Gamification Design to Tailor Gamified Educational Systems Based on Gamer Types

Wilk Oliveira dos Santos∗ Igb Ibert Bittencourt (advisor)† Julita Vassileva (co-advisor)‡

1 Center of Excellence for Social Technologies (NEES), Computer Institute (IC) - Federal University of Alagoas (UFAL), Brazil
2 University of Saskatchewan, Department of Computer Science, Canada

ABSTRACT

One of the main contemporary challenges in the field of computers and education is to provide gamified educational systems tailored according to the students’ gamer types to be most effective than traditional counter-tailored gamified educational systems in terms of students’ learning aspects. In order to start to solve this problem, we proposed an approach to tailor gamified educational systems based on the students’ gamer types. An instance of the proposed approach was implemented and an empirical experiment with 121 elementary students was conducted in order to comparatively evaluate the tailored and the counter-tailored versions of the system in terms of students’ concentration and flow experience. The main results indicate that for some gamer types the tailored system was more effective, however, in some cases, the flow experience and concentration was larger in the counter-tailored version of the system, surprising and contradicting the expectation of recent theoretical studies and making room for further studies in this field. A second empirical experiment was conducted in order to identify which are the most suitable gamification element for each gamer type, allowing us to provide a guideline for tailoring gamified educational systems based on students’ gamer types.

Keywords: gamification, gamer types, gamified educational systems.

1 INTRODUCTION

To target the problem of students’ evasion, disengagement, and demotivation in educational systems, recent researchers have used games and gamification elements along with their activities [16, 3, 1]. Their aim is to decrease students’ evasion, frustration, and demotivation as well as to improve student’s concentration, engagement, and learning aspects in the educational systems [26, 5, 25]. These studies are implementing and evaluating the use of gamification techniques in educational systems, raising the concept of gamified educational systems.

Recent results have shown that these systems can offer different ways for the students to perform the educational activities associated with gamification elements [9, 20, 7]. In addition, gamified educational systems may provide a number of benefits to students, for instance, increasing students’ motivation [11, 5], and students’ learning performance [20, 27].

However, other studies are showing that, at several cases, the use of gamification in an educational context (especially gamified educational systems) does not necessarily improve the students motivation, engagement, and learning [9, 21, 22]. These results are bringing the attention of the community for the need of deeper studies to identify when and how the use of gamification is really effective to improve the students satisfaction and to propose solutions to provide, indeed, a better gamification design which might impact on learning performance [9, 10].

In gamified educational systems, it is of utmost importance to consider that students have different gamer types. Thus, they might be more or less motivated in different ways, according to their gamer types [22, 18, 14]. As such, depending on the approach used in these systems, the impact of gamification may be harmful to the students motivation, engagement, and learning aspects [9, 10]. So, actually, provide adapted gamified educational systems according to the students’ gamer type is one of the most important challenges in the field of computers and education [21, 18, 14].

Based on the recent challenges of providing adapted educational systems for each student and the hypothesis that the students have different perceptions according to their gamer type, this master proposed an approach to tailor gamified educational systems according to the students’ gamer types. We tailored a real gamified intelligent educational system based on the proposed approach. We also conducted an experiment in order to evaluate the system tailored based on our approach with 121 elementary students in terms of students’ concentration and flow experience [6], comparing the tailored and counter-tailored version of the systems.

The main results indicate that the tailored system was more effective in terms of students’ concentration and flow experience, however, in some cases the flow experience and concentration was larger in the counter-tailored version of the system, contradicting the expectations of important recent theoretical studies. In addition, we conducted a second experiment to identify the most suitable gamification elements for each gamer type, providing a guideline with the most suitable gamification elements for each. We also classified the preferences of the gamification elements according to the students' gender.

2 BACKGROUND

This section presents the main topic addressed in this study. We will also present our main related works.

2.1 Tailored Gamification

In order to solve some problems related to the use of gamification in educational systems, in the last years, many studies have been highlighted the challenge of tailor the gamification according to the students’ individual characteristics [23, 17, 15]. These are in general proposing a different solution to tailor gamified educational systems and investigating the importance of personalizing gamified educational systems based on students’ characteristics. Based on that, in summary, the idea of tailored gamification is to provide an adapted gamification design in the systems based on the different users’ needs and preferences.

2.2 Related Works

In order to provide an effective solution, we conducted a Systematic Literature Review (SLR) in order to identify a state of the art on tailored gamification for educational technologies and found our related works. We identified 18 related works and compared these studies with our study in eight different criteria: (i)
the study was conducted in the field of gamified educational systems; (ii) the study was developed based on an empirical methodology; (iii) the study provides details about the implementation; (iv) the study provides details about the evaluation; (v) the study provides an empirical evaluation; (vi) the study provides an evaluation of the industrial and academic context; (vii) the study used a modern player model, (e.g., HEXAD [13] or BrainHex [20]); (viii) the study presents a comprehensive discussion of its results. A list of our main related works can be found at the following link: https://goo.gl/NS6PCd.

