
Automated Tests for Mobile Games: an Experience Report

Gabriel Lovreto, Andre T. Endo, Paulo Nardi
Department of Computing

Federal University of Technology - Parana
Cornelio Procopio, Brazil

gabriel.lovreto@gmail.com, {andreendo,paulonardi}@utfpr.edu.br

Vinicius H. S. Durelli
Department of Computer Science

Federal University of Sao Joao del Rei
Sao Joao del Rei, Brazil

durelli@ufsj.edu.br

Abstract—As mobile gaming is an ever-growing, competitive
and profitable market, there has been an increasing demand
for better quality in video game software. While manual testing
is still a common practice among mobile game developers,
some repetitive and error-prone tasks could benefit from test
automation. For instance, test scripts that perform sanity
checks of the proper functioning of a mobile game would be
desirable in an ecosystem with constant hotfixes and updates,
as well as a diverse set of configurations (e.g., device hardware,
screensizes, and platforms). In this context, this paper reports
an experience on developing automated test scripts for mobile
games. To this end, we randomly selected 16 mobile games,
from different genres, among the popular ones from the Google
Play Store. For each game, test scripts were developed using the
Appium testing framework and the OpenCV library. Based on
our results, we provide an in-depth discussion on the challenges
and lessons learned.

Keywords-Mobile Apps; Software Testing; Mobile Games;
Video Game Software; Test Cases

I. INTRODUCTION

The videogame market is growing at a rapid rate in what
has already become a billionaire business. In particular,
games for mobile devices have received special attention.
Newzoo’s global market research [1] reports a 29% market
share for phone games and 10% for tablets in 2016, while
consoles and PC had around 32% and 30%, respectively.
The same source predicts that the share of phone and tablet
games will be responsible for 50% of the market. The
videogames developed to run in such devices as smartphones
and tablets are known as mobile games. As mobile games
are also apps, they are distributed to the end-users by means
of well-known app stores like Google Play (for Android
devices) and Apple App Store (for iOS devices). Besides
distribution, these app stores also provide means for players
to rate the game, write reviews, and receive updates/bug-
fixes. This ecosystem brings a high level of competition
(e.g., by the presence of game clones) and a constant
demand for better quality and user experience. Moreover,
the presence of bugs can negatively impact the game’s rating
score and, as a consequence, affect its downloads [2], [3].

When developing games, as with any software, testing
is one of the important aspects involved in guaranteeing
product quality [4]. Game testing is mostly manual and,

as such, depends on several human testers. This scenario
presents not only high time and human resource costs,
but also introduces the potential for human error. This is
corroborated by Whittaker [5], when he argues that manually
applying test scenarios is labor-intensive and error-prone.

As games get more popular and complex, testing them
becomes a key challenge. Lin et al. [6] argue that even
the most popular games in the market show signs of lack
of proper testing. When Alemm et al. [4] uncovered that
most companies still follow manual testing procedures with
disregard for formal testing methods, they also pointed out
that proper testing was one of the most important factors
in creating a successful game. Khalid et al. [7] argue that
mobile game development is a very complicated area in
regard to platforms (especially Android), as there can be
up to a hundred or more different devices running, or trying
to run a game. Manual testing for that many devices is not
only a very difficult task but also costly.

There is an extensive body of knowledge on mobile app
testing; see Zein et al. [8] for a comprehensive literature
review. While there exists a particular interest in test automa-
tion [9]–[11], such initiatives are focused on general-purpose
apps and not mobile games. If automated test scripts were
to be introduced into the mobile gaming development, they
could create an economy, or at least a better distribution,
of human resources. Instead of relying on several human
testers for repetitive technical tasks, test scripts could be
developed to automate such tests. This would, in turn, let
the testers be employed to human experience-related tests,
such as game balance1 testing. While some tests would
benefit from an automated script (avoiding human error), the
player experience would be too difficult to be properly tested
automatically as the game can present too many variables
and not one exact “correct” result. Therefore, automated
tests can bring several benefits, like better verification of
hotfixes and updates [6], and cheaper sanity checks2 in
several configurations (varying device hardware, screensize,
platform, and so on) [7].

1Essentially, how “fair” a game is to its players.
2Sanity tests are employed to exercise parts of the application under test

to determine its basic and proper functioning.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 399

This paper reports an experience on automating test cases
for mobile games. We randomly selected 16 free games
among the most popular ones in the Google Play Store. In
order to have a diverse set, each game is from a different
genre. For each game, we followed a pragmatic procedure to
design, configure, code, and run test scripts. Such procedure
is based on Python scripts, the GUI testing framework
Appium, and the computer vision library OpenCV. Finally,
we also elicit and discuss the challenges involved, as well
as the lessons learned.

