
An Improved Rolling Horizon Evolution Algorithm with Shift Buffer
for General Game Playing

Bruno S. Santos, Heder S. Bernardino
Departament of Computer Science

Universidade Federal de Juiz de Fora - UFJF
Juiz de Fora, MG, Brasil

Email: bruno.soares@ice.ufjf.br, hedersb@gmail.com

Eduardo Hauck
Departament of Computer Science

University of Tsukuba
Tsukuba, Ibaraki, Japan

Email: eduardohauck@gmail.com

Abstract—General Game Playing (GGP) is the design of
artificial intelligence programs to play more than one game.
Here, one of the most famous GGP frameworks, The General
Video Game AI Competition (GVGAI) Framework, is used
in order to design controllers for Atari 2600 inspired games.
Recent advancements in the literature of GVGAI showed
that the Rolling Horizon Evolution Algorithm (RHEA) is
competitive when compared to other methods, encouraging
the use and the research by improvements for this method.
The use of a 1-Step-Look-ahead approach and a Redundant
Action Avoidance policy during the creation of new individuals
are proposed in this paper. The 1-step-look-ahead technique
improves the action selection after the shift of the individual
in RHEA with the shift buffer enhancement (RHEA-SB), and
the redundant action avoidance policy decreases the chance
of spatial redundant actions within the individual. Also, a
parameter analysis of RHEA-SB is performed here, where
different values of population size, depth of simulations, and
number of individuals that remains in the population are
evaluated. Results show that using 1-Step-Look-ahead and a
redundant action avoidance policy improves the quality of the
solutions found when compared to the original algorithm.

Keywords-General Video Game Playing, Rolling Horizon
Evolution Algorithm, Monte Carlo Tree Search

I. INTRODUCTION

Since the beginning of the artificial intelligence (AI),
games provide a solid environment for evaluating new
techniques. The games are formed by a well-defined set of
rules and objectives, which require the machine to explore
the environment defined by these rules and to find a policy
to reach the objectives in the most efficient possible way,
mimicking a human intelligent behaviour.

With the developments of AI, many game playing con-
trollers have been developed, such as GO (1) and chess (2).
In some cases, the computational methods obtain a per-
formance comparable to the best human players. Despite
the good results found by these techniques, commonly they
are designed to a specific game, having no capability of
generalizing their skills to perform well in other similar
games. This limitation brings the challenge of developing
and studying controllers capable of such generalization. To
facilitate and stimulate the research regarding these con-

trollers, new competitions were created, where the programs
are tested in many different game environments without pre-
vious knowledge of the objectives and challenges presented
in the games.

General Game Playing (GGP) Competition (3) and the
General Video Game Playing (GVGAI) (4) are the most
relevant general controllers competitions in this area. While
the first competition uses board games for evaluating the
contenders and the second one considers video games to
analyze the performance of the techniques. Another game
environment created with the objective of testing general AI
techniques is the Artificial Learning Environment (ALE) (5).
Different from GVGAI, where controllers receive a more
structured information on the game environment (as de-
scribed in Section III-A), screen captures are presented to the
controller in ALE. Here, the GVGAI competition framework
and rules are used.

The Rolling Horizon Algorithm (RHEA) (6), in its vanilla
version, did not achieve a good performance when compared
to other algorithms. However, recent enhancements (7) (8)
show that RHEA can be competitive with other methods
from the literature, encouraging further studies. We consider
here one of the most effective enhancement found so far,
the Rolling Horizon Algorithm with Shift Buffer (RHEA-
SB). This variant was chosen due to the results presented
by Gaina (8), where it outperforms the vanilla RHEA in all
configurations and is present in all the configurations with
the best results.

Initially, a study of the behaviour of RHEA-SB was
done variating different parameters, such as the population
size, depth of simulations in each individual and number
of individuals to be shifted after an action is chosen. Also,
we propose two enhancements in the RHEA algorithm with
shift buffers (8). The first one uses the 1-Step-Look-ahead
algorithm in order to improve the choice of actions in the
shifted individuals of the population. The second enhance-
ment applies a redundancy avoidance policy to discourage
choosing actions that cancel each others effects, allowing a
better exploration of the states presented in the games.

