
AsKME: A Feature-Based Approach to Develop Multiplatform Quiz Games

Victor T. Sarinho, Gabriel S. de Azevedo, Filipe M. B. Boaventura
Lab. de Entretenimento Digital Aplicado (LEnDA)

Universidade Estadual de Feira de Santana (UEFS)
Feira de Santana, Bahia, Brazil

Email: vsarinho@uefs.br, gabrielsilvadeazevedo@gmail.com, fmbboaventura@gmail.com

Abstract—Several approaches have been proposed to manage
the game domain variability in different instances and strate-
gies. However, the idea of an one-size-fits-all game architecture
can be misleading, being necessary to built reference game ar-
chitectures for target (sub)domains. This paper presents the As-
sessment of Knownledge Multiplatform Environment (AsKME),
a feature-based approach to develop multiplatform quiz games.
It provides a subdomain game architecture, based on identi-
fied features of the quiz game dimension, in a Model-View-
Controller strategy implemented by feature artifacts adapted
to be executed in distinct software platforms. As a result, a
reusable approach to develop multiplatform quiz games was
provided, together with the development of educational and
casual quiz games for validation purposes.

Keywords-game domain variability; feature modeling; quiz
games; multiplatform game environment;

I. INTRODUCTION

Nowadays, computer games represent “the quintessential
domain for Computer Science and Software Engineering
(SE) research and development” [1]. It is the result of the
current demand for technical mastery and integration skills
by different software system application arenas during the
game production [1]. As a consequence, many traditional
grand challenges in SE arise during the development of
computer games as complex software systems, such as large
scale software engineering, game software requirements en-
gineering, game software design, global game development,
and so on [1].

Regarding requirements engineering, game development
focuses primary attention on creating and satisfying non-
functional requirements (NFRs), like “the game must be
fun to play” by a target audience of users/players on a
target platform at some retail price point or monetization
scheme [2]. As a consequence, the SE challenge appears in
determining what to do during game software development
to address or satisfy such NFRs as engineering tasks [1].

A common solution is the production of games that can
be incrementally developed and released with a minimum
set of game play features that can adaptively be grown to
meet informal NFRs [1]. This approach provides the game
system as an emerging online interactive gameplay service,
determining whether more features will be dynamically
added or integrated to the game, rather than just as a
traditional software product [1].

However, as game development is not the same as soft-
ware development, traditional requirements engineering is
also not applicable [3] to determine a suitable set of features
in a game. In this sense, it is necessary to follow a game
development approach able to prescribe game features as
subject to functional or non-functional game requirements.

Regarding game design challenges, as game designers are
directed to employ a game SDK or development framework
to realize their game projects, the selection of a game devel-
opment environment constrains or pre-determines what kind
of computer game may be more readily developed [1]. As a
result, the game development environment encroaches into
the functional requirements or NFRs space [1], something
that can be avoided with the separation of the core of game
objects (G-factor) from the implementation itself in order
to support the game portability among game development
environments [4].

Considering game development environments, understand
game engine architecture, interaction paradigm, and pro-
gramming peculiarities usually is not a simple or intuitive
task [3], being necessary the expertise of an architect or
senior developer to map the requirements of each prod-
uct variant onto the framework [5]. Language-based tools
can automate this mapping step, capturing variations in
requirements via language expression and encapsulating the
abstractions that a game engine defines, but without the
flexibility level provided by game engines for example [3].
Therefore, there is a hiatus on game development caused by
a lack of simple yet powerful tools to provide abstraction
for specific game domains along with the flexibility of game
engines or other reusable asset according to designed game
variants [3].

Features, variants and the core communality terms are
managed by the software variability area [6]. Per features,
they can be defined as logical units of behaviour that
corresponds to a set of functional and non-functional re-
quirements in a system [7], and are an interesting “way
to abstract from requirements” [8]. Core communality and
variant terms are worked by the variability management,
which controls the points in the platform where the product
version functionalities differ [6].