Based on the analysis of our related works, it is possible to perceive that most of the studies do not provide some important criteria, such as details about its implementation or empirical validation of the proposal. Complete studies from the terms addressed in this analysis (e.g., [23, 22, 4]), were conducted in the health science field. The comparison also shows that the studies conducted in the field of gamified educational system (e.g., [16, 18]) are initial studies, generally not providing an empirical evaluation or considering modern player models. The comparison indicated that our proposal is the only one to present all the evaluated items. Our study is also the only one to evaluate the tailored gamified educational system in terms of students’ flow experience.

3 PROPOSAL

The proposal of this study consists of an approach to tailor gamified educational systems, taking into account the seven different BrainHex gamer types (Seeker, Survivor, Daredevil, Mastermind, Conqueror, Achiever, and Socializer) [19]. The proposal was developed based on Orji’s guidelines [23] that define which are the best persuasive technologies strategies (PT strategies) to each gamer type. The Figure 1 presents a general view of the proposed approach. Following, we also present details about each step of our proposal.

3.1 Proposal Implementation

In order to avoid validity threats related to the implementation design, we chose to implement an instance of our approach from an already existing system and empirically validated. For that, we used the gamified educational system MeuTutor [24]. The system was chosen after a comparative analysis between nine different gamified intelligent educational system. MeuTutor was of interest for this study because it was considered more geographically accessible, as well as implementing the nine most used gamification elements in a gamified intelligent educational system, as identified by [20].

4 EXPERIMENTS

In order to validate our proposal, an empirical experiment was conducted based on the GQM process [2]. We compared the tailored with the counter-tailored version of the system for each gamer type in terms of students’ concentration and flow experience [6]. First, we identified the students’ gamer type through the BrainHex player model (plugged in the system through the proposed approach) and the students’ concentration and flow experience during their use of the system through a validate Flow State Scale (FSS) for the field of gamification [8]. To analyze the data, initially, we applied four different statistical tests commonly used in the community to calculate the normality of data (Shapiro-Wilk, Kolmogorov-Smirnov, Skewness and Kurtosis) and analyzed Boxplots, Histograms and QQ plots to support our decision about the data normality [28].

Then, we applied statistical tests to verify our hypothesis regarding the students’ perception (one-way analysis of variation (ANOVA) and Tukeys test), based on the Wohlin’s recommendations [28].

We also conducted a second experiment in order to identify the most suitable gamification elements for each BrainHex gamer type. After identifying the students’ gamer type (through the BrainHex player model) we applied a survey asking the students to answer about their level of preference for each gamification element, considering the eight game design elements that are used extensively in the educational and learning contexts (Points, Levels/Stages, Badges, Leaderboards, Prizes and Rewards, Progress bars, Storyline, and Feedback) [20], in a 7-point Likert-Scale [12]. To verify the research hypothesis, we first performed a descriptive analysis of the data and then we applied statistical tests (the same test applied in the first experiment). This project and experiment was approved by the Canadian Behavioural Research Ethics Committee with the code BEH#16-142.
5 Results

The results of the first experiment allowed us to confirm that the tailored system was most effective for some gamer types (i.e., Daredevil and Seeker), but, for other gamer types (i.e., Mastermind and Survivor) the counter-tailored system was most effective, contradicting the expectations of recent studies [23, 21, 15], and highlighting the importance of conducting deeper empirical studies in this field. The Figure 2 shows the comparison between students’ flow experience in the tailored and in the counter-tailored system. The blue line represents the students’ flow experience in the tailored system and the red line represents the flow experience in the counter-tailored version.

![Figure 2: Students' Flow Experience](image)

The results of the second experiment confirm that the different gamer types have also different preferences about the gamification elements. We identified internal statistical differences about the gamification elements for each gamer type. The results also allowed us to identify the most suitable gamification elements for each gamer type and provide a guideline to tailor gamified educational systems based on students’ gamer types, recommending which are the most suitable gamification elements for each gamer type. The Table 1 summarizes the statistical analysis, and the Table 2 presents the guideline with the most suitable gamification element for each gamer type.

6 Main Contributions

The main contributions of this master thesis are found in the field of computers and education, and game studies. In order to organize our main contributions, we will summarize the contributions next: (i) A Systematic Literature Review about Flow Theory applied to Computers and Education; (ii) a Systematic Literature Review about personalized gamification in the field Computers and Education; (iii) a Brazilian version of BrainHex player model; (iv) an computational approach to tailor gamified intelligent educational systems based on gamer types; (v) a tailored gamified intelligent educational systems; (vi) two empirical experiments, one in order to validate our proposal and other in order to identify the most suitable gamification elements for each BrainHex gamer type; (vii) a guideline to tailor gamified intelligent educational systems and the most suitable gamification elements for each gamer type; and (viii) a guideline with the most suitable gamification elements for males and females. Our contributions generated a series of publications such as books and articles, as well as a series of software registered at the Brazilian National Institute of Industrial Property. Due to the reduced space of the paper, we chose to present in the following link, an external file with details regarding each contribution (indicating its respective section in the master’s thesis).