This paper is organized as follows: Section II presents
the background. Section III discusses the related work.
Section IV reports the study configuration and adopted tools.
Section V analyzes the results and presents the lessons
learned. Finally, Section VI makes the concluding remarks
and sketches future work.

II. BACKGROUND

Mobile gaming, according to Novak [12], can be traced
all the way back to the first portable consoles released
in the market by Mattel. As mobile devices like smart-
phones and tablets have become increasingly popular, they
have overtaken portable gaming consoles in Market share.
Hsiao et al. [13] mention the complexity of current mobile
games and the growth of in-app purchases, pointing out
several factors that influence a player’s loyalty to the game.
While several classifications have been proposed in the liter-
ature [12], mobile games are usually classified as the genres
provided by the app stores; some of the genres defined by
Google Play are [14]: action, adventure, arcade, board, cards,
casino, casual, educational, music, racing, RPG, simulation,
sports, strategy, trivia/quizzes, and words.

As any kind of software, companies strive to produce
high quality games and use a variety of techniques to cope
with the complexity involved in developing games. Among
them, Software Testing is essential in ensuring that quality
standards are met and is valuable to decrease the overall
development and maintenance efforts. Software testing can
be summed up as “the process of executing a program with
the intent of finding errors” [15]. Myers et al. [15] also argue
that testing is more than just making sure a program runs as
intended – it is also about adding value to the final product
by virtue of raising its reliability and quality. By finding
errors through program execution, developers are increasing
the inherent value of a given game.

A central element in software testing is the test case. A
test case represents a usage scenario in which the inputs
and expected outputs are defined, as well as the execution
conditions. In this research, test cases are at system level and
focused on graphical user interfaces (GUIs). Such test cases
can be executed manually or in an automatic way. As for
manual testing, a technique usually applied in games is ex-
ploratory testing [4]. Exploratory testing is the combination

of learning, test design, and execution and has a session-
based management [16]. Concerning automation, scripts can
be coded to execute the test cases automatically in the game
under test.

In this research, we implemented the test scripts in Python
using the Appium framework. Appium [17] is an open-
source framework to develop automated tests for mobile
apps. We selected it to test mobile games based on the
following reasons. First, it allows black-box testing without
requiring any internal modifications to the app. Second,
the developer can write test scripts using the well-known
WebDriver API for different mobile platforms (e.g., Android
and iOS). Finally, Appium supports several programming
languages like C#, Java, Python, and so on.
Appium works through a client/server architecture, as it

uses a web server that receives commands from a remote
client and executes them on a mobile device. Figure 1 gives
an overview of its architecture. The Appium Server and test
scripts can be executed in different machines. The target
device could be an emulator or a physical device.

Figure 1. Appium architecture, adapted from [18].

In the following, we discuss some code snippets to show
how to set up a Python client and run a simple test on
an Android device. Figure 2 shows the main configuration
steps. Lines 1-4 import libraries that will be used in the tests,
namely specific Operational System functions (os), sleep
instructions (time), unit testing framework (unittest),
and class “webdriver” from the Appium. Lines 8-15 are the
settings that will be sent to the Appium server so it knows
what platform, device and app to run. Lines 15-17 declare
variable “driver” and connects to the Appium server hosted
at “http://localhost:4723/wd/hub”.

Figure 3 shows a script to automate a test case. Line 1
declares a function that automates a test case. Lines 2-
3 search, through the app’s current GUI elements, for an
element with the accessibility ID ‘Graphics’. Then, it clicks
in it in Line 4. GUI elements are also retrieved in Lines 5-
6, 11-12, 15-17, and 20-22. Expected outputs are verified in
assertions made in Lines 7, 13, and 18. Line 9 performs a
“back” event, essentially emulating the pressing of Android’s

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 400

1 import os
2 from time import sleep
3 import unittest
4 from appium import webdriver
5

6 class SimpleAndroidTests(unittest.TestCase):
7 def setUp(self):
8 desired_caps = {}
9 desired_caps[’platformName’] = ’Android’

10 desired_caps[’platformVersion’] = ’4.2’
11 desired_caps[’deviceName’] = ’Android

Emulator’
12 desired_caps[’app’] = PATH(
13 ’../../../sample-code/apps/ApiDemos/’ +
14 ’bin/ApiDemos-debug.apk’)
15 self.driver = webdriver.Remote(
16 ’http://localhost:4723/wd/hub’,
17 desired_caps)

Figure 2. Python script (setup).

back button.

