
Providing an IM Cross-Platform Game Engine for Text-Messaging Games

Victor T. Sarinho, Gabriel S. de Azevedo, Filipe M. B. Boaventura
Lab. de Entretenimento Digital Aplicado (LEnDA)

Universidade Estadual de Feira de Santana (UEFS)
Feira de Santana, Bahia, Brazil

Email: vsarinho@uefs.br, gabrielsilvadeazevedo@gmail.com, fmbboaventura@gmail.com

Abstract—Several types of Text Messaging (TM) games are
available today. They explored different types of games genres,
categories and platforms, such as Short Messaging Service
(SMS) competitions and text-based adventures on Instant
Messaging (IM) bots. This paper presents IMgine, a game
engine able to provide TM games across distinct IM platforms.
It implements game engine routines in a configured game loop
for multiple IM platforms, capable of representing TM game
states and logic by the execution of predefined game functions.
As validation process, IM games were developed to show the
IMgine capability of providing game mechanics and dynamics
aspects according to TM and IM restrictions. As a result, a
foundation for IM games that organizes the definition of TM
game states and logic is provided, allowing game developers
to be concerned with the game core implementation instead of
IM transmission process or TM interaction limits.

Keywords-text-messaging games; instant messaging; cross-
platform; game engine;

I. INTRODUCTION

Instant Messaging (IM) and Textual User Interface (TUI)
represent a historic and important combination for digital
games. IM services have provided new opportunities for
game development, offering a new vocabulary [1] and mul-
timedia capabilities [2] for game designers. TUI has been
applied as a common approach to define basic human-
computer interactions, such as prompts and menus [3],
for traditional text-based games. Together, they have been
used to provide different types of single and multiplayer
Text Messaging (TM) games over the years, such as trivia,
combat and strategy games [4].

TM games are in many cases simple, small and directly
programmed for native platforms, discouraging additional
investment in reusable assets during game production. How-
ever, the continuous evolution of communication technolo-
gies and game design requirements increased the “internet
time” problem [5] for TM games, where the rapid usage of
IM innovations and the short time to launch it become top
priorities.

In this sense, reuse strategies have been applied over the
years to provide TM games for IM platforms, such as game
engines for dedicated games [6], game engines focused on
game genres [7] for dedicated platforms [8], and proprietary
solutions on the cloud to design games on modern IM
platforms [9]. As a consequence, there is a current demand

for open source TM game engines able to use modern IM
platforms resources in different types of game genres.

This paper presents IMgine, an open source IM cross-
platform game engine for TM games. It defines IM commu-
nication resources, TUI models and a generic game loop able
to perform an overall flow control according to developed
TM games.

To this end, section 2 presents related work on TM games
and reusable strategies applied to them. Section 3 describes
the applied methodology to perform the generic game loop
for TM games in distinct IM platforms, and presents the
production of two TM games via proposed game engine.
Section 4 presents the obtained TM game results together
with a qualitative and code analysis of the developed game
engine. Finally, section 5 presents the conclusions and future
work of this project.

II. RELATED WORK

Different types of concepts, examples and reusable strate-
gies were applied for TM games. Some of them can be sum-
marized in game genres, such as Text Adventure and Quiz
games. Others can be described following the evolution of
IM technologies, in this case from Short Messaging Service
(SMS) to modern IM platforms supported by Chatbot games.

In this sense, for the reuse of Text Adventure games, Gab-
sdil, Koller and Striegnitz [10] described an engine for text
adventures that uses computational linguistics and theorem
proving techniques based on description logic. Following a
data-driven approach, Quest is a free, open source software
for creating text adventure games [11]. It is a point and
click editor that configures main elements and commands
necessary to represent a textual adventure, such as rooms
and exits, verbs to read and respective responses, objects to
interact, player inventory, and so on.