Results obtained indicate that both modifications im-

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 382

proved the performance of the original algorithm, having
more impact in the configurations with more individuals
and larger simulation depths. The 1-Step-Look-ahead en-
hancement improved the winning rates when compared
to the original algorithm and better performance than the
other variants in some configurations. Redundancy avoid-
ance policy presented a positive impact in the algorithm,
mainly when using configurations with deeper simulations
and larger populations. Also, using both 1-Step-Look-ahead
and the redundancy avoidance policy improved the results
in all metrics tested.

This paper is structured in 6 sections. Section II presents
the more relevant works from the literature regarding dif-
ferent variants of RHEA and other algorithms with similar
features as those ones proposed here. Section III details the
framework and background algorithms. Section IV discusses
the modifications proposed. Sections V and VI present
the computational experiments and the results obtained,
respectively. Finally, Section VII concludes the paper and
presents some future works.

II. RELATED WORK

In this section, studies relevant to this research are consid-
ered. A study of evolutionary computing controllers applied
to single games is shown. We then summarize RHEA and its
enhancements previously proposed in the GVGAI literature.
Also, some techniques similar to those proposed here and
applied to GGP are discussed.

A rolling evolution inspired algorithm, the online evolu-
tion, is proposed by Justesen et al. (9). It is designed to play
Hero Academy (Robot Entertainment 2012), a game where
the technique controls a number of units and evolves a set
of 5 different actions of every turn. The results presented
showed that the online evolution was able to perform better
than Monte Carlo Tree Search (MCTS) in 98% of the times.
MCTS has been dominant in game playing since it’s success
in GO (1) and overcame other greedy techniques. Wang et
al. (10) modified the idea to select script portfolio to play
StarCraft (Blizzard Entertainment 1998), outperforming Up-
per Confidence Bound for Trees (UCT) based algorithms (in
Section 2 MCTS and UCT are described with more detail).

Perez et al. (11) were the first to propose the Rolling
Horizon Evolutionary Algorithm, which uses simple macro
actions to solve the Physical Travelling Salesman Problem
(PTSP), a real time game where an agent must find a path
through a maze while maximizing the number of way points
reached. The algorithm presented competitive results with
Monte Carlo Tree Search algorithm. A rolling horizon algo-
rithm was first submitted in the 2014 GVGAI competition
as part of the sample controllers. Perez et al. (12) provides
a brief description and the ranking of the used algorithm
(12th). The 1-Step-Look-ahead algorithm (ranked as the 16th
best technique) is also into that sample of algorithms and it
is used as a possible improvement proposed o RHEA.

Recent studies presented by Gaina et al. analyze different
configurations of the vanilla RHEA (6). Gaina et al. also
proposed several enhancements to the vanilla version. For
instance, they proposed the use of other methods, such as
MCTS, for initial population seeding of RHEA (7). That
proposal showed a positive impact on the overall results. A
bandit-based mutation, Statistical-tree, Rollouts and a Shift
buffer enhancements were also explored (8), having the last
one the best improvement in the efficiency of the algorithm.
As the best version so far, RHEA with Shift buffer was
chosen as the baseline of this study.

Redundancy avoidance policy has been previously tack-
led as an enhancement for the MCTS algorithm in many
different forms. The first redundant action avoidance pol-
icy was proposed by Soemers, Dennis (13) and used an
approach based on Iterated Width algorithm (IW) (14) to
prune expanded redundant states in MCTS. Perez, et al. (15)
proposed a penalty method to the reward function after exe-
cuting opposing moves. A probability penalty was proposed
by (16) in the selection phase of the actions in MCTS. All
modifications listed above presented performance improve-
ment when compared to the original algorithm.

III. BACKGROUND

A. General Video Game AI Framework (GVGAI)

The GVGAI framework comprises a set of different 2D
games, containing more than 100 single and 50 multiplayer
games. These games are based on Atari 2600 console, with
no more than 6 action choices, namely: left, right, up, down,
use (press button) and nil (do nothing). GVGAI games can
be divided into different categories (e.g. puzzle, shooting,
and survival) providing many challenges to the controllers.