1 def test_find_elements(self):
2 el = self.driver
3 .find_element_by_accessibility_id(’Graphics’)
4 el.click()
5 el = self.driver
6 .find_element_by_accessibility_id(’Arcs’)
7 self.assertIsNotNone(el)
8

9 self.driver.back()
10

11 el = self.driver
12 .find_element_by_accessibility_id(’App’)
13 self.assertIsNotNone(el)
14

15 els = self.driver
16 .find_elements_by_android_uiautomator
17 (’new UiSelector().clickable(true)’)
18 self.assertGreaterEqual(12, len(els))
19

20 self.driver
21 .find_element_by_android_uiautomator
22 (’text("API Demos")’)

Figure 3. Python script (test case).

III. RELATED WORK

Alemm et al. [4] elicit success factors for mobile game de-
velopment, in which different types of testing are discussed.
By surveying several companies in the mobile games market,
the authors noted that systematic and automated testing
was only a fraction, being ad-hoc and exploratory tests
predominant. Several papers in the literature have focused
on automated testing for games. In general, researchers and
practitioners hope to achieve faster and more scalable tests,
while reducing the human effort on repetitive and error-
prone tasks.

Iftikhar et al. [19] describe a UML-based model for
automated game testing. In particular, the authors aimed to

test platform games, dealing with test case generation, oracle
generation, and test case execution. Parts of the game are
modeled as a state machine; from such a model, test cases
are generated by traversing the state machine. The oracle
is based on system events, especially the ones created as
response to user events. A limitation is that it requires an
extra effort for generating the oracles and test cases (i.e.,
the model), but it has potential to reduce human resources
in the test execution phase.

Lin et al. [6] investigate urgent patches/updates of popular
games. They define an update/patch as urgent when released
outside of the usual schedule or mentioned explicitly as
a hotfix. The authors gathered data from several different
sources for the 50 most popular games on Steam. Not all
hotfixes or urgent patches are released to fix functional bugs
or technical problems; many aim to fix the game balance and
change its rules to create a better playing experience. Among
the functional bugs, they are usually related to crashes and
visual/graphic flaws.

Khalid et al. [7] analyze the most useful reviews for the
99 most popular free Android games. The results show that
reviews came from users using from 38 to 132 different
devices. Such approach could be an important tool in finding
out which device, or devices, generates the lower score
reviews for certain game genres.

Although there exist initiatives for games in general (like
[19]), the testing of mobile games has not received attention
from academia. To the best of our knowledge, this is the first
study that aims to investigate the challenges on developing
automated tests for mobile games. We hope to foster future
initiatives on more replicable and automated tests for mobile
games.

IV. STUDY CONFIGURATION

This study aims to investigate the viability and efficiency
of using automated test scripts for mobile games. We se-
lected Python as programming language for coding the
test scripts run by Appium. We also used UIAutomator
Viewer to inspect UI elements in compatible games and
OpenCV [20] for image recognition and processing.

The Appium API allows to execute the tests in the
connected device, capturing images, performing touch ac-
tions – such as taps or slides –, and finding elements by
the resource-ids (whenever a game was compatible with
UIAutomator). Appium executes as a local server that
connects to the target device, plugged to the computer
through the USB port. Tests were written as Python scripts,
employing specific libraries for Appium and OpenCV.
UIAutomator Viewer was used to inspect the XML

hierarchy of UI elements [21]. From such XML, it is possi-
ble to select special ids used by the Appium API to interact
with UI elements. While this strategy is common in apps in
general, most mobile games do not provide an XML hier-
archy of their UI elements. Therefore, we adopted OpenCV

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 401

template matching to find elements by their similarity with
previously-captured images. The templates are manually-
edited images extracted from screenshots of the game under
test; they represent elements that we intend to interact with
like buttons, characters, items, enemies, and so on. During
the test execution, screenshots of the game are captured
and the templates’ position are determined by processing
images on-the-fly. The OpenCV template matching is done
by ”sliding” the template over the image, comparing the
template with the part of the image underneath it [22]. We
configure the similarity threshold for each game tested.

For this study, we developed a class3 to reduce duplicated
code and improve readability of the test scripts. This class
has three methods: (i) finding matches between two images
(a template and a screenshot), (ii) waiting for loading
screens, and (iii) skipping ads.

First, we selected the 20 most popular free games for
each genre listed in the Google Play Store4. For each genre,
one game was randomly chosen as subject. As we did not
intend to test player to player interaction, multiplayer-only
games were discarded. The study was conducted with 16
mobile games. All games were downloaded through the
North American Google Play Store and tested in a LG G
Pad device running Android version 5.0.2.

Figure 4 shows how we conducted the study for each
game. Initially, we performed exploratory tests in order to
understand the game’s mechanics. Then, we tried to design
two types of test cases, one focused on performing actions
that simulate someone playing (called “game tests”), and
the other aimed to walk through the game’s menus (called
“menu tests”).

