SBC - Proceedings of SBGames 2017 | ISSN: 2179-2259

Computing Track — Short Papers

Voice Commands Recognition For Virtual Reality Environments Using
Convolutional Neural Networks

Jose Carlos de Almeida Machado*

Cristina Nader Vasconcelos

Esteban Walter Gonzalez Clua

Universidade Federal Fluminense, Computer Science Department, Brazil

ABSTRACT

Virtual Reality (VR) environments provide interactivity freedom
that can be exploited for reducing natural barriers found by physi-
cally challenged people. The use of applications whose interaction
is captured by typing or by gesture recognition may be prohibitive.
The use of audio recognition is one of the possible alternatives that
may overcome such issues and is investigated in the present work.
This paper proposes voice command recognition that is performed
by a Deep Learning (DL) based approach that can be used along-
side VR games. In general, classical speech recognition solutions
are based on the construction of a specialist system in which in-
variance such as ambient noise or accent should be modeled specif-
ically. The proposed model is based on the use of Convolutional
Neural Networks (CNN) that are expected to learn a hierarchy of
features from a database. In that sense, a new annotated database
was constructed aiming to cover a variety of environmental noise,
type of voice, accent, intonation, and other aspects that enriched
the information presented to the network for training. It covers 326
audio samples, of twenty-three different speakers, and five com-
monly used game commands. The methodology achieved 66% of
accuracy rate in experiments with a single CNN.

Keywords: audio recognition, neural networks, convolutional neu-
ral networks, virtual reality.

1 INTRODUCTION

Voice recognition is currently being used daily on applications such
as GPS and television controllers. It may became a frustrating ex-
perience when a command word is not understood by the program
or the user’s speaking manner needs to follow a certain pattern to
be comprehended.

Identifying voice commands is a complex task. One word can
be poorly identified for various reasons, such as accents, dialects,
context, agglutinations, finesse, multiple ways the sound could be
written, recording failure, and so on.

In a VR environment, the attempt to mimic the physical world is
critical and the interaction with it should be as immersive as possi-
ble. In order to achieve a more fluid sequence of actions, speaking
is an alternative to gestural interaction, making VR more accessible
for physically challenged people, and creating a new option for the
regular usability.

The current recognizers use syllabic identification [1], compar-
ing the input with a phonetic database given an error tolerance,
place the information together to form words and try to identify
what was said. Even though this approach performs well in many
scenarios, it demonstrates difficulties in highly diverse speaking
possibilities, since they must be previously modeled. The use of
DL could be a valid solution for the future of this technology, since
it can identify patterns from provided data of each word, instead of
previously modeling it.

*e-mail: jcamachado @id.uff.br

XVI SBGames — Curitiba — PR — Brazil, November 2nd - 4th, 2017

This project aims at creating a command recognition system us-
ing CNN capable of learning and classifying voice commands with
higher precision independently of speaking variation. For this, it
is necessary to have an audio database with commonly used com-
mands present in these applications. These commands are repre-
sented as spectrograms that serve as input for a CNN to learn pat-
terns of each command.

2 METHODOLOGY
2.1 Neural Networks’ Selection

In this project, two neural networks are being used to train a model
to classify the dataset. The first is AlexNet due to its relatively
low error rate on classifying ImageNet’s dataset, using data aug-
mentation techniques [4]. The second one is GoogLeNet that con-
trasts with the "simplicity" of AlexNet, having a lower error rate on
ImageNet Large-Scale Visual Recognition Challenge (ILSVRC),
deeper and more complex architecture and higher computational
cost [7].

Both were top competitors at ILSVRC at different years. Addi-
tionally, the use of NVIDIA DIGITS and its practicality in giving
a graphical user interface for dataset and manipulation on both net-
works were reasons to choose them.

2.2 Converting Audio to Image

As said before, an open and free audio database was necessary,
with specific commands simply and intuitively annotated in classes
to be used with NVIDIA DIGITS. From these audio (.wav) files,
grayscale spectrograms were created. The spectrogram is a graphic
representation of the sound waves [2], mapping frequency as the
vertical axis, time as the horizontal axis, and power represented as
the pixel color on the resulting image, where stronger patches are
darker and silence is white.

