” in
Proceedings of the 2014 Brazilian Symposium on Computer Games and
Digital Entertainment, ser. SBGAMES ’14. Washington, DC, USA:
IEEE Computer Society, 2014, pp. 41-50.

T. Kohwalter, E. Clua, and L. Murta, “Provenance in games,” in
Proceedings of the 2012 Brazilian Symposium on Computer Games and
Digital Entertainment, 2012, pp. 162-171.

T. C. Kohwalter, E. G. Clua, and L. G. Murta, “Game flux analysis with
provenance,” in /0th International Conference on Advances in Computer
Entertainment - Volume 8253, ser. ACE 2013. New York, NY, USA:
Springer-Verlag New York, Inc., 2013, pp. 320-331.

C. Chandler and L. Noriega, “Games analysis how to stop history
repeating itself,” in WSEAS International Conference on Multimedia,
Internet & Video Technologies, 2006, pp. 47-52.

M. Csikszentmihalyi and I. S. Csikszentmihalyi, Optimal Experience:
Psychological Studies of Flow in Consciousness. Cambridge University
Press, 1992.

T. J. Tijs, D. Brokken, and W. A. Ijsselsteijn, “Dynamic game balancing
by recognizing affect,” in 2Nd International Conference on Fun and
Games. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 88-93.

R.J. V. d. Medeiros and T. F. V. d. Medeiros, “Procedural level balancing
in runner games,” in 2014 Brazilian Symposium on Computer Games and
Digital Entertainment, Nov 2014, pp. 109-114.

J. Freire, D. Koop, E. Santos, and C. T. Silva, “Provenance for com-
putational tasks: A survey,” Computing in Science and Engg., vol. 10,
no. 3, pp. 11-21, May 2008.

“Unity: Game development tool,” http://unity3d.com/, accessed: 2017-
01-20.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

417

