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ABSTRACT

Decision making in real-time strategy games (RTS) is a complex
task due to the number of actions available and the environment
with partial information. Partially observable Markov decision pro-
cess (POMDP) is an approach that provides good performance and
reward values in environments with the limitations discussed. How-
ever, its use in RTS games is limited due to real-time constraints
and difficulty in abstracting a complete set of actions into a sin-
gle decision-making. This work proposes the application of online
POMDP with heuristic applied to decision making in the gaming
domain of StarCraft. An architecture that allows the consideration
of macro actions and a modification in the AEMS algorithm with
use of game time as additive, are proposed. The results show that
POMDP is applicable to RTS games, satisfying time constraints and
achieving good game results against StarCraft standard AI.
Keywords: POMDP, decision making, planning, actions, RTS
games

1 INTRODUCTION

Making decisions in environments with uncertain information and
presence of enemies to the agent is a complex task due to the
amount of possible states and actions that can be considered. Real-
time strategy games (RTS) are a domain where problems related to
environmental uncertainty and decision-making model are placed
at a high level of demand, especially due to real-time constraints.
Partially observable Markov decision process (POMDP) [2], pro-
vides a generic model for decision making in environments with
the characteristics of RTS games.

The decision-making process in RTS Games involves the choice
of actions to be performed during a match. However, actions have
preconditions for execution, and the choice must be made taking
into account factors such as strategy, presence of enemies and game
time of the match. In addition, the execution of an isolated action
does not reflect major changes in the environment, it is necessary to
consider a set of actions with a specific objective.

The use of POMDP for decision making in RTS games, may
be unfeasible due to the execution time spent by the framework in
generating belief states in a horizon with high amount of game ele-
ments. The use of POMDP for decision making in RTS games, may
be unfeasible due to the execution time spent by the framework in
generating belief states in a horizon with high amount of elements
of the game. However, the online version of the algorithm using
heuristics to limit the amount of belief states, prove to be effective
in real time environments with actions and preconditions. Thus, we
explore the use of online POMDP with the Anytime Online Search
(AEMS2) [7] algorithm for decision making in RTS games. A vari-
ant to the algorithm that uses game time as a parameter for decision
making it is also proposed.
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2 BACKGROUND

2.1 RTS Games
In RTS Games the player should manipulate various resources and
units, by developing economies, focusing on defeating one or more
enemies. Raw resources, like minerals, allow the creation of other
resources, such as barracks, that are used to create mobile and
airborne units. We use the StarCraft 1 game as testbed environ-
ment. Among games of this genre, StarCraft has one of the largest
amounts of resources, actions and preconditions.

There are three kinds of races available to play: Terran, Protoss
and Zerg. They have different features and units that provide a num-
ber of strategies for attack and defense against enemies. During a
match, the playing time is measured in the seconds that have already
been played. Certain types of actions and strategies are executed at
specific time intervals of the game. To produce any resource in the
game you need to perform actions. These have as preconditions re-
sources that must be generated before their execution. Actions can
generate resources, control units and execute attacks against ene-
mies within the game.

2.2 POMDP
POMDP is a framework whose model can be represented by the tu-
ple 〈S,A,O,T,Z,R〉 , with each of these elements as follows: S is
the set of all possible states of the environment; A is the set of all
possible actions that the agent can perform in the environment; O is
the set of observations that can be received directly from the envi-
ronment; T is a state transition function T : SxAxS→ [0,1], where
T (s,a,s′) = Pr(s‘|s,a) representing the uncertainty by the proba-
bility of the agent performing an action a ∈ A in a state s ∈ S and
going to a state s‘ ∈ S; Z is an observation function SxAxZ→ [0,1],
where Z(s,a,o) = Pr(o|a,s) generates the probability of the agent
perceiving o∈O after action a and go to state s‘; R is the immediate
reward function SxA→ R, given that the agent performed the action
a in the state s.