Several approaches have been proposed to manage the
game domain variability in different instances and strategies

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 389



[9]. They provided interesting types of: game design and
modelling languages; game software modelling languages;
game models and meta-models; and game software models,
frameworks, environments, and technologies [9]. However,
the idea of an one-size-fits-all game architecture can be
misleading, being necessary to built reference game archi-
tectures for target (sub)domains [3]. Moreover, the popular
concept of “game genres” can be confuse in a variability
process [3] because they are ambiguous and imprecise
[10]. Therefore, it is necessary to describe expectations for
predefined core game dimensions, such as player, graphics,
flow, and other representative game features [3].

This paper presents the Assessment of Knownledge Mul-
tiplatform Environment (AsKME), a feature-based approach
to develop multiplatform quiz games. The idea is provide
a subdomain game architecture, based on identified features
of the quiz game dimension, in a Model-View-Controller
(MVC) strategy implemented by feature artifacts adapted to
be executed in distinct software platforms, such as console,
mobile, web, embedded systems, an so on.

To this end, section 2 presents related work on game
domain variability and available quiz models. Section 3
describes the proposed feature model along with the applied
methodology to perform configured features in different
execution platforms. Section 4 presents the developed and
obtained AsKME games, together with a qualitative and
quantitative analysis of the developed assets. Finally, section
5 presents the conclusions and future work of this paper.

II. RELATED WORK

A. Game Domain Variability

For computer games, the variability is a direct conse-
quence of the game domain diversity, working with sim-
ulations (sports, adventure, fighting), hardware technologies
(mobile games, web games), human interactions (immersion,
multiplayer) and complex stories (games based on movies,
Role-Playing Game (RPG) series) [11].

Considering the communalities and variabilities in the
digital game domain represented by features, the “Narrative,
Entertainment, Simulation and Interaction” (NESI) feature
model is an attempt of representing the G-factor according to
game concepts found in the literature [12]. The “GameSys-
tem, DecisionSupport and SceneView” (GDS) feature model
describes generic configurations and behavioral aspects
found on game implementation resources identified in the
literature [13]. The Feature-based Environment for Digital
Games (FEnDiGa) is a game production environment based
on a combined representation of NESI and GDS features
[14] via Object Oriented Feature Modeling (OOFM) ap-
proach [15]. Finally, the Minimal Engine for Digital Games
(MEnDiGa) is an extensible collection of representative
classes, based on a simplified set of NESI and GDS features,
that can be used as the foundation for small and casual
games without major modifications [16].

Regarding game ontologies, the Game Ontology Project
(GOP) is a framework that defines a hierarchy of ontology
concepts for the game domain, such as interface, rules, goals,
entities and entity manipulation [17]. SharpLudus proposed
the use of a game ontology to set ad hoc aspects identified
for a game 2D implementation [18]. The DGiovanni project
defines an ontology to support the creation of different
stories in an open source multiagent architecture for building
interactive dramas [19]. Finally, the PerGO project proposed
an ontology to structure and accelerate the domain analysis
process on the emerging pervasive (computer) game genre
[20].

Finally, by modeling engineering approaches, ArcadEx
represents an improvement of the SharpLudus project, re-
placing the previous ad hoc approach with a Software
Product Line (SPL) realized by a Domain Specific Language
(DSL) in a Domain-Specific Game Development process
[3]. The Serious Games Modelling Environment (SeGMEnt)
is based on a model-driven approach to aid non-technical
domain experts in serious games production for use in
games-based learning [21]. Finally, the Model-Driven Game
Development (MDGD) introduces the use of a selection of
UML diagrams to gather required information to automate
generation of code for 2D platform games [22].

B. Quiz Models

Quiz can be considered as one of the simplest types of
game domain, which describes game dynamics that can
be directly reused by other types of game subdomains.
Quiz is a great way to make self assessment tests or final
exams [23], which the main objective is the successful
answering of questions [24]. In this sense, there are several
frameworks and tools able to provide educational quizzes
via automatic generation of questions, automatic assessment
of answers and parameterized questions [23], but without a
communality and variability representation of them.