After specifying the test cases, we started the steps to
write a test automation script. First, we checked if the game
has an XML hierarchy of UI elements (i.e., compatible
with UIAutomator). If true, Automator Viewer was
used to analyze the screens and extract the UI elements’
ids. Otherwise, screenshots of the game were captured and
templates created. Such resources were organized to be
accessed in the scripts.

A first version of the test script was then coded and
executed. As an iterative process, we went back to re-arrange
the test cases and run again if the results were unexpected.
Otherwise, the results were collected and analyzed and the
workflow started again with the next mobile game.

V. RESULTS AND LESSONS LEARNED

Table I shows the 16 selected games, their genre, number
of downloads and average star rating5. Notice that the games
have many players, most of them have more than 1 million
downloads. Ludo King has over 10 million downloads,

3The code is available at https://github.com/tyrus1235/Appium-OpenCV-
MobileTesting

4As of July 31st, 2017
5Data was collected from Play Store in October 2017.

Figure 4. Workflow of the study.

while titans subway go has the fewest number of
downloads (less than 500,000). The sample has 4.3 stars on
average; titans subway go has the smallest star rating
(3.8), and Piano Kids - Music Songs and Drogo
have the highest values (4.6). Overall, the sample contains
popular games from different genres with a high star rating.

Figure 5 shows how many games were or not compatible
with UIAutomator for testing without templates. Only two
(approximately 12.5%) were compatible with UIAutomator
and 14 games (approximately 87.5%) were not. Most games
are not compatible with UIAutomator because their GUIs
worked “outside” of Android’s layout hierarchy. This means

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 402

Table I
LIST OF SELECTED MOBILE GAMES; DATA OBTAINED FROM GOOGLE PLAY.

Game Name Game Genre Number of Downloads Average Star Rating (0 to 5)
Shoot Hunter-Gun Killer Action 10 000 000 - 50 000 000 4.3

titans subway go Adventure 100 000 - 500 000 3.8
Sonic Boom Arcade 10 000 000 - 50 000 000 4.4
Ludo King Board 50 000 000 - 100 000 000 4.4
Spider Card 10 000 000 - 50 000 000 4.0

Bingo Pop Casino 10 000 000 - 50 000 000 4.2
Cookie Crush Match 3 Casual 10 000 000 - 50 000 000 4.4

Math Games Educational 5 000 000 - 10 000 000 4.2
Piano Kids - Music Songs Music 1 000 000 - 5 000 000 4.6

Moto Rider GO: Highway Traffic Racing 10 000 000 - 50 000 000 4.3
Pony Sisters - Baby Horse Care RPG 1 000 000 - 5 000 000 4.3

Drogo Simulation 1 000 000 - 5 000 000 4.6
Flip Diving Sports 10 000 000 - 50 000 000 4.5

Art of Conquest Strategy 1 000 000 - 5 000 000 4.3
QuizUp Trivia 10 000 000 - 50 000 000 4.3

Word Search Word 1 000 000 - 5 000 000 4.3

that the game screen would be shown inside a single “pane”
with no additional internal objects while ads and such would
have their own, separate hierarchy.

Figure 5. Number of games compatible with UIAutomator.

Table II summarizes the main results with respect to the
test cases designed. For each game, it shows the genre,
type of test case, script’s number of lines of code (Script
LoC), number of test steps, number of templates (#Temp.),
number of successful test executions, number of failed test
executions, and the average execution time.

Observe that not all games had the two types of test
case since there were games without menus, while others
had almost no gameplay. These games are Moto Rider
GO, Pony Sisters, Drogo, and Art of Conquest.
As for Moto Rider GO, it forces a first-time player
to go through an extensive tutorial. This tutorial includes
gameplay and menu interaction, so one single test case
was designed for both. Pony Sisters did not have
any traditional (or elaborated, for that matter) menus, so
only its gameplay was tested. Both Drogo and Art of

Conquest did not have their gameplay tested - albeit for
opposite reasons. While Drogo’s gameplay is too simplistic
to design a relevant test case, Art of Conquest is too
complex and would take an prohibitive amount of time to
complete (not to mention including multiplayer interaction,
which is beyond this study’s scope).

Concerning script LoC, Moto Rider GO had a script
with the highest LoC. It has only one test script that en-
compasses both gameplay and menu interaction (for reasons
mentioned afore). Following, there is the gameplay test case
for Ludo King. Initially, the game has many configuration
steps and screens and then it mostly consists of touching the
die to roll it and then touching a piece to move it. On the
other hand, the script with the lowest LoC is the gameplay
test for Spider. Spider is a simple card game that starts
right into the game itself. Since testing was mostly focused
on whether all cards from the player’s hand could be dealt,
the script is mainly a loop of picking the top card and seeing
the results.

