SBC - Proceedings of SBGames 2017 | ISSN: 2179-2259

Computing Track — Short Papers

Rendering of Large Textures for Real-Time Visualization

Gabriel Costa Backes* Alex Frasson

Tiago Augusto Engel

Cesar Tadeu Pozzer

Universidade Federal de Santa Maria, Brazil

Figure 1: 8 GigaPixel satellite imagery texture rendered at real-time. Each clip region level and its tiles set are represented with colored squares.

The cyan rectangle represents the field of view (FOV).

ABSTRACT

Large textures that do not fit in system memory are required to be
stored on disk and loaded on demand at runtime. This process may
cause performance bottlenecks, compromising interactivity on ap-
plications such as GIS, virtual simulations and games. We present
a new technique for efficient texture mapping in real-time applica-
tions. Our technique preprocess the original texture and saves it
as a tiled mipmap texture. At run time, the preprocessed texture
is mapped to a quadtree structure and the tiles are loaded on de-
mand, maintaining the real-time performance. Inspired by Clipmap
[9], we present a solution to select and cache the tiles according to
the view position, zoom level and screen resolution in order to de-
crease the disk reading request rate. As a validation test we have
rendered at real-time an 8 GigaPixel satellite imagery texture on a
84 inches touch screen table that allows the zooming and panning
of the texture.

Keywords: Real-Time Visualization, Large Texture Rendering,
Clipmap

1 INTRODUCTION

Texture mapping is used to add details to a surface in graphical ap-
plications. For real-time maps visualization, detailing the region is
essential to allow the user to understand the environment and in-
teract with the application. Often, applications such as GIS and
virtual simulations use satellite images with very high resolution,
making it impossible to store the entire texture in the system mem-
ory. Therefore, it is necessary to cache portions of the texture at
a time. To facilitate texture manipulation, many approaches sub-
divide the entire texture into a set of uniform tiles and decreasing
resolutions [3][5][7]. Hence, the problem is focused in an efficient

*e-mail: gbackes @inf.ufsm.br

XVI SBGames — Curitiba — PR — Brazil, November 2nd - 4th, 2017

paging strategy to maintain the efficient rendering of the subset of
most relevant tiles.

In this paper, we propose a new technique for interactive dis-
play of very large textures that can adapt to different resolutions.
We do not handle elevation maps and other vector data commonly
found on GIS applications. Therefore, tiles of the texture are repre-
sented with a single quad primitive and the scene is rendering with
orthographic projection. Our caching algorithm is inspired by the
clipmap approach [9]. The relevant texture tiles are selected by clip
regions, which are related to the current view position. If the tiles
are not found in the cache, they are first paged asynchronously into
system memory. When a clip region is entirely loaded, only the
tiles that intersect the field of view are sent to video memory for
rendering.

Our texture rendering technique achieves the following goals:

e Any texture size should be supported, non-power-of-2 tex-
tures should be managed efficiently;

e The system should work on any resolution;

e Allows user interaction at any time, even while loading the
texture tiles;

e The frame rate should remain stable during the loading of tex-
ture tiles.

2 PREVIOUS WORK

Several approaches have been proposed to handle the visualization
and storage of large textures. Many of them subdivide the texture
into tiles and arrange them in a pyramidal structure [3]. Cline [2]
used a quadtree to represent a mipmap hierarchy and presented an
approach for texture caching to ensure interactive frame rates dur-
ing loading steps, even with a limited bandwidth. Hua et al. [5] in-
troduced a similar approach, using a multiresolution model, called
texture mipmap quadtree, and incorporated it to a level of detail
system.

638

SBC - Proceedings of SBGames 2017 | ISSN: 2179-2259

Tanner et al. [9] presented the clipmap, which supports an arbi-
trarily large texture while rendering at real-time rates. The main
concept is to cache a subset of a mipmap pyramid in the video
memory. However, it was developed for a specific graphic hard-
ware. Soane et al. [8] proposed a similar implementation focused
on personal computers. Li et al. [7] implemented the clipmap using
programmable shaders on GPU.

None of the approaches above use an orthographic view for the
visualization, since they are used in terrain rendering, where texture
LOD is related to distance from geometry to camera. The further
away from the camera, the less detail is required to accurately rep-
resent the geometry, since fewer pixels will be occupied by the ge-
ometry on the screen space. Although the above approaches work
for flat surfaces, they are optimized for perspective projection.