Converting audio to image is proposed as an alternative ap-
proach, since the networks mentioned in section 2.1 have a pre-
defined support for image input.

The spectrograms were created using Python, based on [8] which
uses short-time Fourier transforms to help extract the frequency in-
formation from the audio signal [5]. The resulting images’ axes are
dependent on the frequency and time.

In order to reach the requirements for the intended networks, the
input data must be an image with 256x256. Processing these spec-
trograms were necessary to fit these dimensions. It was decided
to normalize the Y-axis and making slices along the X-axis. This
process was an attempt to minimize data loss while comprising the
image, keeping the frequency range within 256 samples in all im-
ages.

Homogenizing the images’ height demands extracting a division
factor F from the image with highest frequency. Dividing the maxi-
mum height on the database hmax=480 by the target size, 256. So,
F=hmax/256 and our factor is F = 1.875. By dividing each image’s
height by this factor, the resultant images are smaller than or equal
to 256 pixels on the Y-axis. When the result -was smaller than 256
(On Y or X-axis), the image was filled with absolute silence, white
pixels, as noted in Figures 2 and 3.

634



SBC - Proceedings of SBGames 2017 | ISSN: 2179-2259

Figure 1: Spectrogram example: Command "Open". Dimensions:
468x237.

Figure 2: Spectrogram example: Command "Close". Dimensions
smaller than 256x256.

Figure 3: Spectrogram example: Command "Close". Y dimension
smaller than 256 pixels.

XVI SBGames — Curitiba — PR — Brazil, November 2nd - 4th, 2017

Computing Track — Short Papers

Another case is that time is not being compressed to 256 pixels
in order to avoid sample loss over time. Images using less than 256
time samples are filled with silence as mentioned before. But when
the time has more than 256 pixels, the image is sliced. This method
also helps to increase the amount of data in the database.

The spectrogram is represented as a 256xT picture, where T is
the total value of pixels on the X-axis. For every spectrogram where
T<256, the image will be filled with silence on the gap until it
reaches the aimed size of 256 pixels. T=256 means that no ma-
nipulation needs to be done. When T>256, T-255 images will be
generated from the original spectrogram. This process starts by the
leftmost pixel in (0,0).

The Y-axis goal was achieved in a previous step. Now, the image
will be sliced vertically in x and x+255, starting at x=0. This slice
is a new 256x256 image in the database. When X is zero, we have
the leftmost sub-image from the spectrogram. This process repeats
itself increasing the x’s value by 1, until it reaches a value less than
256 pixels apart from the original image size (x < T-255), in order to
not access invalid memory position. Using this process, the total of
images at the database increased from 326 images to 57972 images.

This approach for data augmentation provides two advantages.
One is to reinforce the learning of an audio pattern multiple times
since the same spectrogram could several new slices containing its
data signal. The second advantage is that to make the classifier
more robust to displacement through time, the slices from the same
spectrogram were translated by one pixel from each other on the
time axis (X-axis).

M

. if T>=256 :T—255
Slices = .
otherwise 01

a) b)

Figure 4: Note that 4-a) has the same source than 4-b). However
4-a) is a slice that comes chronologically before 4-b).

2.3 Annotation

The annotation process is simply defined, but demands manual
work and could take time. Given that the training is supervised, it
is necessary to provide information about the relationship between
each image and the correspondent command

This project’s indexation works on the original spectrogram.
Each column on the spectrogram represents the smaller audio sam-
ple represented. The information provided on each column (time
sample) is used to identify where the command is inside the picture.
This process was performed manually. Given where the command
is in the original picture, it becomes possible to map if the spectro-
gram’s slice does or does not have a relevant amount of command
samples in it. And if it does not, the sub-image is considered as
noise.