Regarding quiz modelling, the “Generalized Platform for
Creating of Testing Games” is a virtual platform where
teachers can define different structures to follow the students
progress [25]. This platform defined limited quizzes only
with an id, a question and at least one answer that can be
from different types (boolean, string, integer or any other
complex type previously defined) [25].

For quiz feature modeling, Quiz Product Line (QPL)
presented mandatory and optional features in a System
perspective for quiz applications, such as: Questions, Lay-
out, License, Report Generator, Operation Mode, Question
Editor, Quiz Question Generator, Quiz Utilities, and Publish
[26]. As a result, it defined an interesting representation of
quizzes, but without a concrete structure to perform them.

Regarding Model-Driven Engineering (MDE), a collection
of metaclasses were proposed to formally represents the
possible variations among the elements in multi-platform

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 390



Figure 1. Partial illustration of the AsKME feature model.

videogames, such as trivia, platform, puzzle, touch and strat-
egy [27]. For trivia games, they are generically represented
by a collection of one or more Questions that contains zero
or more game Elements each one [27].

Finally, considering the modern trend of presentation and
control of questionnaires, the Quiz Board Game Model
proposed a formal model of board games able to represent
quiz dynamics with multimedia appealing [23].

III. METHODOLOGY

The AsKME development process was divided in 3 main
parts: 1) the design of game features for the quiz game
dimension; 2) the definition of a game development ap-
proach to represent and interpret AsKME features; and 3)
the implementation of multiplatform game clients able to
execute AsKME feature configurations.

A. Features for the Quiz Game Dimension

The concept of a feature is useful for the description of
communalities and variabilities in the analysis, design, and

implementation of software systems [28]. Feature modeling
is a method and notation to elicit and represent common
and variable features of the systems in a system family [29].
Together, features and feature models are able to represent
communality and variability aspects of computer games and
their subdomains [13].

The AsKME project has the objective of managing com-
munalities and variabilities of the quiz game subdomain. In
this sense, 98 features were modeled to represent system
families of quiz games (Figure 1). These features were
organized to identify the proposed game (Id and Locale), to
represent Initial Menu data for user interactions (Start Menu,
Highscore Menu, About Menu, etc.) and to define gameplay
options for game configurations (Game Menu, Game Flow,
Game Score, Player Help, Prizes and Questions) (Figure 1).

Six main features define the Game Flow of an AsKME
game: Conditions To Win, Conditions To Lose, Time Counter
Scale, Turn Time Limit, Messages, and Performed By Event
(Figure 2). Conditions To Win and Conditions To Lose

Figure 2. AsKME Game Flow subfeatures.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 391



Figure 3. AsKME Questions subfeatures.

share a similar set of features, describing the total time
and the number of questions along with correct answers
and wrong answers obtained during a gameplay. If one of
these conditions were achieved, the respective Messages are
sent to the player according to configured game dynamics.
Time Counter Scale describe the timer pattern to be shown
during the gameplay, and Turn Time Limit defines the time
the player has to answer the question before losing his turn.
Finally, Performed By Event provides game events that can
be evaluated via scripts in the construction of extra game
dynamics, such as increase player score with an extra value
due to a correct answer in the last game minute.

Questions feature defines a collection of questions that an
AsKME game should present to the player (Figure 3). These
questions can be statically defined in a Static Question List
or dynamically provided by a Dynamic Question Builder.
Regardless of the production approach, each question must
present the text of the Question itself, Options to be chosen
by the player and the indication of which of the provided

Figure 4. AsKME Prizes subfeatures.

options is correct (the Answer feature). Category, Value and
Hint are extra features that can be added to each produced
question in order to increase the game dynamics provided
by the modeled AsKME game. Finally, the Random Position
indicates whether the set of options should be scrambled or
not before they are presented to the player.

Prizes feature represents possible trophies that a player
can win during the gameplay. For this, it is necessary to
indicate the Number of Correct Answers to Win a Prize and
the Number of Wrong Questions to Lose a Prize. The Prize
List is also provided by static and dynamic approaches, both
indicating the Label of the prize, a Path for multimidia con-
tent that represents the prize, possible Category to indicate
the prize group, and a current Value to increase the player
score.