For column #Test Steps in Table II, notice that some
games feature x mandatory test steps and y optional steps,
represented as x(y). Optional steps represent behavior that
is not guaranteed to happen for every execution, e.g., daily
rewards, requests for permissions, and so on. Since this
uncertainty is the intended behavior of some games, we dealt
with it in the test scripts. The gameplay test case for Bingo
Pop has the greatest number of test steps (32). Part of the
test case involves tapping each and every possible position
on both bingo cards during the game. Similarly, Piano
Kids has a test case with 27 steps. Most of the games had
tests with steps in the 7-9 range. Math Games’ gameplay
test case has the fewest number of steps and is an interesting
case; the only action executed is tapping the ”Play” button.
The gameplay itself is tested by reading the question (in this
case, a simple sum of two numbers), solving it and trying
to find the correct answer amongst the ones presented. It is

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 403

Table II
TEST CASE RESULTS.

Game Name Game
Genre

TC
Type

Script
LoC

#Test
Steps

#Temp. Succesful
Tests

Failed
Tests

Average
Exec. Time

Shoot Hunter-Gun Killer Action Menu 96 3 16 86.67% 13.33% 51.92 s
Game 107 3(4) 83.33% 16.67% 109.72 s

titans subway go Adventure Menu 82 2 8 100% 0% 38.31 s
Game 113 6 100% 0% 43.59 s

Sonic Boom Arcade Menu 165 6(8) 13 6.67% 93.33% 73.81 s
Game 152 7(10) 73.33% 26.67% 92.18 s

Ludo King Board Menu 168 7(8) 19 0% 100% 48.38 s
Game 199 12(13) 0% 100% 44.49 s

Spider Card Menu 86 3 5 100% 0% 35.36 s
Game 48 5 96.67% 3.33% 40.72 s

Bingo Pop Casino Menu 142 5 21 0% 100% 74.03 s
Game 172 32 0% 100% 72.70 s

Cookie Crush Match 3 Casual Menu 75 2 7 100% 0% 54.60 s
Game 90 4 100% 0% 64.61 s

Math Games Educational Menu 60 2 N/A 100% 0% 25.10 s
Game 62 1 100% 0% 48.14 s

Piano Kids - Music Songs Music Menu 95 3 14 100% 0% 43.42 s
Game 138 27 23.33% 76.67% 46.64 s

Moto Rider GO: Highway Traffic Racing Menu 293 16(17) 19 0% 100% 72.60 sGame

Pony Sisters - Baby Horse Care RPG Menu N/A N/A 9 N/A N/A N/A
Game 100 4 0% 100% 41.49 s

Drogo Simulation Menu 157 7(8) 11 10% 90% 69.80 s
Game N/A N/A N/A N/A N/A

Flip Diving Sports Menu 91 3 8 30% 70% 59.58 s
Game 83 5 13.33% 86.67% 57.04 s

Art of Conquest Strategy Menu 125 5 8 0% 100% 49.86 s
Game N/A N/A N/A N/A N/A

QuizUp Trivia Menu 126 5(7) N/A 100% 0% 47.57 s
Game 150 9 23.33% 76.67% 67 s

Word Search Word Menu 114 4(5) 11 96.67% 3.33% 31.76 s
Game 87 2(4) 10% 90% 53.02 s

only possible to read the question and answers because the
game was compatible with UIAutomator and, as such, the
text inside its graphical elements was accessible through a
query.

Column “#Temp.” of Table II represents how many tem-
plate images were created and used for each game. Since
templates could often be reused between test cases of the
same game, we counted only the total number of templates.
The game with most templates was Bingo Pop. This was
due to the amount of loading screens the game had –
requiring unique loading templates for the test case to wait
them out, since they all looked different – and the amount
of menus and pop-ups that stood between the start and the
gameplay or the settings menu. The game with the fewest
number of templates was Spider; it does not have any
loading screens, has a simplistic GUI and starts right at
the gameplay (with the settings menu just a couple of taps
away).

The last three columns of Table II result from 30 execu-
tions for each test script. The varied success and failure rates
(in columns “Successful tests ” and “Failed tests”) shed some
light on a troublesome characteristic of mobile game testing:

flaky tests. In general we expect test cases to be replicable,
so they need to be deterministic. Therefore, given the exact
same context, every execution of the test script should have
the same result – be it failure or success. For half the games
observed in this study, their tests were not deterministic –
they were flaky tests. As Luo et al. [23] comment about
them, flaky tests undermine testing, as test results become
unreliable. As for why mobile games had flaky tests, some
factors seem to be the culprits: the random nature of ads and
the limitations of template matching.