In online POMDP, when the agent is in a state s and receives
an observation o, it performs the belief state update and computes
an optimal policy that maximizes the total reward for execution of
each action a [8]. The objective is to achieve a sequence of ac-
tions that maximizes the reward, for this a policy π : B→ A that
references an action a for a state belief b ∈ B is used. The agent is
uncertain as to the state in which it is due to uncertainty of the en-
vironment, so belief states are usually represented by a probability
distribution function, following the definition: b = b(s)|s ∈ S,0 ≤
b(s) ≤ 1,∑s∈S b(s) = 1. The total reward is induced by the func-
tion V (b,π), from the belief state b, and the current policy π , being
computed according to the equation 1 below:

V (b,π) = E[
∞

∑
t=0

γ
tR(st ,at)|b,π] (1)

with the discount γ = [0,1]. Unlike the traditional POMDP im-
plementation, the online version interleaves planning and execu-

1StarCraft: Brood War (expansion) was released in 1998 by Blizzard
Entertainment.
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tion. Whenever a policy is executed and the agent receives a new
observation, it is made a belief state update. This process forms
a loop between updating the states (planning) and using the cho-
sen action (execution). The belief state update is the most complex
process, a tree that performs a lookahead beginning with the be-
lief state b0 is generated. The tree is expanded by generating new
states from observations and actions, the actions are connected to
the states to compute the total reward. The action belongs to the
branch where the best reward is chosen and executed, restarting the
process of updating states. The belief state update is done by the
equation 2 below:

b′(s′) = τ(b,a,o) = ηZ(s′,a,o)
∫

s∈S
T (s,a,s′)ds (2)

where the transition function T and the observation function Z are
used, η is a normalization constant.

3 RELATED WORK

The use of Case Based Reasoning (CBR) is greatly explored in
decision-making in RTS games. In [5] the technique is exploited
primarily in the extraction of replays data and later retrieval of cases
during the game. Next, [6] improve the model with an online archi-
tecture with interlaced planning and execution. The domain testing
of the works is the game Wargus.

In relation to the use of Markov Processes, in RTS games there
are a few contributions. The [1] work proposes the use of a Markov
Decision Process (MDP) for controlling units in StarCraft, but the
domain uncertainty is ignored due to focus only on locally con-
trolled units. This work is based on [11], which uses QLearning to
learn from replays about combat between units of the game. Both
works focus on small scale combat with only a few units.

The work of [4] cites and explores the use of sampling with
Monte Carlo tree search. With the naÃ¯ve sampling algorithm it
is possible to manage the amount of branches in an RTS game with
superior performance to other sampling methods, even when the
game gets more complex.

4 ARCHITECTURE FOR ONLINE POMDP IN RTS GAMES

We will exemplify an basic architecture we use to configure online
POMDP for decision making in RTS Games. With this architecture
it is possible to obtain sensory data of the match as game time and
amount of enemies in the form of observations for the POMDP. The
actions chosen by the POMDP are sent to the game and executed
in the disputed match. The architecture can be expanded to support
new modules and algorithms to manage other game challenges.

The basic architecture of online POMDP for RTS games is
shown in Figure 1. The decision-making process begins in the
GameWorld, with the game match in progress. Sensory data, such
as amounts of resources, units, positioning, enemy information,
among others, are captured by BWAPI2 in the form of observations.
In the Figure are the processes and techniques that work together
with the POMDP for decision-making. The goal is to choose the
best possible action when observations are received from the game
environment and perform this action, receiving new observations
and keeping this process repeatedly. In each process there is an ar-
row coming out or coming from it, which indicates what kind of
data this process provides or requests. The order in which the de-
cision is made is indicated by the numbers (I, II, II), respectively,
presents in the last part of the name in each arrow.