In the competition rules, the controller has no information
about which game it is playing and in order to take decisions,
it is provided a minimum information about each state of
the game, like the position of the avatar and game elements
(e.g. walls, non player characters (NPCs) and resources),
available actions and score. The framework also provides
a Forward Model (FM), which allows for controllers to
perform simulations considering different actions. As the
games in the competition may be stochastic, one FM call
gives one possible resulting state for an action when the
game is not deterministic. The controller must also inform
an action every game tick (40ms in the competition). This is
a small time for the controller to compute and to return an
action and, hence, a good strategy with a low computational
cost is important.

The competition rules are defined in a way that all games
must have a win condition, a time limit for that condition to
be reached and a game score. The score is defined using a
Formula-1 scoring system (F1-Score). Once all controllers
have played one game, a rank is made by sorting first by
number of victories, followed by the average score and
average time they spent to finish a given game. According to

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 383

{ {S
im

u
la

ti
o
n
 D

e
p
th

Population Size New Random Actions

Use

Nil

Ei

Use

Nil

Ei+1

Best

Action

Applied

Figure 1. Shift buffer scheme.

their position, the agents receive 25, 18, 15, 12, 10, 8, 6, 4,
2 and 1 points, from the first to the tenth ranked player, with
the rest receiving 0 points. When compared across different
games, the winner is determined by summing the points
obtained in all the games.

B. Rolling Horizon Evolutionary Algorithm with Shift Buffer
(RHEA-SB)

The Rolling Horizon Evolutionary Algorithm is a bio-
inspired populational technique proposed by Perez et al. (11)
where an agent evolves a set of actions in an imaginary
model, performs the first action of its plan, and repeats these
steps until the game is over. When applied to GVGAI games,
one individual is composed by a sequence of available
actions in the game and its fitness is given by evaluating
the last simulated state after using the FM to simulate its
sequence. At the beginning of each game tick, a population is
created and evolved with a time limitation. In the sequence,
the first action of the fittest individual is run.

Vanilla RHEA, as presented in GVGAI framework, cre-
ates a new population every game tick, losing the infor-
mation acquired in the last simulations. In order to use
that information, Gaina et al. (8) proposed the shift buffer
enhancement, where the information in the previous game
tick is used in the current game state. As shown in Figure 1,
the first action is removed from all individuals of the
population, the remaining actions are shifted in order to
place each action in its next position, and other randomly
generated actions are included as the last ones in each
individual. Thus, the population maintains some information
from the previous game tick.

C. Monte Carlo Tree Search (MCTS)

The dominant techniques in GVGAI are mainly based
on Monte Carlo Tree Search (MCTS) (17). The GVGAI
framework provides an MCTS variant where most competi-
tion entries are based. This vanilla version is used here as a
baseline in the computational experiments.

At each game step, the algorithm begins by creating a root
node to its search tree. Then each iteration consists of four

Figure 2. MCTS scheme.

steps (Figure 2): selection, expansion, simulation and back-
propagation. In selection phase, an expandable node (with
a non-terminal state and with unvisited children) is selected
using the tree policy. This node is then expanded by adding a
new child (by choosing an action to perform and to lead to a
new game state). From the added node, actions are randomly
selected using FM to simulate the game using the sequence
of actions defined by the tree. Finally, the state reached after
the simulation step is evaluated using a heuristic and its value
is used to update all the nodes that have been visited during
this iteration. These iterations are repeated until a time limit
is reached. The algorithm returns the child of the root node
that is considered the best action (e.g. that with the highest
evaluation value or the most visited one).

The tree policy used in the first step consists of descending
in the existing tree using the Upper Confidence Bound for
Trees (UCT) (Equation 1) as a policy. This policy consists of,
for every node visited, a child node j is chosen to maximize
UCT function

UCT = Xj + 2Cp

√
2 ln(n)

nj
(1)

where Xj is the average reward from arm j, n is the
number of times the current node has been visited, nj the
number of times child j has been visited and Cp > 0 is a
constant.