For Quiz games, whose main purpose is the successful
answering of questions, Mininel et. al. [12] described the
application of the Mogabal game engine to provide quiz
games using permanent event-sprites, which are linked to
a long list of random quizzes regarding various topics.
Wolf et al. [13] proposed a Jeopardy! like quiz game with
questions automatically generated from DBpedia, gathering
ranking information about persons to provide a basis for the
evaluation of semantic ranking heuristics. Cheong et al. [14]

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 563



presented the use of a multiple-choice quiz implemented
by a software tool (Quick Quiz), which was applied in
three undergraduate IT-related courses as a gamified learning
activity. Finally, Klopfenstein and Bogliolo [15] proposed
the Quiz-Master game, an application of the deep linking
feature that allows a bot to ask contextual questions in a
persistent quiz session.

Considering SMS games, Alien Revolt [16] was a
Location-Based Mobile Game (LBMG) that follow a SMS
strategy to locate and “shoot” other players within a specific
radius in the city space. Bontchev et al. [17] provided a
mobile chess game that could be played simultaneously
in Web browsers and SMS mobile phones. Marcote et al.
[18] introduced the AMUSE platform to support mobile
gambling services (lotteries). Flintham et al. [19] presented
“Day of the Figurines”, a narrative-driven TM game for
mobile phones that sends and receives SMS in order to
support an episodic storytelling on mobile phones. Olla et al.
[20] affirmed the usage of the MADIC SMS game engine
for speed and cost reasons to create effective mobile ap-
plications. Finally, PhoneAdventureGame [21] provided an
adventure game engine that used Twilio’s response language
(TwiML) to redirect game inputs and output via SMS Text
process actions.

Regarding Chatbot, talkbot, chatterbot, bot or IM bot
games, which represent a computer program that conducts
a conversation via auditory or textual methods, “Hello,
Stranger!” [22] is a text-based adventure available in mul-
tiple IM bots and mobile platforms whose game goal is to
help the main character to escape the ocean depths alive
in real time. LibrasZap [23] is a multi-IM game bot that
evaluates the player knowledge in the Brazilian Language
of Signals (LIBRAS). Klopfenstein et al. [24] presented a
Telegram bot-based multiplayer game that was deployed to
handle large-scale treasure hunts in different use-cases, in-
cluding educational, cultural, or touristic applications. Script
Creation Utility for Nodejs Maniacs (SCUNM) [8] is a
text-adventure game engine that uses Telegram as standard
output for text, images (even animated gifs) and interactive
selections representing the game play. Telegram Gaming
Platform [25] allows the distribution of HTML5 chatbot
games with graphics and sound loaded on demand as needed,
just like ordinary webpages. Finally, for IM cloud platforms,
OnSequel [9] allows the production of interactive multi-IM
games, building quiz, story-based games, or whatever else
in an easy, model-based, and code-free approach.

III. METHODOLOGY

The IMgine development and validation process was
divided in 3 main parts: 1) the definition of a multi-IM
platform to be used; 2) the configuration of game engine
routines to represent an IM game loop; and 3) the imple-
mentation of game functions called during the game loop to
develop the core of IM games.

A. The Multi-IM Platform

Regarding available multi-IM platforms solutions [26],
SPLIMBo is an open source Software Product Line (SPL)
[27] that was chosen to configure and deploy cross-platform
IM bots in a “write once, run anywhere” perspective. It is
based on local hosting support and XML-based specifica-
tions (the ZapML language) to describes textual dynamics
for TUI responses in configured IM bots.

ZapML defines Menu, Prompt, Command, Sequence, Exec
and hypertexts tags as main XML elements to represent IM
bots. Each ZapML response to IM clients is based on a tag
evaluation, which defines the current state of a bot in an IM
conversation. For example, when a Menu tag is evaluated,
the IM bot shows the menu options and wait for a IM
client response. If the IM client selects a sub Menu option,
it executes a new ZapML tag that can be a Command, a
Sequence, or even a new Menu. If a back option is selected, it
returns to the previous tag content. If the IM client sends an
invalid option, the current Menu is executed again showing
the same menu options of the current node [26].

Figure 1. DemoZap configuration.

Figure 2. DemoZap configuration running on Facebook Messenger.

Figure 1 illustrates one ZapML configuration example
called DemoZap. It is based on one Menu and two Command

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 564



tags (the Menu options) able to send “Hello World!!!”
and a message Echo as IM response [26]. Figure 2 also
demonstrates the DemoZap configuration running on the
Facebook Messenger platform.