Player Help is a feature that describes possible aids that
a player can have in the game (Figure 5). Three types of aid
were initially represented: Hint, Exclusion and Jump. All
three define a menu representation for user selection and
the total number of attempts available for use. Exclusion
also defines the Max Options to Left After Exclusion in a
current Question, indicating the final number of Options
available for a player after an Exclusion usage. Finally, Menu
Help indicates player interaction messages to be used in a
configured game, and Number of Correct Answers to Win a
Help describes itself.

B. Game Development with AsKME Features

Feature is a unit of functionality of a software system
that satisfies a requirement, represents a design decision,
and provides a potential configuration option to be com-
posed as a software system [28]. Feature-Oriented Software
Development (FOSD) is a paradigm for the construction,
customization, and synthesis of large-scale software systems
in terms of features [28].

Different FOSD approaches have been applied with suc-
cess to provide digital games, such as generative program-
ming [13] and SPL instance [3]. For AsKME games, a FOSD
strategy was applied by the definition of a DSL for AsKME
features along with a generic and multiplatform game loop
proposal able to perform them.

Regarding DSL, it provides pre-defined abstractions to
directly represent concepts from the application domain [29].
It also offers a natural notation for a given domain and avoids
syntactic clutter that often results when using a general
purpose language [29].

By the AsKME feature model, a DSL was defined via
JavaScript Object Notation (JSON), where each feature was
used to directly structure and represent boolean (Random
Position), numeric (Turn Time Limit), textual (Start Menu)
or procedural (Performed By Event) values applied in an
AsKME game configuration. As an example, Figure 6 il-
lustrates the JSON representation of a partial configuration

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 392



Figure 5. AsKME Player Help subfeatures.

of Gameplay Menu and Game Flow features of an AsKME
game.

Regarding game loop, it is an “algorithm that relates the
current state of the game and the properties of the objects
with a number of conditions that consequently can modify
the game state” [30]. Moreover, the “main game loop runs
repeatedly, and during each interaction of the loop, various
game systems such as artificial intelligence, game logic,
physics simulation, and so on are given a chance to calculate
or update their state for the next discrete time step” [31].

For the proposed multiplatform game loop to perform

AsKME features, a Javascript state machine was imple-
mented, capable of interpreting the provided JSON config-
urations according to player inputs and game logic outputs
(Figure 7). As a resumed explanation, the proposed state
machine is able to:

• show the list of available AsKME games (game-list and
start-menu states);

• provide a start menu for a selected game (start-game,
about-game, highscore-game and mode-list states);

• perform game routines (startGameState and up-

Figure 6. JSON representation of a partial configuration of an AsKME game.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 393



Figure 7. Proposed multiplatform game loop state machine to perform AsKME configurations.

dateGameState) according to a game loop execution
(start-gameplay, render-gameplay, update-gameplay
and end-gameplay states); and

• finalize the game with a high score record along with
the verification of another attempt to play (tryagain-
option, highscore-gameplay and tryagain-gameplay
states).

The updateGameState routine also represents another
substate machine that is performed by each game loop
interaction among render-gameplay and update-gameplay
states (Figure 8). For each interaction, it uses the last user
input and decides for the next internal state to be evaluated
(show-question, evaluate-answer, perform-help or feedback)
according to Gameplay Options feature values.

For example, when the show-question state is activated, it
prepares the current question to be shown to the user, defines
the internal state to be evaluate-answer, and wait for another
game loop interaction with a new user input to be performed.
The evaluate-answer state verifies for turn end, help menu
selection, correct answer and victory conditions according to

current user input. If the help menu option is selected, a help
menu is sent to the player via showHelpMenu procedure,
and the perform-help state will be activated to wait for the
selected help option in order to provide a new question to
be evaluated by the player.