3 PROPOSED SOLUTION

Our technique has two steps as shown in the Figure 2. The first one
is a preprocess step that converts the original texture into another
one that will serve as input to our application. We call this result-
ing texture as virtual texture. The virtual texture is formed by the
original image divided into uniform blocks at successive power of
two dimensions. The color pixels format used was RGB565. No
compression scheme was used. After created, it is stored on disk.
This step is presented in detail in the section 4.

Preprocess == = =1
¥ System 1
Memory 1
1

Texture
Builder

i Run Time

Texture Loader Thread

Update

Clip Regions Queus

)

Texture Cache Clipmap Manager

1 1
1 Rendering Memory I :
! Textures L
1 |
L, 1

Figure 2: Data flow. The virtual texture is created in the offline prepro-
cessing step. At run time the management and cache of the virtual
texture subset is made by the clipmap manager based on the clip
regions and the FOV.

The second one, at runtime, caches a subset of the virtual tex-
ture. To compute this subset, we implemented data structures that
form the clipmap. The clipmap consists of clip regions set (Figure
1), which in turn are constituted of a quadtree nodes set. These
structures are deepened in the section 5. When a clip region is

XVI SBGames — Curitiba — PR — Brazil, November 2nd - 4th, 2017

Computing Track — Short Papers

updated, its nodes are then processed and the required blocks are
fetched from disk. The virtual texture blocks loading is made asyn-
chronously and is inserted to an update queue once completed. The
node’s status is updated when its relative block is dequeued by the
clipmap manager. This process is detailed in the section 6. To op-
timize the rendering, loaded nodes are cropped by the FOV before
being sent to video memory. This process is discussed in the section
7.

Implementation and tests were made using the engine Unity3D.
However, our approach is generic and can be implemented on any
graphical API or integrated into any modern game engine.

4 CREATING A VIRTUAL TEXTURE

The virtual texture is created in an offline preprocess step. It uses
as input the original texture, called raw texture. The raw texture is
subdivided into uniform blocks of 2" x 2" pixels, and resampled re-
cursively forming a mipmap chain, that at run time will be mapped
to a quadtree structure. Each tile corresponds to a quadtree node
and is addressed by the coordinates (X, y, 1), representing column,
row and level, respectively. Each quadtree node represents a quarter
of it’s parent area while maintaining the same resolution, effectively
increasing detail. The root node contains the coarsest texture reso-
lution while the leafs contain full resolution tiles.

For each mipmap level, paddings are added to allow the raw tex-
ture to be of any size. The paddings make the final resolution mul-
tiple of the node size of the current level. As a result, quadtree may
occur to be incomplete, since empty tiles are not saved (Figure 3).
The final dimension d, in pixels, of the mipmap level can be found

by the following equation:
d = Ceil (-) *t (1)

r
t

where r is the resolution of the raw texture and ¢ is the size of the
node at current level.

Figure 3: Representation of the tiled mipmap texture. Successives
levels have half resolution. The smallest amount of tiles is used
to represent each mipmap level. Therefore, empty nodes are not
stored.

Although the extra padding makes the virtual texture bigger, tak-
ing up more disk space, working with uniform tiles in power of two
gives us some advantages. It facilitates the manipulation in order
to load and select the tiles. The loading time becomes consistent,
since the tiles will be the same size. The virtual texture file size is
given by the following equation:

S=Y.(5;)*bpp @)
i=1

where bpp is the color depth in bytes and m is the mipmap level
count.

639

SBC - Proceedings of SBGames 2017 | ISSN: 2179-2259

5 NODE SELECTION

Since only a portion of the texture will be rendered, we need to
determine which nodes are present in the FOV and which quadtree
level is appropriate. Clip regions are created for each quadtree level.
To ensure that the blocks to be loaded cover the full screen space,
the clip region dimension n, in nodes, is given by the following
formula:

. Ceil(Max(ih,sw)

) %2 3)
where sh and sw are, respectively, the screen height and width.
The clip region is centered on c, obtained by the formula:

c:Floor({) 4)

where f is the FOV center.

An effective region is defined as the area centralized in the clip
region center of size floor(n / 2). During the viewer motion, while
the viewer position remains inside the effective area, no other tile
loading is required. Once outside the effective area, the clip region
center is updated and new tiles of the virtual texture are then loaded.
This process will be discussed in the following section.

The selection of the most appropriated quadtree level for ren-
dering can be understood as the explicitly compute of the mipmap.
When a single texel is mapped to more than one pixel, causing a tex-
ture stretch, we need to compute a magnification, in other words,
descend on quadtree. In opposition, when more than one texel is
mapped to a single pixel would cause aliasing, so we need to as-
cend on the quadtree to compute a minification.