The information about each image column is placed in text files
(.txt) that were created using the same name as the correspondent

635



SBC - Proceedings of SBGames 2017 | ISSN: 2179-2259

original image. The content of each file starts with a collection
of characters. Each character corresponds to a command and its
position on the String maps the pixel column on the original image
(i.e. string[0] maps image’s first column). The characters used to
index the commands in the file are: Close ¢, Open o, Pick i, Pause

p, Throw t and Noise s. Thus, this String has T identifiers, one for
each sample. Any other text after the T-th column must be ignored.

In this case, it was used as a comment session indicating where to
index each command.
5555555555555555555555555555555555555555555555555555555555555555555555555
5555555555555555555555555555555555555555555555555555555555555555555555555
555555555555555555555555555555555555555555555555555555555555CCCCCCCCCCCCC
fafstatal ol af el ofaf of of ol af ol of af of of ol of of ol of of syl ofof of of o af ol of of of of ol of of ol of of of af of af of af o af of of of of of ol of af af of of af ol o af of af al af o al o

CCCCCCCCCCCCCCCCCCCCC5555555555555555555555555555555555555555555555555555
S5555555555555555

a-2e4
205-311
312-380

Figure 5: Annotation file’s content example. The first sequence of
character is the reference String. The text that follows this sequence
is not used in code. It was used as comment session, recording
meaningful indexes to favor the String construction.

After finishing annotating the samples, it is required to define the
criteria to consider a minimum amount of samples in a sub-image
that are not noise in order to consider the image as having a com-
mand. The decision used to choose the minimum number of sam-
ples is based on the spectrogram with the lowest number of com-
mand samples, in other words, the image where the command was
said faster. The spectrogram with fastest spoken command gave
us 32 samples, corresponding to the Close command. Thus, for a
sub-image to be considered having a command, it needs at least 32
samples from the correspondent command. In this case, it will be
tagged and allocated to the correspondent class of commands, oth-
erwise, it will be classified as Noise. A name identifier is given to
compose the final name of the sub-image file. After this process, a
spectrogram’ slice is generated using the identifiers in its file name,
accordingly to its creation process.

3 EXPERIMENT
3.1 System Requirements and Technology

The machine where this experiment was performed is a personal
computer with relatively accessible components. The physical
components of this computer include an Intel 13-2120 3.3GHz, two
main memories 8GB DDR3 RAM, and one GPU GTX-1070 with
8GB RAM.

The system’s software used in this experiment was Linux-
Ubuntu Operational System 16.04.2; NVIDIA DIGITS 5, for a sim-
ple interface manipulation of Neural Network’s hyper-parameters.
CUDA version 8.0 was used alongside DIGITS. Additionally, Caffe
was chosen to work with AlexNet e GooglLeNet. As stated in sec-
tion 2.2, the database was generated using Python 2.7.

3.2 Hyper-parameters

Choosing which hyper-parameters would be used in the learning
experiment is a complex task where promising values can be ig-
nored by inexperience or lack of knowledge on the experiment sub-
ject. From this point, it may be necessary to experiment by trial
and error. The hyper-parameters used in this experiment did not
follow any specific method. These were defined mainly on manual
fine-tuning, an approach similar to [3].

Depending on the hyper-parameters (e.g. Epoch, Learning
Rate and Batch Size), the learning time varies. The network with
the fastest experiment execution was AlexNet, which within 70
epochs took 30 minutes to execute. Oppositely, GoogleNet took
more time and resources, as expected due to its complexity.

XVI SBGames — Curitiba — PR — Brazil, November 2nd - 4th, 2017

Computing Track — Short Papers

3.3 Dataset Learning

Works with Neural Networks using audio are not widely explored
and open datasets may not be as specific enough for every issue.
Because of that, it was necessary to create a more suitable database
for this problem called AudiUFF (Audio UFF).

It is worth mentioning that AudiUFF was used in two versions.
The first is a smaller version containing with 46138 images and the
second version was composed of 57972. This difference is due to
an addition of 51 audio files (.wav) on the database, from 271 to
326, which increased the difference after the data augmentation.