For an identified correct/wrong answer or a turn end
situation, the feedback state is activated to show a message
content for the player. Feedback also demands the processing
of a loop interaction between render-gameplay and update-
gameplay states (Figure 7), by the definition of an empty
prompt or menu for the player that forces the update-
gameplay state to start an interaction search for a menu or
prompt information to be displayed to the player.

Finally, if conditions to win or to lose are identified in the
evaluate-answer state, the gameEndMessage value is applied
to the current gameplay, and the interaction among render-
gameplay and update-gameplay states follows to the game-
end status (Figure 7).

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 394



Figure 8. The updateGameState routine represented as a state machine.

C. Multiplatform AsKME Clients

Multiplatform development tools are gaining a worldwide
popularity due to their characteristic to compile the appli-
cation source code for various supported platforms, espe-
cially for mobile operating systems [32] [33]. Feature arti-
facts encapsulate design and implementation information of
FOSD phases, allowing an almost automatically generation
of applications due to the clean mapping with representative
features of the domain knowledge [28]. AsKME feature
artifacts were implemented with the goal of achieving multi-
platform targets, such as console, mobile, web and Arduino.
They follow the proposed JSON structure (Model) and the
state machine game loop (Controller) in order to provide
AsKME clients (View) for configured AsKME features.

Regarding the console AsKME client, it was implemented
using Node.js, a JavaScript runtime built on Chrome V8
JavaScript engine. This client version gets user inputs us-
ing the scanf function, and provides player outputs via
console.log function. Because it is a textual interface, no
configured multimedia content could be processed. As an
example, Figure 9 illustrates the console AsKME client
running on the TicTacToe game.

The mobile AsKME client was implemented using the
Ionic Framework, a platform that lets web developers to
build, test, deploy and monitor cross-platform apps. This
client version gets user inputs from various Ionic com-
ponents such as text fields, Alert Dialogs and buttons.
The outputs are displayed on three different sections of
the screen, organized vertically: the top section displays

Figure 9. Console AsKME client running on the TicTacToe game.

text messages and questions; the middle section displays
multimedia content (when available) through HTML tags,
such as video; and the bottom section displays either a list
of options, for multiple choice questions, or a text input field
for questions with more open answers. Game end messages
and Highscore messages are presented by Alert Dialogs,
asking the player if the game should be restarted or a name to
be included in the Highscores list. As an example, Figure 10
illustrates the mobile AsKME client running on the BodyZap
[34] game.

The web AsKME client was developed using Phaser, an
open source framework for Canvas and WebGL powered
browser games. This client version gets user inputs from
browser events from keyboard and mouse clicks on fixed
buttons over the screen (Figure 11). Outputs are provided
by two sections that divide the screen, the left for textual
messages and the right for multimidia content such as image
and video (Figure 11). Sound effects are also performed
following game events, such as correct and wrong answers,
the game start, and so on. As an example, Figure 11
illustrates the web AsKME client running on the LibrasZap
[35] game.

Finally, for the Arduino AsKME client, it was imple-
mented using Johnny-Five, a JavaScript platform for robotics
and Internet of Things (IoT) projects. This client version gets
user inputs using an infrared sensor, and provides player
outputs using a LCD screen. The infrared code seeks to
decode the analog signals in hexadecimal, and with these
values inform which buttons are being pressed from an

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 395



Figure 10. Mobile AsKME client running on the BodyZap game.

Figure 11. Web AsKME client running on the LibrasZap game.

infrared control. The LCD screen code directly render colors
and letters in screen positions on a matrix form (columns
and rows), using a buffered strategy to avoid screen flashes
due to the main Arduino processing loop. As an example,
Figure 12 illustrates the Arduino AsKME client running on
the GuessMyNumber game.

IV. RESULTS AND DISCUSSION

Some quiz games were developed for AsKME evaluation
purposes (Table I). Each one presented specific charac-
teristics and needs during the development, such as the
interface style applied to the user (menu-based or prompt-
based), static or dynamic approaches to the production of
game questions, and the processing of particular events
during the gameplay to guarantee designed game dynamics.
As a result, basic games that follow the quiz style have

Figure 12. Arduino AsKME client running on the GuessMyNumber game.

been successfully developed, as well as the replication of
configured game dynamic for distinct educational contexts,
such as human physiology (BodyZap), sign-based languages
(LibrasZap) and software engineering (ERQuiz). The pro-
duction of board games and storytelling games with AsKME
also demonstrates the capability of quiz games to provide
game dynamics from other game styles, but in this case with
minimal interaction resources and following a question &
answer game mechanics approach.