B. Game Engine, Game Routines and Game Loop

Game engine is defined as an “extensible software that can
be used as the foundation for many different games without
major modification” [28], and represents “the collection of
modules of simulation code that do not directly specify the
game’s behavior (game logic) or game’s environment (level
data)” [29]. For game loops, they offer “an overall flow
control for the entire game program”, executing a sequence
of game actions per frame repeatedly until the user quits
[30]. Game loops also “decouple the progression of game
time from user input and processor speed” [31], organizing
the execution of game tasks to achieve consistent simulations
in a game [32] [33].

Regarding the configuration of game engine routines
to represent an IM game loop, Sicart [34] defines game
loop as an “algorithm that relates the current state of the
game and the properties of the objects with a number of
conditions that consequently can modify the game state”. In

addition, Gregory [28] affirms that the “main game loop
runs repeatedly, and during each interaction of the loop,
various game systems such as artificial intelligence, game
logic, physics simulation, and so on are given a chance
to calculate or update their state for the next discrete time
step”. Gregory [28] also affirms for game outputs that they
are “rendered by displaying graphics, emitting sound, and
possibly producing other outputs such as force feedback on
the joypad”.

By the application of ZapML tags, game loop iterations
can be controlled to interpret user inputs and provide game
logic outputs, according to configured game engine routines.
In this sense, initialize game status, render game status, get
player input and update game status game routines were
configured in a game cycle via ZapML to provide the IMgine
game loop for TM games. GameConfig and GameStatus
entities are also used to control current user inputs/outputs
and the game end during the game loop.

The initialize game status routine is performed in two
steps (Figure 3). The first, when the game is loaded after the
player (IMgineClient) sends an initial message, GameConfig
values are obtained to send a “splash” text or image about the
game as a response. The second, before entering the game

Figure 3. Sequence diagram of the IMgine game loop.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 565



loop to start the game play, the startGameStatus function is
executed to prepare initial GameStatus values.

Inside the game loop, the render game status routine
verifies current GameStatus values and decides which IM
content must be send to the player (Figure 3). By IM
bot platforms, an IM game response can be performed
via multimedia content types, such as text, image, audio,
video and document. GameStatus fields, such as message,
imagePath, httpText, and httpImage, indicate which content
can be directly sent or loaded via http protocol to the player.

After rendering the current game status to the player, the
get player input routine is performed (Figure 3). GameS-
tatus fields, such as promptText, menuText, currentOpt1,
currentOpt2, currentOpt3, and so on, indicate which prompt
message or menu options must be sent to the player to start
the interaction. Prompt and Menu tags verify if there is an
initial content to be sent in the respective GameStatus field.
If true, the prompt or menu content is sent to the player,
asking a question or giving a current game option for the
player interaction.

After player response, the currentCommand variable will
receive the player input that could be a small text or

a selected menu option to be processed by the update
game status routine. This game routine executes the up-
dateGameStatus function to perform game rules according to
the developed IM game, and updates the gameEndMessage
variable with the current game end message value (Figure
3). The gameEndMessage value is used to decide when the
IMgine game loop must be finished or not. Player score and
highscore data are also verified by this routine to include the
current player id in the Hall of Fame after the game end.

C. Developing IMgine Games

GuessMyNumber and BodyZap [35] games were devel-
oped to validade the IMgine game loop. GuessMyNumber
is a classic prompt game where the player must discover
a random number in a range of possibilities, 1 to 1000 in
this case. BodyZap follows the classic quiz genre with time
limit, inviting the player to answer Body [36] questions to
conquer a total of 10 organs of 2 organic systems in less
than 10 minutes.

GuessMyNumber presents an initial menu where the
player sends the “S” option to start the game play. The
startGameStatus function defines an initial promptText mes-

Figure 4. Activity diagram of the GuessMyNumber updateGameStatus function.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 566



sage to the player, asking about a number between 1 and
1000, and set initial values to currentNumber, minNumber
and maxNumber fields of the GamePlay entity.