In Section VI-C is presented a comparison between the
best configuration of RHEA proposed here and the vanilla
version of MCTS available in the GVGAI framework.

IV. ENHANCEMENTS PROPOSED

The combination of RHEA-SB with 1-Step-Look-ahead
and Redundant Action Avoidance is proposed here1. 1-
Step-Look-ahead is used in order to improve the choice
of the action to complete the shifted individual. Thus, the
best sequence of actions previously obtained is augmented
by including a good (hopefully the best) next action. A
Redundant Action Avoidance prevents the agent of spending
time simulating action sequences which are unlikely to
provide good results.

1Source code available at https://github.com/BSant/GVGAI_RHEA

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 384

A. 1-Step-Look-ahead (1Step)

The 1-Step-Look-ahead algorithm is a simple method and
it consists of using the forward model to test every available
action from the current state. In this paper, 1-step-look-
ahead is used after the shift buffer phase of the RHEA-
SB algorithm to choose an action to complete the shifted
individual with the best action in the sequence.

B. Redundant Action Avoidance (RedAvoid)

As the controller has no information on the game, there is
no guarantee of witch actions will lead to more promising
states. Also, the exploration of states with different char-
acteristics (e.g. different positions for the avatar) leads to a
better exploration of the possibilities in the game, increasing
the chances of exploring winning states.

Redundant action avoidance techniques were explored be-
fore in other algorithms with promising results (13)(15)(16),
as it requires low computational resources to identify sim-
ple redundant actions. Thus, a strategy to avoid redundant
movement actions is also included in the current proposal,
where a new action is randomly selected whenever one of
the following sequences is found in the sequence of actions
of an individual of the population:

• right - left
• left - right
• up - down
• down - up
This verification is performed for every pair of actions of

each newly created individual (by the application of shift
buffer, or by means of crossover and mutation). Once a
redundant action is found, it is replaced by another one
randomly generated. This makes those redundant sequences
of actions less likely to appear in individuals, but it does
not remove them completely as the new randomly generated
action may be the same as the previous one. Thus, the
redundant actions are avoided but they are not completely
removed from the possible solutions. The redundant action
may be useful; they can be adopted for dodging an enemy
or to acquire some sort of bonus or resource, for example.

V. EXPERIMENTAL SETUP

Experiments were run using three main parts in this study.
The first part was proposed to analyze the impact of different
parameter settings on the efficiency of the proposed algo-
rithm. The parameters considered here are: population (pop),
depth of simulations (depth), and number of individuals
shifted and copied to the next game tick (shift). The second
part involves the evaluation of the proposals. The last part
compares the best proposed method with Vanilla MCTS.
The experiments were performed according to (8); the same
games and restrictions were used.

All the parameter settings and proposed RHEA-SB vari-
ants were evaluated using a set of 20 games, and playing 20
times on all 5 levels of each game. Thus, 100 independent

TABLE I. GAMES USED IN THE EXPERIMENTS, WITH ITS IDENTIFIER
(ID) IN THE FRAMEWORK AND CLASSIFICATION AS DETERMINISTIC (D)
OR STOCHASTIC (S).

Id Name Type Id Name Type
0 Aliens S 4 Bait D
13 Butterflies S 15 Camel Race D
18 Chase D 20 Chopper S
25 Crossfire S 29 Dig Dug S
36 Escape D 46 Hungry Birds D
49 Infection S 50 Intersection S
58 Lemmings D 60 Missile Command D
61 Modality D 66 Plaque Attack D
75 Roguelike S 77 Sea Quest S
84 Survive Zombies S 91 Wait for Breakfast D

runs were performed for each game and algorithm. The
budget given to each algorithm was 900 FM calls, so as to
eliminate bias from variations in the machine used to run the
experiments. The maximum configuration tested was pop10-
depth14 due to the fact that if it were larger, by adding
rollouts, the limited budget would not allow for even one
full population to be evaluated in one game tick.