According to Figure 1, BWAPI is able to capture the data and
execute commands within the game, being responsible for the com-
munication between our architecture and StarCraft. The BWAPI
sends the observations in the form of a vector ρ , where ρ[q] = [0,n],
q is the maximum number of observations that can be received

2https://github.com/bwapi/bwapi

Figure 1: General architecture of online POMDP for RTS games.

equal to 16, and n is the amount of resources or units of each obser-
vation, in form:

ρt = (0,150,5,1,0,0..),ρt+1 = (1,50,6,1,0,2..), ... (3)

where t is the time of the game in which the vector was captured.
When an index of the vector is 0, it means that the respective ob-
servation of that index was not observed. Any other value means
the amount of resources or units of that observation in the current
moment. Thus, in a vector of observations ρ at time t, no unit was
destroyed (first index with value of 0) and 150 minerals were al-
ready gathered (second index with value of 150). At a time t +1 in
the game, it can be observed that a unit was destroyed, its quantity
and the minerals decreased; however, a new unit was built (third
index with value 6) and two enemy units were seen in the map (last
index with value of 2).

With the observations being delivered to the POMDP by the
BWAPI the decision process is initiated, being represented in Fig-
ure 1 by the the AEMS2 execution policy. The POMDP does not
use the standard game unitary actions, i.e., isolated actions, like
moving a single unit or single collection of minerals. In this step, it
uses macro-actions. These are used as sets of actions, representing
a specific strategy that contains a series of actions that produces cer-
tain resources and is represented by an identifier label. This abstrac-
tion is useful so that the POMDP does not have to decide for a single
action every second, the set of all macro-actions represents the uni-
verse of possible POMDP choices. The macro-actions are identical
representations to the so-called build orders, which are strategies of
production of resources and combat catalogued by communities of
StarCraft players.

When a macro-action is chosen by the POMDP it is sent to the
BWAPI that performs the actions within the game environment, re-
ceiving new observations and restarting the decision-making pro-
cess. The algorithm 1 shows the code of online POMDP.

Algorithm 1 Online POMDP()
1: Static or Preprocess(o f f line) : G,L,U
2: G← b0
3: while GameEnd() 6= true do
4: while DecisionTime() = true do
5: b← AEMS2(ρ,G,L,U)
6: end while
7: Execute(BestAction(b))
8: ρ ← GetObservation()
9: NewRoot(G,b,Sample)

10: end while

In line 1 of the algorithm 1 the constant or offline processing is
listed. G is the expansion tree used to generate belief states, and
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make lookahead in AEMS2, it is an AND-OR tree; L is the lower
bound, and U is the upper bound used in AEMS2. In line 7, the
Execute() function picks the highest macro-action reward of the
two policies. The NewRoot() function puts the belief state gener-
ated after the execution of the macro-action as the root of the G
tree.

5 AEMS GAME TIME

AEMS(game time) is the execution policy integrating our online
POMDP architecture. Its execution is carried out continuously,
whenever new observations are received. AEMS uses error mini-
mization based heuristics, given the use of approximate offline so-
lutions. The algorithm was chosen because it contains several de-
sirable properties to operate in the RTS gaming domain. AEMS2
is the version where probability of an action to be optimal P(a|b)
equal to its maximum upper bound. We propose to change this
definition, and for convenience we will mention the algorithm as
AEMS.

Before using the algorithm, an offline processing is done, to de-
fine the lower and upper bounds that is used in the computation
of the AEMS heuristic. The lower bound is obtained by executing
a blind policy [10], with the repetitive execution of the equation 4,
which in game matches simulations calculates exactly the minimum
expected reward. Matches used for calculation are obtained in the
form of game replays between professional StarCraft players. For
the upper bound we used the Fast Informed Bound (FIB) algorithm
[10], which does not consider the total uncertainty of the environ-
ment, but with a degree necessary to determine probability of belief
states with information based on different actions. Thus, with the
complexity of the RTS game domain, the execution of the algorithm
is done within a few minutes, the threshold value in each state esti-
mates how much a macro-action tends to reveal which state belief
represents the current situation of the environment. The update of
the belief state is done with the equation 5, where α operator repre-
sents the bounds. The depth limit for updating states was given in
time equivalent to 5 seconds.