For each player answer, updateGameStatus (Figure 4)
gets the current GamePlay values and verifies if the player
number is equals to the current gameplay number. If true,
the current gameEndMessage will be updated, the game
player result will be stored, and the high score position
will be defined, together with an invitation message to put
a name in the Hall of Fame. If false, the range limits
(minNumber and maxNumber) will be redefined according to
the player number. GameStatus and GamePlay entities will
also be updated to show either a new player prompt with
another range of numbers to guess, or the game end message
congratulating on the discovery of the current gameplay
number.

Regarding the BodyZap game, it presents an initial menu
to the player with an initial option to start the game play.
The startGameStatus function defines an initial message
describing the time left to the player, and sets a “timer”

value to the GameStatus.statusId field. This field is used
to control the game actions that will be performed in each
game cycle. Moreover, for GamePlay fields, the following
values are initially applied: startUp is now(); zero attempts
to the player; and null for the lastCardId. Previously Con-
queredOrgans by the player are also removed before starting
a new game.

After BodyZap initialization, for each player interaction,
updateGameStatus (Figure 5) gets the current GamePlay
and ConqueredOrgans values and verifies if the game time
expired (10 minutes). If true for “time expired”, a “the
time is up” message with the total of ConqueredOrgans
is prepared and sent back to the player, together with the
gameEndMessage. If false, the current GameStatus.statusId
value is verified (“timer”, “card” or “feedback”) which
indicates the last performed operation in the game.

If the last performed operation is equals to “timer”, a
new question Card is obtained and shown to the player
as a menu with the respective question text and answer
options. GameStatus.statusId is also updated to “card”, and

Figure 5. Activity diagram of the BodyZap updateGameStatus function.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 567



the idLastCard field is referred to this new question Card.
If the last performed operation is equals to “card”, the

selected player option is compared with the correct answer
of the idLastCard field. If the selected player option was
a wrong answer, an error message showing the lost organ
is sent to the player, together with the GameStatus.statusId
update to “feedback”. However, if the selected player option
was a correct answer, a congratulation message showing
a conquered organ is sent to the player, together with the
GameStatus.statusId update to “feedback”. Moreover, if all
organs were conquered, a victory message with obtained
results is sent to the player as a gameEndMessage.

Finally, if the last performed operation is equals to “feed-
back”, a message describing the conquered organs and the
time left to end the game is sent to the player, together with
the GameStatus.statusId update to “timer” value. As a blank
prompt Text and none menu option is defined in “feedback”
state, the IMgine game loop: renders the time left message;
skips the get player input operation; and immediately calls
updateGameStatus again to continue the proposed game
logic for the “timer” GameStatus.statusId value.

IV. RESULTS AND DISCUSSION

Different approaches can be applied in TM games to
provide TUI interactions for players, such as Mininel et
al. [12] linking textual messages to on-screen sprites in
developed games. For the IMgine game engine, it is based on
SPLIMBo features that configure TUI templates, applying
player interactions based on prompts and menus for user
input, and textual and multimedia messages for user outputs.

Following this approach, IMgine games can be directly
rendered by modern multi-IM platforms, such as Telegram
and Facebook Messenger (Figure 6 and Figure 7), according
to SPLIMBo resources able to interpret them. IMgine games
can also be interpreted by alternative platforms according to
developed IMgineClients that follow the proposed IM game
loop and SPLIMBo input/output strategy, such as command-
line and web interfaces for example (Figure 8 and Figure 9).

Regarding the development of TM games, they are of-
ten programmed to “dedicated” platforms without using a
specific game engine or game reusable approach, such as
the LibrasZap game loop directly configured via SPLIMBo
resources [26]. By the IMgine game loop, there is a reusable
and low-coupling way of developing the core of TM games,
organizing the game logic modeling and deploying to dis-
tinct TUI platforms.

In this sense, Table I presents some obtained reuse metrics
[37] for the amount of reused code and complexity of the
GuessMyNumber and BodyZap games, according to Plato
code analyzer [38] of the IMgine artifacts (Figure 10). As a
result, more than 95% of SLOC reuse to GuessMyNumber
and more than 90% of complexity reuse were obtained
for both games, confirming the game core reusability and
maintainability for IMgine games.

Figure 6. GuessMyNumber game running on Telegram platform.

Figure 7. BodyZap startup with time left message and initial question
running on Facebook Messenger platform.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 568



Figure 8. GuessMyNumber running on command-line interface.