The database is divided into 6 command classes, chosen as a
representation for application commands. They are: Open, Close,
Pause, Pick, Throw and Noise. Each class represents one voice
command that has the same name, except Noise. Noise’s class rep-
resents audios that do not fall on the aforementioned classes. This
includes silence, background noise or misunderstood words. Each
file has only one valid non-noise command.

According to this data classification, the Noise class could con-
tain other words and serve as a reservoir for spare commands that
could be used in other applications.

Twenty-three people participated as speakers in this database,
sixteen men, and seven women. To increase the amount of data
and its variation, they spoke between one and five times each com-
mand, in different tones and surroundings. In order to increase the
variety of vocal patterns, the participants are from different parts of
the world, being one from the United States of America, another
from Argentina, and the remaining twenty-one are from Brazil,
from which at least six speakers had known experience as exchange
student in different regions of the United States for at least one
year. This provides diversity in signal recording and pronuncia-
tion of each command since the speakers have different fluency in
English and used different devices to capture the audio, given the
reduced amount of people and data recorded.

3.4 Dataset Configuration

Hypothetically, a scenario where all classes, 6 in this case, have the
same number of samples, the database percentage of files per class
would be approximately 16%, so any accuracy rate above this num-
ber on the learning process can be considered as better than ran-
domly guessing. However, in AudiUFF, similarly to what happens
to phone calls [6], a high percentage of audio time is composed of
silence or background noise. The noise class represents 40% of the
whole database, which includes augmented data. Considering this,
it is fundamental to be aware of misleading accuracy.

Following this idea, three database settings were used in this
project, considering different scenarios. The first one, Noisy set-
ting, used a noisy database, where 40% of it was composed of noise
class files, while the other classes ranged from 12.5% to 10.9% of
the training set. Validation and test data followed a similar ratio be-
tween classes. The training set represented 88% of the whole data,
while validation and testing represented 6% each.

The second setting, Balanced setting, is similar to the first, but
unlike the previous one, there is a regular distribution between the
classes, leaving the most numerous class with 17.3% of the training
set, and the least numerous with 15.1%. When this distribution was
applied, the percentage of each set changed (training, validation,
and test sets). Training set’s percentage changed to 80% of the
total data, validation to 11% and test to 9%. It is important to note
that 40% of the test and validation data included audio from people
that participated in the training set, but using different audio files.
On this approach, in order to achieve an approximate distribution,
the files from the noise class were pseudo-randomly deleted. The
intention was to remove files affecting all original spectrograms.

The variation of database’s classes distribution had the objec-
tive of avoiding inaccurate results. For example, using the noisy
database, a 40% accuracy rate could indicate the false idea of a

636



SBC - Proceedings of SBGames 2017 | ISSN: 2179-2259

good result. However, if the model tried to guess every sample as
Noise, it would give us the same result, since 40% of the entire
database was composed by noise files.

On the third configuration, DIGITS selected randomly 25% of
the training set as validation and test sets. It was defined using the
Noisy database.

4 RESULTS
4.1 Accuracy Rate

Starting with the third configuration. Since the data origin could be
very similar, due to the data augmentation technique, the accuracy
of 99% suggested a problem. The interpretation is that samples
from the same spectrogram were used in test, validation and train-
ing sets, giving a poor diversity range on the prediction. Taking this
in consideration, this configuration was discarded.

The Noisy database was composed by approximately 40% of
Noise’s class samples. Considering this, the results could have been
biased. The accuracy rate ranged from 35% to 66%, which seems to
be a good result in an equal distribution between classes. Although,
if the results were around 40% accurate, it is valid to assume that
the network learned how to predict only one class, choosing Noise
as a safe guess guaranteeing 40% of hit rate. In other words, the
worst decision could be a lucky guided guess.

The best result GoogLeNet achieved in this configuration was
50%, using the bigger version of AudiUFF and: learning rate
= 0,001, batch size = 5, and the other parameters as the current
standard from DIGITS. It took 8 hours on the specified machine.
AlexNet achieved the mark of 66 % rate on the smaller version of
AudiUFFF using the following hyper-parameters: learning rate =
0,01, batch size = 15, batch accumulation = 5, y = 0,4, step down
= 20 epochs, the remaining parameters were DIGITS standard val-
ues. It took around 1,5 hours to complete the training.