Regarding the reuse level achieved with AsKME games,
Table II presents some obtained metrics [36] with the Plato
code analyzer [37] for the amount of reused code and
complexity of each developed game. The Total of SLOC and
Total of Complexity metrics are calculated by the sum of the
respective AsKME game metrics with the console AsKME
client metrics. As a result, more than 88% of SLOC reuse
and more than 93% of complexity reuse in average were
obtained for them, confirming the game core reusability and
maintainability for developed AsKME games. However, it
is possible to verify that the complexity of AsKME games
increases when they use a dynamic approach to provide
player questions, something that can be interpreted as a
demand for more representative features for dynamic quizzes
in the AsKME feature model.

V. CONCLUSIONS AND FUTURE WORK

This paper presented AsKME, an assessment of knowl-
edge solution to provide quiz games for multiplatform envi-
ronments. It defined a feature model to represent the game
quiz subdomain, along with feature artifacts able to perform
quiz game dynamics by AsKME clients in multiplatform
environments.

By the AsKME usage, the production of static and
dynamic quiz games was guaranteed, following predefined

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 396



Table I
CURRENT LIST OF DEVELOPED ASKME GAMES.

Name Description User Interface Question Builder Perform By Event
GuessMyNumber A game to find out the secret number

in a range of 1 to 1000 in the fewest
guesses

Prompt-based Dynamic questions based on min
and max range of values

Score calculation by player at-
tempts

BodyZap [34] Educational quiz for assessment of
knowledge in human physiology

Menu-based Static questions Score calculation by consumed
time, new prizes and lost prizes

LibrasZap [35] Educational quiz for assessing knowl-
edge in the Brazilian sign language
(LIBRAS)

Menu-based Dynamic production of ques-
tions based on a list of available
videos

Score calculated by player at-
tempts

ERQuiz Educational quiz for assessing knowl-
edge in requirements engineering

Menu-based Static questions Score calculated by the sum of
correct question values

TicTacToe Paper-and-pencil game for two players,
X and O, who take turns marking the
spaces in a 3x3 grid

Prompt-based Dynamic questions showing the
available grid options to choose

Definition of computer move-
ment after the player choice

Blackjack Comparing card game between the
player and a dealer

Menu-based Dynamic questions showing the
player and the dealer hands, to-
gether with Hit or Stand options
to choose

Perform dealer movement and
defines the player victory or not

Sobreviva Storytelling for player survival in a ter-
rorist attack

Menu-based Dynamic definition of questions
to show by a static collection of
storytelling cards

Defines the next storytelling
card to show or ends the game

Cancer de Boca A game that tells stories of patients who
have had mouth cancer

Menu-based Dynamic definition of questions
to show by a static collection of
storytelling cards

Defines the next storytelling
card to show or ends the game

Table II
REUSE METRICS OBTAINED WITH ASKME GAMES.

Game Name Amount of SLOC / Total
SLOC

Amount of Complex-
ity / Total Complexity

GuessMy
Number

84/(84+1343) = 5,89% 9/(9+342) = 2,56%

BodyZap 203/(203+1343) = 13,13% 6/(6+342) = 1,72%
LibrasZap 254/(254+1343) = 15,9% 21/(21+342) = 5,78%
ERQuiz 154/(154+1343) = 10,29% 3/(3+342) = 0,87%
TicTacToe 158/(158+1343) = 10,53% 89/(89+342) = 20,65%
BlackJack 258/(258+1343) = 16,15% 22/(22+342) = 6,04%
Sobreviva 138/(138+1343) = 9,32% 27/(27+342) = 7,32%
Cancer de
Boca

252/(252+1343) = 15,8% 53/(53+342) = 13,42%

features that increases the abstraction representation of quiz
games, along with configured scripts that achieve the flex-
ibility available in game engine artifacts. However, this
flexibility can generate an AsKME learning curve problem
for games with a different quiz game loop (Blackjack
and TicTacToe games, for example), something that can
be solved with the inclusion of new extra features in the
proposed feature model.