Figure 9. Initial menu of the BodyZap game running on Web interface.

Table I
REUSE METRICS OBTAINED BY GuessMyNumber AND BodyZap GAMES.

Game Name Amount of SLOC /
Total SLOC

Amount of Complexity
/ Total Complexity

GuessMyNumber 49/(49+1513) = 3,14% 6/(6+284) = 2,07%
BodyZap 889/(889+1513) =

37,01%
19/(19+284) = 6,27%

Finally, regarding available game engines in the IM
context, some initiatives were developed in distinct game
categories. They provided current TM game engines focused
on dedicated platforms for HTML games [25] on legacy

Figure 10. Complexity and SLOC results of the IMgine code analysis.

technologies such as SMS [21], and on cloud-paid services
in proprietary code [9]. Table II summarizes a qualitative
comparison among IMgine and these available TM game
engines according to license, reusability, usage and multi-
platform criteria. As a result, IMgine can be classified as
an interesting solution to the production of TM games in a
reusable and open source multi-IM perspective.

V. CONCLUSIONS AND FUTURE WORK

This paper presented IMgine, an open source cross-
platform IM game engine solution for TM games. It defined
open source resources to allow the IM communication for
game user, TUI models for TM games, and a generic game
loop able to perform an overall flow control according to
multi-IM platforms. To this end, the SPLIMBo platform
was chosen to cover the IM transmission process for multi-
IM platforms, and to provide feature-based resources to
design IM bots. Using SPLIMBo, game engine routines were
defined via ZapML configurations to provide the IM game
loop, and IM game states were represented by the realization
of IMgine game core functions.

By the IMgine usage, it can be applied in the production
of interactive text adventures with multimedia resources,
following dynamic demands and interface restrictions of
quiz games, providing the instantaneous communication of
SMS messages, and reaching modern IM platforms currently
used by the population. IMgine provides a foundation for
IM games, simplifying the TM game design production to
be concerned with the implementation of game functions
that define the game core, instead of IM restrictions such
as transmission process or gaming interaction limits. As a
result, IMgine presents itself as an interesting solution to

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 569



Table II
QUALITATIVE COMPARISON AMONG IMGINE AND AVAILABLE GAME ENGINES IN THE IM CONTEXT.

Game Engine License Reusability Usage Multiplatform
PhoneAdventureGame
[21]

Open Source SMS wrapper Local Hosting No

Telegram Gaming Plat-
form [25]

Proprietary Telegram API for HTML
games

Web Service No

SCUNM [8] Open Source Adventure game routines
for Telegram platform

Local Hosting No

OnSequel [9] Proprietary Limited graphic flows Cloud Yes
IMgine Open Source startGameStatus and up-

dateGameStatus functions
Local Hosting Yes

provide classic TM games, as well as to produce new textual
mechanics and dynamics on modern IM platforms.

As a proof of concept, two IM games were presented
to validate the IMgine capability of producing IM games.
These games explore the production of a gameplay us-
ing prompt-based and menu-based interactions, having suc-
cess in representing their contexts and logic for quiz
games over IM limitations. For verification and dissemina-
tion reasons, these game implementations are available to
the open source community at https://github.com/vsarinho/
IMgine.js, together with IMgine configurations and neces-
sary SPLIMBo resources to reproduce and extend developed
IM game services.

However, despite the IMgine benefits in the production
of TM games, there are some possible problems with the
IMgine adoption that can be described. Game engines, for
example, often restrict the game design [39], and, although
developed TM games are simple in most time, they may
suffer at some point with the constraints imposed by the
chosen engine. SPLIMBo adapters do not use dedicated
resources from specific bot platforms to provide advanced
IM interactions, such as in-line buttons and webviews [40].
The learning curve to use IMgine may not compensate
it usage at some situations in comparison with the direct
game development to a target IM platform via SPLIMBo
or dedicated API. Only punctual games were implemented
with IMgine, being necessary to improve the verification and
validation process in a large-scale level at some moment.
Finally, a quantitative comparison among IMgine and avail-
able open source engines for TM game development was not
performed yet due to structural divergences among them,
such as distinct programming languages and paradigms,
developed for dedicated IM platforms, and the focus on a
specific game genre/category.