To simplify this process, we compute the relation between the
camera orthographic size, which represents the viewport half height
in world space units, and the dimension of each quadtree node.
Therefore, this relation A is given by the following formula:

_ Clamp(Floor(logy(0+2)) —log, (u),0,m)
B log, (ns)

where A values closer to 1 represent more appropriate level. is the
mipmap level, o is the orthographic size, u is the uniform block size
and ns is the node size.

A (&)

6 UPDATE

Once the clip region center is updated, it is necessary to compute
the new nodes set that compose the new clip region (Figure 4).
Uncached nodes are then fetched from disk and nodes that are no
longer present in the clip region can be unloaded. However, remain-
ing nodes from the old clip region do not need to be reloaded.

When a clip region is updated, a list of current region tiles is
created. Then, for each tile in this list, the quadtree is accessed
by the coordinates of the respective tile and by the level of its clip
region. There are three possibilities:

1. The node is present in the quadtree and is already loaded;
2. The node is present in the quadtree and is not loaded;

3. The node is not contained in the quadtree (invalid), that is, the
FOV is out of texture bounds.

The size of a clip region is calculated so as to cover all screen
space for appropriate quadtree levels. Therefore, as previous levels
covers a larger area, we do not need to load all levels fully. The
most efficient way is to start loading at the closer level which a
single tile covers the current clip region entirely. The tiles present
in the levels between it and the current level are just apt to be loaded
if intersects the current clip region. The size relation s among two
levels i and j is given by:

XVI SBGames — Curitiba — PR — Brazil, November 2nd - 4th, 2017

Computing Track — Short Papers

si=sj%2077 (©6)
The start loading level [is given by
I =nl—log,(n) 7

where nl/ is the current node level.

/Currem clip region

¢ I Current effective region

Previous clip region Oe—
o [————Current clip region center

Previous effective region —— | \

Previous clip region center _—

Field of view

Figure 4: Clip region update. When the FOV center moves out the
effective region, a new nodes set is cached in the system memory.
Nodes present in both clip regions do not need to be reloaded.

A resulting list containing quadtree nodes that are not yet loaded
is then generated and added to the loading queue. The loading pro-
cess of a clip region may be slow, locking the application during
this process. To avoid this issue, we use threads for loading each
virtual texture tile in parallel, guaranteeing the interactivity even if
the entire clip region has not been loaded yet.

As soon as a tile loading is finished, its correspondent node is
then inserted into an update queue, which contains a node stacks
for each clip region. Every frame, the clipmap manager checks the
update queue from coarser levels to the current mipmap level. To
guarantee a quick progressive detailing, a level starts to be updated
only if its parent has been loaded.

After removing a node from the stack, the clipmap manager ver-
ifies if the node’s tile is still present in the list of the current region
tiles. If it is not, it means that the view position has moved, the clip
region has been updated and the tile should be unloaded. Other-
wise, the quadtree node is marked as loaded.

When the application starts, the coarsest mipmap level is loaded
and kept in memory during the execution. Since this level is made
of an unique tile, its memory consumption does not affect the ap-
plication efficiency. In this way, the texture coverage area is always
displayed, even before the rendering of detailed levels.

7 RENDERING

With the clip region loaded, only the nodes that lie in the FOV,
called active nodes, will be sent to the video memory. The loaded
nodes are not sent at once, but for several frames, ensuring a consis-
tent framerate. The remaining nodes are kept in system memory for
FOV update reasons, decreasing the disk access rate whereas it will
be only needed when the camera moves out of the effective region.

After performing the selection of the nodes present in the FOV,
for each of them it is necessary to create a texture from the raw data
loaded and map to a geometry in the scene. Then, a texture of uxu
size is created. The data is recovered from converting the loaded
byte array.

Lastly, we need to compute the world coordinate and draw the
geometry where the texture will be mapped. A quad mesh is then
created and its vertices, v mapping and triangles are setted. As the
quadtree node is addressed with the (x, y, 1) coordinates, its position
can be found multiplying the x and y by the node size. The texture
scale depends on the current node size, since its size is relative to
its level. Hence, the texture may be expanded when mapped to the
geometry.

640

SBC - Proceedings of SBGames 2017 | ISSN: 2179-2259

Screen ClipSize Loading Time Loading Time

Resolution (pixels) (nodes) from HD (s) from SSD (s)
1280x720 (HD) 16 0.30543 0.20191
1920x1080 (FHD) 16 0.31337 0.20768
3840x2160 (UHD) 64 0.65707 0.64730

Table 1: Loading statistics for different resolutions using the SSD and
HardDisk as external storages.