For validation purposes, 8 quiz games were also developed
with AsKME assets. They confirmed the reuse possibilities
of quiz game dynamics with AsKME, something realized
by the ERQuiz game that repeated the “modes of play”
designed in BodyZap features. They also confirmed the
AsKME capability of building game dynamics from other
game styles, such as storytelling and board games, some-
thing that can be extended to provide dedicated feature based
engines in the future for specific game (sub)domains.

As future work, it is necessary to perform a usability

assessment with developed AsKME clients, as well as a
comparison with other development approaches to provide
quiz games. The support for multiplayer matches, along with
the AsKME adaptation to Quiz Board Game features [23]
and test-driven development approaches will also be done
in the future.

REFERENCES

[1] W. Scacchi and K. Cooper, “Research challenges at the
intersection of computer games and software engineering,”
Proc. 2015 Conf. Foundations of Digital Games, 2015.

[2] D. Callele, E. Neufeld and K. Schneider, “Requirements
engineering and the creative process in the video game in-
dustry,” 13th IEEE International Conference on Requirements
Engineering, pp. 240–250. IEEE, 2005.

[3] A. Furtado, A. Santos, G. Ramalho and E. Almeida, “Improv-
ing digital game development with software product lines,”
IEEE software, 28(5):30–37, 2011.

[4] A. BinSubaih and S. Maddock, “Game portability using a
service-oriented approach,” International Journal of Computer
Games Technology, 2008:3, 2008.

[5] D. Roberts and R. Johnson, “Patterns for evolving frame-
works,” Pattern languages of program design 3, pp. 471–486.
Addison-Wesley Longman Publishing Co., Inc., 1997.

[6] J. Bosch, R. Capilla and R. Hilliard, “Trends in systems and
software variability,” IEEE Software, (3):44–51, 2015.

[7] J. Bosch, “Design and use of software architectures: adopting
and evolving a product-line approach,” Pearson Education,
2000.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 397



[8] J. Gurp, J. Bosch and M. Svahnberg, “On the notion of
variability in software product lines,” Working IEEE/IFIP
Conference on Software Architecture, pp. 45–54. IEEE, 2001.

[9] S. Tang and M. Hanneghan, “State-of-the-art model driven
game development: A survey of technological solutions for
game-based learning,” Journal of Interactive Learning Re-
search, 22(4):551–605, 2011.

[10] C. Lindley, “Game taxonomies: A high level framework for
game analysis and design,” Gamasutra feature article, 3, 2003.

[11] S. Kent, “The ultimate history of video games: From pong
to pokémon and beyond-the story that touched our lives and
changed the world,” roseville, 2001.

[12] V. Sarinho and A. Apolinário, “A feature model proposal
for computer games design,” VII Brazilian Symposium on
Computer games and Digital Entertainment, Belo horizonte,
pp. 54–63, 2008.

[13] V. Sarinho and A. Apolinário, “A generative programming
approach for game development,” VIII Brazilian Symposium
on Games and Digital Entertainment, pp. 83–92. IEEE, 2009.

[14] V. Sarinho, A. Apolinário and E. Almeida, “A feature-based
environment for digital games,” International Conference on
Entertainment Computing, pp. 518–523. Springer, 2012.

[15] V. Sarinho and A. Apolinário, “Combining feature modeling
and object oriented concepts to manage the software vari-
ability,” International Conference on Information Reuse and
Integration (IRI), 2010 IEEE, pp. 344–349. IEEE, 2010.

[16] F. Boaventura and V. T. Sarinho, “Mendiga: A minimal engine
for digital games,” International Journal of Computer Games
Technology, 2017, 2017.