The first part of the experiment was conducted by varying
one parameter while keeping the others static. The fixed
parameters were chosen based on those from the literature:
pop= 5, depth= 10, and shift= 1. The possible parameter
values are: pop={1,2,5,10} (Table IV), depth={6,8,10,14}
(Table II), and shift={1,2,3,4,5} (Table V). The case pro-
posed in the literature where shift=pop is also tested here,
and the results are presented in Table III.

In the second part of the experiment, 4 different core
parameter configurations (Population-Length = {1-6, 2-8, 5-
10, 10-14}) were used for all algorithms. These configu-
rations are from the literature (8). As it will be shown in
Section VI-A, shifting only one individual between game
tics is the best policy. All tests with shift buffer were made
shifting only the best individual. A Vanilla RHEA provided
by the framework was also included in the computational
experiments in order to provide a baseline.

VI. RESULTS AND DISCUSSION

This section presents the results and discussions on
the computational experiments. Two performance metrics
are used in the comparative analysis performed here: (i)
Formula-1 Score (Section III-A) and (ii) the number of wins.
Also, a Kruskal-Wallis H test followed by a Mann-Whitney
non-parametric U test is applied in order to identify when the
results are statistically different and best (p-value < 0.05).

A. Parameters Testing

Table II shows an increase in win rate and a better F1-
Score with deeper simulations in each individual. With this
results we can conclude that, for that parameter range, it
is possible to take deeper simulations without affecting the
evaluation afterwards. This suggests that RHEA-SB provides

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 385

TABLE II. DEPTH TESTS RESULTS

Pop Depth Shift Win(%) F1-Score
5 6 5 40.90 309
5 8 5 43.75 336
5 10 5 43.80 368
5 14 5 44.40 387

TABLE III. RESULTS WHEN VARYING THE PARAMETER POP.

Pop Depth Shift Win(%) F1-Score
1 10 1 47.04 413
2 10 2 42.80 312
5 10 5 43.80 334

10 10 10 43.85 341

the best results when evolving deeper sequences of actions.

It is possible to see in Tables III and III that the varia-
tion which obtained best individual win rate was that one
with only one individual, where the algorithm uses only
the mutation operator. The number of wins decreases for
2 individuals and then starts increasing when more than
2 individuals are used. Thus, we can conclude that the
algorithm behaves better while evolving only one individual
with mutation as moving operator. The increase on the win
rate shown while increasing the population in the tests where
Pop ≥ 2, however, suggests that larger populations with
crossover operator can obtain good results, but it would
require more population diversity.

RHEA-SB, as shown in Table III, had better performance
when only the best individual is shifted and copied to the
next game tick. This is expected, as only the first action of
the best individual is performed at the end of each game
tick. As a result, the current state of the game is similar to
that of FM when the action is performed, and the remaining
actions in the best individual are suitable for this case.

Table V presents the results obtained when the proposal
uses 5 individuals and depth equals to 10. In this table,
the number of individuals which are copied and shifted
in the next game tick is varied, and one can observe that
shifting more than 1 individual has no positive impact in
the performance of the algorithm.

In (8), RHEA-SB with the same parameter setting (pop-
ulation size equals to 5 and depth of the simulation equals
to 10) achieved 40.05% with respect to win rate, and the
best hybrid technique (EA-shift-roll with pop10-depth14)
obtained 42.35%. The results presented in Table V vary from
43.8% to 45.75% with respect to win rate, surpassing both

TABLE IV. RESULTS WHEN VARYING THE PARAMETER POP AND
SHIFT= 1.

Pop Depth Shift Win(%) F1-Score
1 10 1 47.04 402
2 10 1 44.40 302
5 10 1 45.75 320

10 10 1 45.05 376

TABLE V. RESULTS WHEN VARYING THE PARAMETER SHIFT.

Pop Depth Shift Win(%) F1-Score
5 10 1 45.75 372
5 10 2 45.10 362
5 10 3 44.70 318
5 10 4 44.50 264
5 10 5 43.80 284

TABLE VI. WIN RATE FOR EACH “POP-DEPTH” PARAMETER VALUES.

win%
Variant 1-6 2-8 5-10 10-14
RHEA 44.10 38.95 44.45 46.85
RHEA-SB 43.75 42.45 45.75 47.55
RHEA-SB-1Step 44.40 43.65 44.90 49.30
RHEA-SB-RedAvoid 43.60 44.70 45.30 49.95
RHEA-SB-RedAvoid-1Step 43.85 44.45 46.90 49.50

of the previous mentioned approaches.