8 RESULTS

We have implemented our approach on a personal computer with
the following hardwares: 3.2 GHz AMD Ryzen 5 1600, 16GB DDR
RAM, NVIDIA GeForce GTX 1070 with 8GB video memory. We
have tested with two differents external storages: a SATA HD and a
SSD with 156 MB/s and 500 MB/s transference rate, respectively.

We use an sattelite image covering a region about 130 x 69 KM
area. The resolution of it represents about 8 GigaPixel. The uniform
block size adopted in the preprocess was 1024 x 1024 pixels with
16 bits color depth per pixel. The virtual texture file uncompressed
occupied about 21,9GB in external storage.

The table 1 shows the loading time of an entire clip region in
differents resolutions and external storages. The loading time with
the SSD was approximately 30% faster than the Hard Disk for the
HD and FHD resolutions. The UHD resolution performance re-
mained the same for both external storages, which implies that for
large amounts of blocks, the loading process stop being the bottle-
neck. Therefore, removing the node from the stack and send it to
the video memory becomes the slow process.

The test was a visualization of the area in the most detailed reso-
lution with the camera moving about 1KM/s. The external storage
used was the SSD with 3 differents screen resolutions.

900 4
800 -
700 > : — : O - —
600 -

500 -
300 AN A AN NPAA AN pn
300
200
100

Framerate

———HD =—FHD ——UHD

Figure 5: Test results for the following screen resolutions: 1280x720
pixels (HD), 1920x1080 pixels (FHD) and 3840x2160 pixels (UHD).

The figure 5 shows the frame rate for a 10 seconds interval. As
expected, the clipsize strongly influences the frame rate. However,
even if the clipsize is the same for two different resolution, there
may be a slight variation in the frame rate. This is due to the fact
that smaller FOVs require less nodes to cover it. Hence, it is neces-
sary to render less tiles.

9 CONCLUSION

We have introduced a technique to render a large texture while
maintaining the real-time performance. Keeping the clipmap

XVI SBGames — Curitiba — PR — Brazil, November 2nd - 4th, 2017

Computing Track — Short Papers

essence, we have improved the texture caching for the orthographic
view. The virtual texture and the loading of its blocks subsets asyn-
chronously allowed to maintain the interactivity while displaying
large textures.

Our implementation does not use any compression algorithm in
the preprocess, saving the virtual texture as a raw color array of
sequential tiles. There are many researches in this line, which pro-
pose to reduce the file size, and thus decreasing the transfer time,
while ensure a real-time decompression [1][6][4]. In the future, we
expect to explore compression techniques associated to the GPU to
improve our approach.

10 ACKNOWLEDGEMENTS

We thank the Brazilian Army for the financial support through the
SIS-ASTROS project, developed in the context of the ASTROS
2020 Strategic Project.

REFERENCES

[1] A. C. Beers, M. Agrawala, and N. Chaddha. Rendering from Com-
pressed Textures. Siggraph 1996, page 4, 1996.

[2] D. Cline and P. K. Egbert. Interactive display of very large textures.
Visualization ’98. Proceedings DOI - 10.1109/VISUAL.1998.745322,
98:343-350, 1998.

[3] J. Dollner, K. Baumann, and K. Hinrichs. Texturing techniques for
terrain visualization. Visualization 2000. Proceedings, pages 227-234,
2000.

[4] S. Guthe, M. Wand, J. Gonser, and W. Strasser. Interactive rendering of
large volume data sets. [EEE Visualization, D:53-60, 2002.

[5] W.Hua, H. Zhang, Y. Lu, H. Bao, and Q. Peng. Huge texture mapping
for real-time visualization of large-scale terrain. page 154, 2004.

[6] Y.-S. Kwon, L.-C. Park, and C.-M. Kyung. Pyramid texture compres-
sion and decompression using interpolative vector quantization. In Im-
age Processing, 2000. Proceedings. 2000 International Conference on,
volume 2, pages 191-194. IEEE, 2000.

[7]1 Z.Li, H. Li, A. Zeng, L. Wang, and Y. Wang. Real-time visualization
of virtual huge texture. Proceedings - 2009 International Conference
on Digital Image Processing, ICDIP 2009, pages 132—136, 2009.

[8] A. Seoane, J. Taibo, L. Herndndez, R. Lépez, and A. Jaspe. Hardware-
independent clipmapping. 2007.

[9] C.C. Tanner, C.J. Migdal, and M. T. Jones. The Clipmap : A Virtual
Mipmap. SIGGRAPH ’98: Proceedings of the 25th annual confer-
ence on Computer Graphics and Interactive Techniques, pages 151—
158, 1998.

641

	175392