Table 1: Students’ gamification elements preferences

<table>
<thead>
<tr>
<th>Elements</th>
<th>Achiver</th>
<th>Conqueror</th>
<th>Daredevil</th>
<th>Seeker</th>
<th>Socializer</th>
<th>Survivor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td>5.23</td>
<td>4.17</td>
<td>4.67</td>
<td>4.56</td>
<td>4.81</td>
<td>5.17</td>
</tr>
<tr>
<td>Badges</td>
<td>5.27</td>
<td>5.50</td>
<td>5.53</td>
<td>5.50</td>
<td>5.57</td>
<td>5.15</td>
</tr>
<tr>
<td>Trophies</td>
<td>5.31</td>
<td>4.67</td>
<td>4.78</td>
<td>4.50</td>
<td>5.67</td>
<td>6.08</td>
</tr>
<tr>
<td>Levels</td>
<td>4.94</td>
<td>4.33</td>
<td>4.52</td>
<td>4.35</td>
<td>4.94</td>
<td>5.50</td>
</tr>
<tr>
<td>Progress bar</td>
<td>5.38</td>
<td>5.22</td>
<td>4.78</td>
<td>5.17</td>
<td>3.57</td>
<td>5.58</td>
</tr>
<tr>
<td>Ranking</td>
<td>5.21</td>
<td>5.67</td>
<td>4.94</td>
<td>5.50</td>
<td>5.67</td>
<td>6.00</td>
</tr>
<tr>
<td>Timeline</td>
<td>4.04</td>
<td>4.35</td>
<td>4.78</td>
<td>4.78</td>
<td>4.36</td>
<td>4.67</td>
</tr>
<tr>
<td>Feedback</td>
<td>4.48</td>
<td>5.36</td>
<td>4.67</td>
<td>5.36</td>
<td>4.81</td>
<td>5.50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elements</th>
<th>Achiver</th>
<th>Conqueror</th>
<th>Daredevil</th>
<th>Seeker</th>
<th>Socializer</th>
<th>Survivor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td>5.24</td>
<td>4.17</td>
<td>4.67</td>
<td>4.56</td>
<td>4.81</td>
<td>5.17</td>
</tr>
<tr>
<td>Badges</td>
<td>5.27</td>
<td>5.50</td>
<td>5.53</td>
<td>5.50</td>
<td>5.57</td>
<td>5.15</td>
</tr>
<tr>
<td>Trophies</td>
<td>5.31</td>
<td>4.67</td>
<td>4.78</td>
<td>4.50</td>
<td>5.67</td>
<td>6.08</td>
</tr>
<tr>
<td>Levels</td>
<td>4.94</td>
<td>4.33</td>
<td>4.52</td>
<td>4.35</td>
<td>4.94</td>
<td>5.50</td>
</tr>
<tr>
<td>Progress bar</td>
<td>5.38</td>
<td>5.22</td>
<td>4.78</td>
<td>4.94</td>
<td>3.57</td>
<td>5.58</td>
</tr>
<tr>
<td>Ranking</td>
<td>5.21</td>
<td>5.67</td>
<td>4.94</td>
<td>5.50</td>
<td>5.67</td>
<td>6.00</td>
</tr>
<tr>
<td>Timeline</td>
<td>4.04</td>
<td>4.35</td>
<td>4.78</td>
<td>4.78</td>
<td>4.36</td>
<td>4.67</td>
</tr>
<tr>
<td>Feedback</td>
<td>4.48</td>
<td>5.36</td>
<td>4.67</td>
<td>5.36</td>
<td>4.81</td>
<td>5.50</td>
</tr>
</tbody>
</table>

Key: \(\text{var}(X) \) = Variance; \(\text{SD} \) = Standard deviation
as well as a list of publications, registered software, and awards: https://goo.gl/5579yH.

7 Concluding Remarks

This study proposed a computational approach to tailor gamified educational systems based on students’ gamer types. An instance of the approach was empirically evaluated. We provided a series of contributions related to our proposal, including a guideline to tailor gamified educational systems based on students’ gamer types, a guideline with the most suitable gamification elements for each gamer type and two different systematic literature reviews. As future works, we hope to deepen the research on the neurobiological implications of gamer identities in the learning process and propose a model for the real-time identification of students’ gamer types in gamified educational systems, as well as to propose a model for the automatic and real-time adaptation of intelligent gamified educational systems based on students’ gamer type.

References