As future work, a standard model for an initial TM
game menu system [41], something important for specific
game categories such as adventure games and RPG, will
be provided. The support of multiplayer TM games, such as
Telegram Game API and SMS competitions, is not available
yet, being necessary to improve the proposed IMgine game
loop to support this game style as soon as possible. Finally,
the production of dedicated game engines for specific game

domains, such as quiz (AsKIME), text-adventure (Adven-
tIME) and board games (BoardIME), will be performed by
the adaptation of startGameStatus and updateGameStatus
functions to parse respective domain configuration. The idea
is to provide a fast configuration of specific TM game
categories and genres in a SPL strategy [27] extending the
production possibilities of TM games in a write once, run
anywhere perspective.

REFERENCES

[1] B. Danet, L. Ruedenberg-Wright, and Y. Rosenbaum-
Tamari, “Hmmm where’s that smoke coming from?” Journal
of Computer-Mediated Communication, vol. 2, no. 4, p.
JCMC246, 1997.

[2] C. Lebeuf, M.-A. Storey, and A. Zagalsky, “Software bots,”
IEEE Software, no. 1, pp. 18–23, 2018.

[3] I. Sommerville, Software Engineering. Addison-Wesley,
2007.

[4] C. Shchiglik, S. J. Barnes, and E. Scornavacca, “Mobile
entertainment services: a study of consumer perceptions to-
wards games delivered via the wireless application protocol,”
International Journal of Services and Standards, vol. 1, no. 2,
pp. 155–171, 2004.

[5] R. Baskerville and J. Pries-Heje, “Short cycle time systems
development,” Information Systems Journal, vol. 14, no. 3,
pp. 237–264, 2004.

[6] WereWolf, “A game engine for running werewolf in a chat
client,” https://github.com/hjwylde/werewolf, 2016.

[7] M. J. Wolf, The medium of the video game. University of
Texas Press, 2001.

[8] SCUNM, “Script creation utility for nodejs maniacs,”
https://github.com/jlvaquero/SCUNM, 2017.

[9] OnSequel, “Create interactive games for messengers,”
https://www.onsequel.com/gamebot, 2016.

[10] M. Gabsdil, A. Koller, and K. Striegnitz, “Building a text
adventure on description logic,” in International Workshop
on Applications of Description Logics, Vienna, September,
vol. 18, 2001.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 570



[11] B. D. Ballentine, “Textual adventures: Writing and game
development in the undergraduate classroom,” Computers and
Composition, vol. 37, pp. 31–43, 2015.

[12] S. Mininel, F. Vatta, S. Gaion, W. Ukovich, and M. P.
Fanti, “A customizable game engine for mobile game-based
learning,” in Systems, Man and Cybernetics, 2009. SMC 2009.
IEEE International Conference on. IEEE, 2009, pp. 2445–
2450.

[13] L. Wolf, M. Knuth, J. Osterhoff, and H. Sack, “Risq!
renowned individuals semantic quiz: a jeopardy like quiz
game for ranking facts,” in Proceedings of the 7th Interna-
tional Conference on Semantic Systems. ACM, 2011, pp.
71–78.

[14] C. Cheong, F. Cheong, and J. Filippou, “Quick quiz: A
gamified approach for enhancing learning.” in PACIS, 2013,
p. 206.

[15] L. C. Klopfenstein and A. Bogliolo, “The quiz-master bot: a
persistent augmented quiz delivered through online messag-
ing,” in INTED2017 Proceedings (11th International Technol-
ogy, Education and Development Conference). IATED, 2017,
pp. 9806–9811.

[16] A. d. S. e Silva, “Alien revolt (2005-2007): A case study of the
first location-based mobile game in brazil,” IEEE Technology
and Society Magazine, vol. 27, no. 1, pp. 18–28, 2008.

[17] B. Bontchev, N. Gabarev, and H. Pavlov, “A mobile chess
game,” in Proceedings of 16th SAER Conference, 2002, pp.
138–143.

[18] E. Marcote, D. I. Iglesia, and C. J. Escudero, “An external
short message entity for gambling services,” in Proceedings
of the 2004 ACM SIGPLAN workshop on Erlang. ACM,
2004, pp. 27–32.