B. Comparing the Proposed Approaches

Table VI shown the win rate in all configurations tested.
Table VII presents F1-Score calculated separately for each
parameter setting (each column).

As expected, vanilla RHEA got the lowest F1-Scores
in all cases. Also, it is possible to observe that the gap
in the results is smaller in the parameter settings with 1
individual, getting even a higher number of wins than some
of its enhanced version. This shows that the modifications
proposed have a larger impact with larger population sizes
and deeper simulations are adopted.

Although the technique with 1-Step-Look-ahead presented
similar F1-Score than the original algorithm, it overcomes
RHEA-SB in 3 of the 4 tests when the win rate is considered,
and even achieves the best overall variations in pop1-depth6
configuration (44.4% wins).

The use of a redundancy avoidance policy produces the
best win rates in 3 of the 4 tested cases and the best F1-
Scores. Also, the variant RHEA-SB-RedAvoid with pop= 10
and depth= 16 achieved the best win rate, and RHEA-SB-
RedAvoid-1Step with pop= 2 and depth= 8 obtained the
largest F1-Scores.

The Kruskal-Walis H test was performed in order to
determine when results (with respect to the score obtained
in each game) obtained by the five techniques for each game
are statistically different. The Mann-Whitney U test is used
to identify the best variants when the null hypotheses (results
are statistically equal) is rejected (p-value < 0.05). These

TABLE VII. F1-SCORE FOR EACH “POP-DEPTH” PARAMETER VALUES.

F1-Score
Variant 1-6 2-8 5-10 10-14
RHEA 301 234 270 259
RHEA-SB 331 299 309 304
RHEA-SB-1Step 319 317 295 310
RHEA-SB-RedAvoid 310 365 373 372
RHEA-SB-RedAvoid-1Step 339 385 353 355

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 386

(a) pop1-depth6 (b) pop2-depth8

(c) pop5-depth10 (d) pop10-depth14

Figure 3. Heat Maps with the number of games in which the variant on
the row found results significantly better than those on the column, where
0–RHEA, 1–RHEA-SB, 2–RHEA-SB-1Step, 3–RHEA-SB-RedAvoid, and
4–RHEA-SB-RedAvoid-1Step.

two tests are non-parametric. The heat maps in Figure 3
present the number of games in which the variant on the row
found results significantly better than those on the column.

As expected, vanilla RHEA did not achieve the best scores
in any case (first row), and its results are worse than other
variants in some games (first column). Also, one can notice
that RHEA-SB-RedAvoid-1Step is not worse than the other
variants in all the cases (fourth column), except to the variant
RHEA-SB-RedAvoid when pop= 1 and depth= 6 in only
one game.

C. Comparison with MCTS

Table VIII presents the percentage of wins, the mean
score and standard deviation obtained. Vanilla MCTS is used
and RHEA-SB-RedAvoid pop10-depth14- the RHEA variant
with the best number of wins, as shown in Table VI.

RHEA-SB-RedAvoid variant presented a better game win
rate 999 (49.95%), against vanilla MCTS 876 (43.8%).
However, when analyzing F1-Score, we notice that both
algorithms with 50% of the best results in games. One can
observe in Table VIII that MCTS achieved the best score in
14 games, against 11 of RHEA. Among the 5 games where
the algorithms achieved the same win rate ({0,29,50,58,75}),
the winning rate is either a 100% or 0%. Also, in these
games, the RHEA algorithm achieved the best game score
in 4 out of this 5 games, losing only in game 0 (Aliens).
Considering only the games scores, RHEA performed better
than MCTS in 11 games. As a result, RHEA algorithm is
more likely to get better scores in most of the games, but still
presented more difficulties than MTCS to win the games.