Most of the test cases were deterministic: around 57.14%
(16 out of 28). Looking at the TC type, menu-based tests
had the exact same rate of deterministic tests as all types
together (approximately 57.14%, or 8 out of 14), while
gameplay tests had a lower rate of deterministic tests –
approximately 46.15% (or 6 out of 13). Since gameplay
tests generally present more test steps and usually have a
variable context, this is expected. Also, animations and other
graphical features that vary scale, rotation or shape of an
element do not work well with template matching, as it
requires such characteristics to be constant for matching.

Moving on to the “average execution time” column

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 404

of II, the longest-running test was Shoot Hunter-Gun
Killer’s gameplay test. This was due to several intermedi-
ary screens between the game launch and the gameplay start.
There are three loading screens (each one takes at least two
seconds) as well as an ad screen (5 seconds, at the least).
Math Games had the quickest test. Two factors seem to be
the reasons: (i) it did not use image recognition – meaning
less time spent doing template matching and analyzing its
results – and (ii) it has a very simple menu structure, mean-
ing less screens and loading times to test. Following Math
Games’s and QuizUp’s tests, the quickest test that uses
template matching was Spider’s menu test. Notice that
QuizUp’s test had a mandatory “registration” with several
steps and screens. This affected its test execution time so
much that, even though it did not use image recognition,
was still slower than many other tests (which used OpenCV
template matching). In general, menu tests are generally
quicker than gameplay tests. This was expected since most
games had more test steps in their gameplay tests than their
menu tests. In other words, there are more screens, more
actions and more loading times, increasing the average test
execution time.

Table III shows the approximate effort spent (in
hours/tester) for the main tasks of the study per game.
Exploratory analysis and template creation were the less
costly tasks with 1.7h and 1.5h on average, respectively. Test
case design and script coding took longer, 1.9h and 3.9h on
average. In total, an average of almost nine hours (8.8) has
been spent in each mobile game.

Notice that a lot of effort has been spent with
Moto Rider GO: Highway Traffic and Bingo
Pop; such games are complex and demanded several hours
to have functioning test scripts. They present a large number
of graphical elements (some of those with variable size,
shape or rotation) and several different menu screens. On
the other hand, the tasks for Spider, Math Games and
Flip Diving were the quickest (4h). Concerning Math
Games, the tasks benefited from the absence of template
creation (as it was a game compatible with UIAutomator)
and from its simple GUI (no animations, few screens and
loading times). As for Spider, it has no loading screen, at
most three screens using actually one screen for the whole
gameplay test, no animations or other complex graphical
elements. Flip Diving diverges from this pattern; it is
not a simple game, has loading screens, and some GUI
elements are complex. Yet, its gameplay and menus were
not complex and the template matching was not hard to set
up.

A. Lessons Learned

Testing mobile games brought out many challenges as
we observed in our study. Some of those were overcome
by employing pragmatic solutions, while others remained
untackled for the reasons discussed as follows.

Recognition of Graphical Elements: Due to how tem-
plate matching works, some graphical elements proved
rather difficult to work with. For example, in Shoot
Hunter-Gun Killer, the “shoot” button was semi-
transparent - this meant that whatever was behind the button
had to match the template in order for the button itself
to be found. Another example was in Bingo Pop, where
several buttons had animations that changed scale, rotation
or appearance as a whole. Since the template would be
based on a single frame of the said animation, the only
choice for a good image recognition (i.e., one that would not
need to have a low threshold, risking finding more elements
than expected) was if the game screen was captured in the
exact same frame of animation. Naturally, this causes failed
test cases since certain buttons were not recognized. Other
games faced this issue, including Pony Sisters, Piano
Kids, Moto Rider GO, and Ludo King.

The last issue was uncovered while testing Piano
Kids’ gameplay. In its musical keyboard screen, there are
two “Do” keys only differentiated by their colors. Since
template matching does not take colors into account, when
trying to find the first “Do” key, the code either found two
keys or (when its threshold was risen to almost maximum)
just the second key. This could be a problem in games that
feature the same graphical element with different meanings
and/or different colors.

Loading and Ads: Since the games are free, all of
them featured ads in one form or another. While ad banners
did not influence testing in any perceivable way, ad screens
with required inputs (in general, tapping the close button)
showed to be a big challenge. This is mostly due to the
random nature of such ad screens – be it their timing (some-
times they show up, sometimes they do not) or their GUI
(different-looking close buttons meant difficulty in choosing
the correct templates). Because of these ads, several test
cases’ successul executions were based on chance rather than
deterministic states.