[19] M. Flintham, G. Giannachi, S. Benford, and M. Adams, “Day
of the figurines: Supporting episodic storytelling on mobile
phones,” in International Conference on Virtual Storytelling.
Springer, 2007, pp. 167–175.

[20] P. Olla, N. Patel, and C. Atkinson, “A case study of mmo2s
madic: a framework for creating mobile internet systems,”
Internet Research, vol. 13, no. 4, pp. 311–321, 2003.

[21] P. Collins, “Twilio powered adventure game,”
http://saveandexit.com/twilio-powered-adventure-game/,
2013.

[22] GameOn, “Hello, stranger!”
https://itunes.apple.com/us/app/hello-
stranger/id1048613928?mt=8, 2016.

[23] V. T. Sarinho, “Libraszap-an instant messaging game for
knowledge assessment in brazilian sign language,” Brazilian
Journal of Computers in Education, vol. 25, no. 01, p. 44,
2017.

[24] L. C. Klopfenstein, S. Delpriori, B. D. Paolini, and A. Bogli-
olo, “Code hunting games: a mixed reality multiplayer trea-
sure hunt through a conversational interface,” in International
Conference on Internet Science. Springer, 2017, pp. 189–
200.

[25] Telegram, “Gaming platform 1.0,”
https://telegram.org/blog/games, 2016.

[26] V. T. Sarinho, “Splimbo–developing and evaluating a software
product line for cross-platform im bots,” Journal on Advances
in Theoretical and Applied Informatics, vol. 3, no. 2, pp. 18–
23, 2017.

[27] P. Clements and L. Northrop, Software product lines: prac-
tices and patterns. Addison-Wesley Reading, 2002, vol. 3.

[28] J. Gregory, Game engine architecture. AK Peters/CRC Press,
2014.

[29] M. Lewis and J. Jacobson, “Game engines in scientific
research,” in Communications of the ACM, vol. 45(1), 2002,
p. 21.

[30] S. Madhav, Game Programming Algorithms and Techniques:
A Platform-Agnostic Approach. Pearson Education, 2014.

[31] R. Nystrom, Game programming patterns. Genever Benning,
2014.

[32] D. Sanchez-Crespo and D. S.-C. Dalmau, Core techniques
and algorithms in game programming. New Riders, 2004.

[33] A. LaMothe, Tricks of the Windows game programming
gurus. Sams Publishing, 2002.

[34] M. Sicart, “Defining game mechanics,” Game Studies, vol. 8,
no. 2, 2008.

[35] V. T. Sarinho, E. M. Granjeiro, and C. O. Cerqueira,
“Bodyzap: Um jogo de im para o ensino de fisiologia hu-
mana,” in II Workshop de Jogos e Saude, XVI Brazilian Sym-
posium on Games and Digital Entertainment (SBGAMES).
SBC, 2017.

[36] G. A. Borges, C. O. C. Lima, E. A. Granjeiro, V. T. Sarinho,
and R. A. Bittencourt, “Body: Um jogo digital educacional de
tabuleiro na area de fisiologia humana,” in XV Brazilian Sym-
posium on Games and Digital Entertainment (SBGAMES).
SBC, 2016, pp. 412–420.

[37] W. Frakes and C. Terry, “Software reuse: metrics and models,”
ACM Computing Surveys (CSUR), vol. 28, no. 2, pp. 415–435,
1996.

[38] Plato, “Javascript source code visualization, static analy-
sis, and complexity tool,” https://github.com/es-analysis/plato,
2012.

[39] A. BinSubaih and S. Maddock, “Game portability using a
service-oriented approach,” International Journal of Com-
puter Games Technology, vol. 2008, p. 3, 2008.

[40] A. Shevat, Designing bots: Creating conversational experi-
ences. ” O’Reilly Media, Inc.”, 2017.

[41] B. Fox, Game interface design. Thomson course technology
Boston, MA, 2005.

SBC – Proceedings of SBGames 2018 — ISSN: 2179-2259 Computing Track – Full Papers

XVII SBGames – Foz do Iguaçu – PR – Brazil, October 29th – November 1st, 2018 571