TABLE VIII. WINS AND SCORE WITH DEVIATION FOR EACH GAME
FOR THE VANILLA MCTS AND RHEA-SB-REDAVOID (POPULATION 10,
SIMULATION DEPTH 14 AND ONE INDIVIDUAL SHIFTED)

Game MCTS RHEA-SB-RedAvoid
Wins Score Wins Score
0 1 68.73±5.73 1 66.35±1.35
4 0.12 2.51±1.49 0.1 5.66±0.66
13 0.98 29.36±15.36 0.94 32.6±18.06
15 0.04 -0.76±0.24 0.05 -0.75±0.25
18 0.06 3.38±0.62 0.03 2.7±2.3
20 0.97 15.94±3.94 0.99 16.52±2.48
25 0.01 0.03±0.03 0.05 0±0
29 0 13.64±13.64 0 16.05±16.95
36 0 0±0 0.43 0.43±0.43
46 0.38 38±38 0.27 27.4±27.4
49 0.95 16.47±5.47 0.99 15.7±9.7
50 1 1±0 1 3.87±2.87
58 0 -3.06±3.06 0 -0.14±0.14
60 0.72 5.28±2.72 0.6 4.95±0.05
61 0.24 0.24±0.76 0.22 0.22±0.22
66 0.9 46.93±23.07 0.89 43.8±37.2
75 0 5.11±4.89 0 6.45±5.55
77 0.89 2362.02±1677.98 0.41 1413.82±620.18
84 0.43 2.87±2.87 0.41 3.08±3.08
91 0.07 0.07±0.07 0.68 0.68±0.32

VII. CONCLUSION AND FUTURE WORK

In this paper we presented a study of the state of the art in
rolling horizon evolutionary algorithms (RHEA) in GVGAI
and proposes two new approaches. The first proposed variant
uses the 1-Step-Look-ahead algorithm after the shift buffer
phase of RHEA-SB in order to improve the individual
which is shifted and copied to the next game tick. The
second proposal applies a spatial redundant action avoidance
policy that replaces actions that would undo the previous
movement. Also, the combination of both approaches with
RHEA-SB is proposed (labelled as RHEA-SB-RedAvoid-
1Step).

The computational experiments were divided in three
main parts. In the first experiment, some parameter settings
were evaluated and the results show that using less shifted
individuals and deeper simulations improve win rates and
F1-Scores. Also, the quality of the solutions is decreased
when a middle population size is adopted.

The second experiment analyzed the two proposed ap-
proaches when combined with RHEA. One can conclude
that 1-step-look-ahead had a positive impact in the overall
performance of RHEA, achieving better win rates. Also,
the use of redundancy avoidance policy presented the best
results in most cases and reached the best F1-Scores. The
best win rates are obtained when the redundancy avoidance
policy is used, population size is equal to 10 and the depth
of the simulation is 14. The proposed RHEA-SB-RedAvoid-
1Step obtained the best F1-Score when population size is
equal to 2 and the depth of the simulation is 8.

The proposed RHEA variation have shown competitive
results when compared to vanilla MCTS. Besides that, when
compared to MCTS, RHEA obtained a higher overall game

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 387

score in most of the games considered here. However,
when applying the GVGAI competition ranking method both
algorithms reached similar F1-Scores.

The results obtained indicate that RHEA when combined
with 1-Step-Look-ahead and a redundancy avoidance policy
is promising and this achievement encourages further re-
search. For instance, the adoption of other methods to assist
RHEA, such as seeding techniques and rollouts.

There are studies where enhancements are proposed to the
MCTS algorithm and some of them can also be considered
to RHEA. Thus, the analysis of those enhancements when
applied to both RHEA and MCTS provides an interesting
future work. Finally, the application of other search tech-
niques, such as GRASP, tabu search and path relink, can be
adopted to create new rolling horizon controllers.

ACKNOWLEDGMENT

The authors thank the financial support provided by UFJF,
PPGCC, Capes, CNPq and FAPEMIG.

REFERENCES

[1] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,
G. Van Den Driessche, J. Schrittwieser, I. Antonoglou,
V. Panneershelvam, M. Lanctot et al., “Mastering the
game of go with deep neural networks and tree search,”
nature, vol. 529, no. 7587, pp. 484–489, 2016.