[17] J. Zagal and A. Bruckman, “The game ontology project:
Supporting learning while contributing authentically to game
studies,” Proceedings of the 8th international conference on
International conference for the learning sciences-Volume 2,
pp. 499–506. International Society of the Learning Sciences,
2008.

[18] A. Furtado and A. Santos, “Defining and using ontologies
as input for game software factories,” Proceedings of the
3rd Brazilian Symposium on Computer Games and Digital
Entertainment, 2006.

[19] V. Muller, “An open source architecture for building inter-
active dramas,” Brazilian Symposium on Games and Digital
Entertainment, pp. 89–100. IEEE, 2011.

[20] H. Guo, H. Trætteberg, A. Wang and S. Gao, “Pergo: an
ontology towards model driven pervasive game development,”
OTM Confederated International Conferences, pp. 651–654.
Springer, 2014.

[21] S. Tang and M. Hanneghan, “A model driven serious games
development approach for game-based learning,” Proceedings
of the International Conference on Software Engineering Re-
search and Practice (SERP), pp. 1. The Steering Committee
of The World Congress in Computer Science, Computer En-
gineering and Applied Computing (WorldComp), 2013.

[22] E. Reyno and J. Cubel, “Model driven game development:
2d platform game prototyping,” GAMEON, pp. 5–7. Citeseer,
2008.

[23] B. Bontchev and D. Vassileva, “Educational quiz board games
for adaptive e-learning,” Proc. of Int. Conf. ICTE, pp. 63–70,
2010.

[24] M. Wolf, “The medium of the video game,” University of
Texas Press, 2001.

[25] R. D. Riesco, “Generalized platform for
creating of testing games,” Master thesis,
https://upcommons.upc.edu/handle/2099.1/11733, 2011.

[26] L. Zaid, F. Kleinermann and O. Troyer, “Feature assembly:
A new feature modeling technique,” International Conference
on Conceptual Modeling, pp. 233–246. Springer, 2010.

[27] N. Valdez, E. Rolando, V. Garca-Daz, J. Lovelle, Y. Achaeran-
dio and R. Gonzlez-Crespo, “A model-driven approach to gen-
erate and deploy videogames on multiple platforms,” Journal
of Ambient Intelligence and Humanized Computing, 8(3):435–
447, 2017.

[28] S. Apel and C. Kästner, “An overview of feature-oriented soft-
ware development,” Journal of Object Technology, 8(5):49–84,
2009.

[29] K. Czarnecki, “Overview of generative software develop-
ment,” Unconventional Programming Paradigms, pp. 326–341.
Springer, 2005.

[30] M. Sicart, “Defining game mechanics,” Game Studies, 8(2),
2008.

[31] J. Gregory, “Game engine architecture,” AK Peters/CRC
Press, 2014.

[32] H. Heitkötter, T. Majchrzak and H. Kuchen, “Cross-platform
model-driven development of mobile applications with md2,”
Proceedings of the 28th Annual ACM Symposium on Applied
Computing, pp. 526–533. ACM, 2013.

[33] M. Palmieri, I. Singh and A. Cicchetti, “Comparison of cross-
platform mobile development tools,” 16th International Con-
ference on Intelligence in Next Generation Networks (ICIN),
2012 , pp. 179–186. IEEE, 2012.

[34] V. Sarinho, E. Granjeiro and C. Cerqueira, “Bodyzap: Um
jogo de im para o ensino de fisiologia humana,” II Workshop
de Jogos e Sade, XVI Brazilian Symposium on Games and
Digital Entertainment. SBC, 2017.

[35] V. Sarinho, “Libraszap-an instant messaging game for knowl-
edge assessment in brazilian sign language,” Brazilian Journal
of Computers in Education, 25(01):44, 2017.

[36] W. Frakes and C. Terry, “Software reuse: metrics and
models,” ACM Computing Surveys (CSUR), vol. 28(2):415–
435, 1996.

[37] Plato, “Javascript source code visualization, static analy-
sis, and complexity tool,” https://github.com/es-analysis/plato,
2012.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 398