As for loading-related issues, some games had varying
loading times. This could cause the script to skip a loading
screen simply because it had not finished rendering. In
games like Art of Conquest, several loading screens
showed up successively, so the OpenCV’s template matching
was not fast enough to analyze whether a loading screen
was still ongoing before it finished. Although generally not
a critical issue for the test results (except when a loading
screen would be “skipped” by the script right before a GUI
interaction, causing the test to incorrectly fail), it does affect
general test performance and execution time.

Active Player Events: Most games and tests only
required taps to navigate in menus or interact with the game-
play. Those were simple to emulate as Appium features a
“tap” function that accepts screen coordinates as parameter.
This is important, as most other Appium functions require
an element object (obtained through its own queries) as

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 405

Table III
EFFORT SPENT PER TASK.

Game Name Exploratory
Analysis

Test Case
Design

Template
Creation

Script
Coding

Total

Shoot Hunter-Gun Killer 1 hour 2 hours 3 hours 6 hours 12 hours
titans subway go 1 hour 1 hour 1 hour 3 hours 6 hours

Sonic Boom 2 hours 2 hours 1 hour 8 hours 13 hours
Ludo King 2 hours 3 hours 1 hour 6 hours 12 hours
Spider 1 hour 1 hour 1 hour 1 hour 4 hours

Bingo Pop 3 hours 2 hours 4 hours 6 hours 15 hours
Cookie Crush Match 3 1 hour 1 hour 1 hour 2 hours 5 hours

Math Games 1 hour 1 hour - 2 hours 4 hours
Piano Kids - Music Songs 2 hours 2 hours 1 hour 3 hours 8 hours

Moto Rider GO: Highway Traffic 4 hours 7 hours 3 hours 5 hours 19 hours
Pony Sisters - Baby Horse Care 1 hour 2 hours 1 hour 2 hours 6 hours

Drogo 1 hour 1 hour 1 hour 2 hours 5 hours
Flip Diving 1 hour 1 hour 1 hour 1 hour 4 hours

Art of Conquest 4 hours 3 hours 1 hour 6 hours 14 hours
QuizUp 1 hour 1 hour - 5 hours 7 hours

Word Search 1 hour 1 hour 1 hour 4 hours 7 hours
Average 1.7 hours 1.9 hours 1.5 hours 3.9 hours 8.8 hours

parameter and OpenCV’s template matching could only
return coordinates.

Nevertheless, some games required swipe or drag-and-
drop events to interact with their GUIs or gameplay. For
those two types of interaction, Appium’s “swipe” function
was essential. It accepted as parameters coordinates for
starting and end points, as well as the speed of the action. For
instance, when moving the “Volume” slider all the way to the
right in Shoot Hunter’s menu test, the starting position
was the slider knob, the end position was the slider’s right
tip and the execution time was one second. This effectively
emulated a drag-and-drop movement only using coordinates
obtained through OpenCV’s template matching. For games
like Sonic Boom and titans subway go, in-game
swipes used the middle of the screen as the starting point and
an arbitrary end point either above (for jumping) or left/right
(for avoiding obstacles). This was not always accurate (e.g.,
in titans subway go, the command would not always
be recognized as an upwards swipe.

VI. CONCLUDING REMARKS

Automated testing is appealing for mobile games; such a
class of games is characterized by being deployed in several
devices and platforms. This paper reports an experience
on developing automated tests for 16 mobile games. Some
factors that heavily influenced the viability (and efficiency)
of the test scripts were Appium and OpenCV’s perfor-
mance, how unpredictable the game was, and the template
matching limitations. Most test cases did not take more
than one minute to execute; therefore, the tools selected
showed a reasonable performance, though faster test cases
would be desirable. Test flakiness is a challenge due to
the unpredictable nature of games and template matching
limitations.

In the future, two main issues require further investigation:
unpredictability management and image feature recognition
function. As for unpredictability, future directions involve
configurable test cases and random (monkey) testing. Con-
cerning better image recognition for testing, one could use
either keypoint mapping or a more precise feature detection
algorithm. OpenCV provides other algorithms that can be
tuned and deal with specific features like rotation and scale.
These functions could diminish the amount of trial-and-error
steps that template matching requires to set up the threshold.
In summary, there is a lot of room for improvements since
this is a fairly new subject and there exists a lack of
significant advances from researchers and practitioners.