α
a
t+1(s) = R(s,a)+ γ ∑

s′∈S
T (s,a,s′)αa

t (s) (4)

α
a
t+1(s) = R(s,a)+ γ ∑

o∈O
max
αt∈Γ

∑
s′∈S

O(s′,a,o)T (s,a,s′)αa
t (s
′) (5)

The result of the equations is used in the error approximation of
using lower and upper bounds in AEMS, given by ε(b) = U(b)−
L(b). To calculate the maximum total reward in lookahead with be-
lief states, in each generation it is always necessary to choose the
branch node that is part of the highest total reward. AEMS uses
a binary definition for the choice, given by P(a|b). We propose a
change to this definition, using the game time that is measured dur-
ing a match, along with replays dataset information, this becomes
an additive that is used in the calculation of P(a|b). The policy ver-
sion with this additive will be called AEMS(game time). Using the
upper bound makes macro-actions that are normally performed at
a game time being chosen to be execute at game times where other
macro-actions would be better. This occurs due to the game actions
that are present in different macro-actions. Equation 6 shows the
proposed definition:

P(a|b) =

{
0 if U(a′,b)< (minorB)

Ulr(a′,b) otherwize
(6)

where U(a′,b) is the upper bound on the value of action a′; minorB
is a variable that stores the largest lower bound found to each node
that is generated in the tree, if a new highest bound is found, the
value of the variable is updated; Ulr(a′,b) = U(a′,b) ∗ Lr(a′,b),

where Lr(a′,b) is the ratio of the macro-action used to update the
belief state with the current game time that is in progress. The value
of LR was obtained with a simple linear regression of least squares,
where the game time is the explanatory variable and the macro-
actions are the dependent ones, the regression was executed offline.
Thus, besides the upper bound value, the pertinence additive of the
macro-action with the current game time in the choice of the best
candidate is used. In an example, macro-actions with high upper
bound value but with frequent use at the beginning of the game
will have their value offset when considered in a game with a few
minutes already played. When Ulr(a′,b) is computed, a macro-
action can at most increase its bound by 30% of the original value,
thus, the regression has no greater contribution in the choice of the
action than the upper bound.

AEMS(game time) also computes the probability of reaching a
fringe belief state at a specific depth using P(a|b), creating the def-
inition P(bd). With all the necessary elements, the heuristic to cal-
culate the error for a node is given by E(bd). Among the desirable
properties of the E(bd) heuristic in relation to the RTS game do-
main, we can highlight: prefer nodes with loose or wide bounds,
these nodes are usually different and visiting them helps make bet-
ter decisions; favors the exploration of belief states most likely to
be found in the future, avoiding rework with calculations; the def-
inition of P(a|b) increases the performance of the algorithm, with
our proposed change performance is maintained and are considered
more macro-actions with good upper bounds and pertinence with
the current game time of a match.

6 EXPERIMENTS AND DISCUSSION OF RESULTS

In order to evaluate the use of the online POMDP with the sug-
gested architecture, tests were made with matches played in Star-
Craft. The methods used are: AEMS is the use of the traditional al-
gorithm without the game time additive; AEMS(game time) that is
used in the online POMDP architecture with game time additive of
P(a|b); HSVI [9] is a heuristic algorithm with similar characteris-
tics to AEMS, in the generation of belief states the algorithm returns
that approximate value that exceeds the upper bound. SARSOP [3]
is the only algorithm that does not use heuristics, it is based on
the strategy of approximate values with point-based iterations. The
game class used was chosen randomly between Terran and Protoss.