[2] M. Campbell, A. J. Hoane Jr, and F.-h. Hsu, “Deep
blue,” Artificial intelligence, vol. 134, no. 1-2, pp. 57–
83, 2002.

[3] M. Genesereth, N. Love, and B. Pell, “General game
playing: Overview of the aaai competition,” AI maga-
zine, vol. 26, no. 2, p. 62, 2005.

[4] J. Levine, C. Bates Congdon, M. Ebner, G. Kendall,
S. M. Lucas, R. Miikkulainen, T. Schaul, and
T. Thompson, “General video game playing,” Dagstuhl
Follow-up, 2013.

[5] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowl-
ing, “The arcade learning environment: An evaluation
platform for general agents,” Journal of Artificial In-
telligence Research, vol. 47, pp. 253–279, 2013.

[6] R. D. Gaina, J. Liu, S. M. Lucas, and D. Perez-
Liebana, “Analysis of vanilla rolling horizon evolution
parameters in general video game playing,” in Euro-
pean Conference on the Applications of Evolutionary
Computation. Springer, 2017, pp. 418–434.

[7] R. D. Gaina, S. M. Lucas, and D. Perez-Liebana,
“Population seeding techniques for rolling horizon evo-
lution in general video game playing,” in Evolutionary
Computation (CEC), 2017 IEEE Congress on. IEEE,
2017, pp. 1956–1963.

[8] ——, “Rolling horizon evolution enhancements in gen-
eral video game playing,” in Computational Intelli-
gence and Games (CIG), 2017 IEEE Conference on.
IEEE, 2017, pp. 88–95.

[9] N. Justesen, T. Mahlmann, and J. Togelius, “Online
evolution for multi-action adversarial games,” in Euro-
pean Conference on the Applications of Evolutionary
Computation. Springer, 2016, pp. 590–603.

[10] C. Wang, P. Chen, Y. Li, C. Holmgård, and J. Togelius,
“Portfolio online evolution in starcraft,” in Twelfth
Artificial Intelligence and Interactive Digital Entertain-
ment Conference, 2016, pp. 114–120.

[11] D. Perez-Liebana, S. Samothrakis, S. Lucas, and
P. Rohlfshagen, “Rolling horizon evolution versus tree
search for navigation in single-player real-time games,”
in Proceedings of the 15th annual conference on Ge-
netic and evolutionary computation. ACM, 2013, pp.
351–358.

[12] D. Perez-Liebana, S. Samothrakis, J. Togelius,
T. Schaul, S. M. Lucas, A. Couëtoux, J. Lee, C.-U.
Lim, and T. Thompson, “The 2014 general video game
playing competition,” IEEE Transactions on Computa-
tional Intelligence and AI in Games, vol. 8, no. 3, pp.
229–243, 2016.

[13] D. J. Soemers, C. F. Sironi, T. Schuster, and M. H.
Winands, “Enhancements for real-time monte-carlo
tree search in general video game playing,” in Com-
putational Intelligence and Games (CIG), 2016 IEEE
Conference on. IEEE, 2016, pp. 1–8.

[14] T. Geffner and H. Geffner, “Width-based planning for
general video-game playing,” Proc. AIIDE, pp. 23–29,
2015.

[15] D. Perez-Liebana, J. Dieskau, M. Hunermund,
S. Mostaghim, and S. Lucas, “Open loop search for
general video game playing,” in Proceedings of the
2015 Annual Conference on Genetic and Evolutionary
Computation. ACM, 2015, pp. 337–344.

[16] E. H. dos Santos and H. S. Bernardino, “Redundant
action avoidance and non-defeat policy in the monte
carlo tree search algorithm for general video game
playing,” Proceedings do XVI Simpsio Brasileiro de
Jogos e Entretenimento Digital, 2017.

[17] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas,
P. I. Cowling, P. Rohlfshagen, S. Tavener, D. Perez,
S. Samothrakis, and S. Colton, “A survey of monte
carlo tree search methods,” IEEE Transactions on
Computational Intelligence and AI in games, vol. 4,
no. 1, pp. 1–43, 2012.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 388