REFERENCES

[1] E. McDonald, “The global games market will reach $108.9
billion in 2017 with mobile taking 42%,” 2017. [Online].
Available: https://newzoo.com/insights/articles/the-global-
games-market-will-reach-108-9-billion-in-2017-with-mobile-
taking-42/

[2] M. Harman, Y. Jia, and Y. Zhang, “App store mining and
analysis: Msr for app stores,” in Mining Software Repositories
(MSR), 2012 9th IEEE Working Conference on. IEEE, 2012,
pp. 108–111.

[3] H.-W. Kim, H.-L. Lee, and S.-J. Choi, “An exploratory study
on the determinants of mobile application purchase,” The
Journal of Society for e-Business Studies, vol. 16, no. 4, pp.
173–195, 2011.

[4] S. Alemm, L. F. Capretz, and F. Ahmed, “Critical success
factors to improve the game development process from a
developer’s perspective,” Journal of Computer Science and
Technology, vol. 31, no. 5, pp. 925–950, 2016.

[5] J. A. Whittaker, “What is software testing? and why is it so
hard?” IEEE software, vol. 17, no. 1, pp. 70–79, 2000.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 406

[6] D. Lin, C.-P. Bezemer, and A. E. Hassan, “Studying the urgent
updates of popular games on the steam platform,” Empirical
Software Engineering, pp. 1–32, 2016.

[7] H. Khalid, M. Nagappan, E. Shihab, and A. E. Hassan,
“Prioritizing the devices to test your app on: A case study of
android game apps,” in Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software
Engineering. ACM, 2014, pp. 610–620.

[8] S. Zein, N. Salleh, and J. Grundy, “A systematic mapping
study of mobile application testing techniques,” Journal of
Systems and Software, vol. 117, pp. 334–356, 2016.

[9] S. R. Choudhary, A. Gorla, and A. Orso, “Automated
test input generation for android: Are we there yet? (e),”
in Proceedings of the 2015 30th IEEE/ACM International
Conference on Automated Software Engineering (ASE),
Washington, DC, USA, 2015, pp. 429–440. [Online].
Available: http://dx.doi.org/10.1109/ASE.2015.89

[10] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-
objective automated testing for android applications,” in
Proceedings of the 25th International Symposium on
Software Testing and Analysis (ISSTA). New York,
NY, USA: ACM, 2016, pp. 94–105. [Online]. Available:
http://doi.acm.org/10.1145/2931037.2931054

[11] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao,
G. Pu, Y. Liu, and Z. Su, “Guided, stochastic model-
based gui testing of android apps,” in Proceedings of
the 2017 11th Joint Meeting on Foundations of Software
Engineering, ser. ESEC/FSE 2017. New York, NY,
USA: ACM, 2017, pp. 245–256. [Online]. Available:
http://doi.acm.org/10.1145/3106237.3106298

[12] J. Novak, Game Development Essentials: An Introduction,
3rd ed. Cengage Learning, 2011.

[13] K.-L. Hsiao and C.-C. Chen, “What drives in-app purchase
intention for mobile games? an examination of perceived
values and loyalty,” Electronic Commerce Research and Ap-
plications, vol. 16, pp. 18–29, 2016.

[14] Google, “Google play store,” 2018. [Online]. Available:
https://play.google.com/store/apps/category/GAME

[15] G. J. Myers, T. Badgett, and C. Sandler, The Art of Software
Testing, 3rd ed. USA: John Wiley & Sons, 2011.

[16] J. Itkonen and K. Rautiainen, “Exploratory testing: a multiple
case study,” in Empirical Software Engineering, 2005. 2005
International Symposium on. IEEE, 2005, pp. 10–pp.

[17] Appium, “Appium: Automation for apps,” 2018. [Online].
Available: http://appium.io/introduction.html

[18] RightQA, “An introduction to appium architecture,” 2015.
[Online]. Available: http://blog.rightqa.com/2015/07/an-
introduction-to-appium-architecture.html

[19] S. Iftikhar, M. Z. Iqbal, M. U. Khan, and W. Mahmood,
“An automated model based testing approach for platform
games,” in Model Driven Engineering Languages and Systems
(MODELS), 2015 ACM/IEEE 18th International Conference
on. IEEE, 2015, pp. 426–435.

[20] OpenCV, “Opencv – open source computer vision library,”
2018. [Online]. Available: https://opencv.org

[21] A. Developers, “Ui automator,” 2018. [Online].
Available: https://developer.android.com/training/testing/ui-
automator.html

[22] OpenCV, “Python template matching,” 2018.
[Online]. Available: http://opencv-python-
tutroals.readthedocs.io/en/latest/py tutorials/py imgproc/
py template matching/py template matching.html

[23] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical
analysis of flaky tests,” in Proceedings of the 22nd ACM SIG-
SOFT International Symposium on Foundations of Software
Engineering. ACM, 2014, pp. 643–653.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 407