Table 1 presents the results of the performance test. All results
represent the average of the values except the belief states and of-
fline time. The reward is calculated based on the winning probabil-
ity of each macro action chosen by the algorithm. After the chosen
macro action begins to execute, the amount of enemy destroyed,
built resources, accumulated minerals and average time without los-
ing any resources is captured. For each of these, a reward of +10
is awarded. For each base resource destroyed, direct confrontation
with smaller enemy numbers than the enemy, presence of new en-
emies in less than 10 seconds, and idle resources on the base are
discounted -10 of the reward. The bound error reduction is given

by BR(b) = 1− UT (b)−LT (b)
U(b)−L(b)

, which is the difference between

the bounds values obtained offline and those obtained in the online
execution. In the tests the opponent was StarCraft standard AI and
all the matches lasted less than 7 minutes.

In relation to the time spent for each decision making, AEMS ob-
tained the best result with 0.412 seconds. AEMS (game time) came
in second with a small difference due to the time taken to obtain the
data and calculate the game time additive. SARSOP had its offline
execution measured, match data was simulated and the algorithm
had a limit of 1.5 seconds to return a macro action, time interval
greater than that obtained by online algorithms. Approximate value
strategy requires many iterations and state generation with several
portions of state space.

The amount of belief states generated by AEMS was higher
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Table 1: Performance test results in 75 runs in the StarCraft environ-
ment using random map matches. Average confidence interval of ±
0.92 for all results. N. Actions | A | = 37; N. Observation | O | = 8; N.
Opponents = 1

Time
(sec.)

Belief
States Reward Bound Error

Reduction
AEMS 0,412 12647 28,2 ± 2,35 28,4

AEMS
(game time) 0,554 10447 37,5 ± 2,91 30,2

HSVI 0,864 9874 22,4 ± 1,89 19,8

SARSOP 1,451 7341 12,7 ± 0,81 14,3

among the algorithms. AEMS(game time) tends to generate states
that are more promising based on the game time actual. This crite-
rion restricts the number of states visited and later expanded, but the
algorithm achieved a higher average reward than the AEMS. SAR-
SOP could generate more states if there was no time constraint,
however the time spent would make the algorithm not suitable for
use within the RTS game environment.

AEMS(game time) achieved rewards and bound error reduction
slightly above the AEMS, due to the calculation of the best action
with use of game time. With this calculation the rewards obtained
are greater when the match is in a battle dynamic, these values sur-
pass even more the values of offline bounds increasing the error
reduction. Offline time represents the time spent to calculate the
initial bounds, the RTSSample used less time because it calculates
only the maximum limit and uses the Rollout algorithm for this
task. .

In relation to the rewards, AEMS(game time) achieved the best
average. With 75 games played with the algorithm were 56 wins,
7 losses and 12 games without result, where the game played time
exceeded 10 minutes. The macro actions chosen in the third minute
of game were mostly offensive, so the enemy is unprepared and
does not have enough defense resources. Already in the AEMS,
were chosen offensive and defensive macro actions, characterizing
a more balanced strategy. Thus, the enemy manages to prepare the
first attack. The AEMS(game time) behavior is due to the tendency
of the players to carry out attacks in the beginning of the game, in
the second and third minute of game in average.

7 CONCLUSION

This work presented the use of online POMDP with heuristics ap-
plied to the RTS game domain. An architecture that abstracts the
need to choose sets of actions and obtain data directly from the
game environment is presented. The macro action concept is dis-
cussed and enables a long-term implementation of actions by the
POMDP. This architecture can be changed with the addition of new
modules and algorithms. It was explored the use of the AEMS algo-
rithm, which was modified using game time, a characteristic present
in any game of the genre. Based on game time, macro actions can
be chosen based on the analyzed behavior of experienced players.

The results show that the POMDP can be used in RTS games
achieving good results and fulfilling the time restrictions. The
amount of generated belief states allows exploring promising states
taking into account different strategies. The rewards against the
standard AI of the game can be maximized with use of other algo-
rithms, with increased performance of the POMDP and more states
beliefs generated.
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