Even though the results were cheering, they could be dubious.
It was necessary to check in a second and more balanced configu-
ration. The Balanced setting had class proportions ranging within
2.2% (17.3%-15.1%). Consequently, the targeted accuracy must be
at least 20% to be considered as better than randomly choosing.

However, the experiments in the Balanced setting had accuracy
between 35% and 62%. Three times better than the worst signif-
icant case, and worse than the Noisy configuration. This result
was achieved by AlexNet on the bigger version of AudiUFF, using:
learning rate = 0,02, y = 0,4, batch size = DIGITS’ default, batch
accumulation = DIGITS’ default, and step down = 20 epochs. Its
execution took 1.5 hours.

Loss
L
T
wn
g

M loss (train) accuracy (val) M loss (val)

Figure 6: Graphic displaying the learning of AlexNet through 100
epochs on the Noisy configuration using a smaller version o AudiUFF.

XVI SBGames — Curitiba — PR — Brazil, November 2nd - 4th, 2017

Accuracy (%)

Computing Track — Short Papers

5 CONCLUSION

The results can be considered positive given the collected data in
this experiment. Even though the database has a considerable size,
itis not truly diverse, considering that it was augmented from a few
files, even though it was recorded in different situations. Even us-
ing the data augmentation techniques, a more heterogeneous dataset
could help the network to increase its pattern detection.

Additionally to expanding and enriching the database, experi-
menting with different parameters, finetuning using bigger datasets
and using network arrangements (such as committees) could also
contribute to improve the results.

Ultimately, following the above considerations, the average ac-
curacy rate of 40% in the first two settings shows an increase of
2.5 times the accuracy rate of selecting randomly a command. As a
first experiment using this simply defined methodology, it indicates
a potential for improvement, allowing a projection of better results
in the future.

REFERENCES

[11] M. Cravero, R. Pieraccini, and F. Raineri. Definition and evaluation
of phonetic units for speech recognition by hidden markov models. In
Acoustics, Speech, and Signal Processing, IEEE International Confer-
ence on ICASSP’86., volume 11, pages 2235-2238. IEEE, 1986.

0. Gencoglu, T. Virtanen, and H. Huttunen. Recognition of acoustic
events using deep neural networks. In Signal Processing Conference
(EUSIPCO), 2014 Proceedings of the 22nd European, pages 506-510.
IEEE, 2014.

[3] S. E. Kahou, X. Bouthillier, P. Lamblin, C. Giilgehre, V. Michal-
ski, K. R. Konda, S. Jean, P. Froumenty, Y. Dauphin, N. Boulanger-
Lewandowski, R. C. Ferrari, M. Mirza, D. Warde-Farley, A. C.
Courville, P. Vincent, R. Memisevic, C. J. Pal, and Y. Bengio. Emonets:
Multimodal deep learning approaches for emotion recognition in video.
CoRR, abs/1503.01800, 2015.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet Classifica-
tion with Deep Convolutional Neural Networks. In F. Pereira, C. J. C.
Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural
Information Processing Systems 25, pages 1097-1105. Curran Asso-
ciates, Inc., 2012.

[5] M. Miiller. Short-time fourier transform and chroma features. 2015.
[6] J.Ramirez, J. M. Gérriz, and J. C. Segura. Voice activity detection. fun-
damentals and speech recognition system robustness. In Robust Speech
Recognition and Understanding. InTech, 2007.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Er-
han, V. Vanhoucke, and A. Rabinovich. Going deeper with convolu-
tions. In The IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 6 2015.

F. Zalkow. Create audio spectrograms with Python. http://www.frank-
zalkow.de/en/code-snippets/create-audio-spectrograms-with-
python.html?i=3. Accessed: 2017-05-22.

[2

—

[4

=

[7

—

[8

[t}

637



	175391



