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ABSTRACT

General Video Game Playing (GVGP) proposes as a challenge the
development of agents capable of playing real-time video games
with previously unknown rules. In recent editions of the General
Video Game Playing Competition (GVG-AI), the Monte-Carlo tree
search (MCTS) algorithm has been one of the most popular and
successful techniques to power such agents. While it achieves good
results when compared to other techniques, it carries some weak-
nesses that can harm its performance in a GVGP environment. This
paper introduces the Redundant Action Avoidance (RAA) method
to identify redundant actions at the start of a game and to improve
Monte Carlo simulations by avoiding sequences of such actions.
We also propose a modification to the recommendation policy of
the MCTS, the Non-Defeat Policy (NDP) in order to avoid defeats
in certain cases where the player is surrounded by multiple dan-
gers. Results from experiments show that both methods are able to
improve the general performance of a MCTS-based controller, and
that exploring the idea of redundant actions in Monte Carlo simula-
tions can be beneficial in GVGP.

Keywords: General Video Game Playing, Monte Carlo tree search,
Artificial Intelligence.

1 INTRODUCTION

Video games have been widely used in academy and industry for
evaluating artificial intelligence (AI) techniques. The goal of AI is
to create programs that can demonstrate intelligent action such as
of the human being, and video games provide a rich platform for
testing these programs, allowing the simulation of many events and
situations present in real life.

General Video Game Playing (GVGP) proposes the challenge of
creating computer programs that can play a wide range of video
games with previously unknown rules. The idea of having an in-
telligent agent that can solve many different challenges in video
games, similar to a human being, has been previously associated
with an approximation of a General Artificial Intelligence [9].

The GVG-AI competition is the most recent effort to foment re-
search in this area. Rather than to concentrate on the parsing of
environment information, the framework allows a bigger focus on
the AI part of the controller by providing robust information about
the game, such as the player position, position of nearby elements,
and the ability to simulate the execution of actions.

One of the most popular algorithms in the GVG-AI competitions
is the Monte Carlo Tree Search (MCTS). This algorithm achieved
great success when it was first proposed for the board game Go [4].
Likewise, MCTS and its variants usually achieve high ranking po-
sitions in GVG-AI [9]. Through expanding a search tree based on
a sampling of the search space, the Monte Carlo Tree Search algo-
rithm tries to find the most promising move from the current state.
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The main contribution of this paper is proposing a strategy to
identify redundant actions and bias the rollouts performed during
the simulation phase of the MCTS algorithm in GVGP. The idea of
exploring the redundancy aspect of simulations in GVGP has been
previously tackled by using novelty tests to prune expanded redun-
dant states [12] or by applying a penalty to the reward function after
executing opposing moves [10]. Here, we define the concept of re-
dundant actions, propose an algorithm to identify such actions, and
a method to avoid selecting these actions in the simulation phase of
the MCTS, in order to reduce the number of redundant states gener-
ated and to improve the overall quality of simulations. This method
can be generally applied to every game in the GVG-AI framework
to identify and avoid redundant actions during play-outs.

Additionally, we introduce a modification to the recommenda-
tion policy of the MCTS algorithm, the Non-Defeat Policy. During
the simulation phase, each child node from the root that has seen
a defeat state is marked as a defeat node. When executing the rec-
ommendation policy, an action that leads to a defeat node is never
selected, unless it’s the only option. This modification allows the
MCTS to take actions that postpone or avoid a defeat state in certain
games.

2 REATED RESEARCH

2.1 General Video Game Playing
General Video Game Playing concerns the study of AIs that can
play video games with previously unknown rules. As opposed to
the traditional board game AIs, video games bring new challenges
to the researchers such as a tight computational time budget and
new premises such as the possibility of simulating real life events
on a virtual environment.

The GVG-AI competition is currently the most prominent com-
petition in GVGP, and offers a framework that allows the develop-
ment and testing of controllers for 2D arcade style video games.
Besides offering a huge library of original and reproduction titles,
it also allows the development of new games using a Video Game
Description Language (VGDL). For more details on the VGDL and
its possibilities, the reader is refered to [11].

The framework also allows the simulation of actions, enabling
the controller to see what are the possible outcomes (states) from a
given sequence of actions. The forward model allows simulations
to be executed as many times as needed within a time step. In the
Planning track, the main track of the GVG-AI competition, the con-
troller has to use the forward model to build up a plan and decide
which action to perform at each time step.

2.2 Monte Carlo Tree Search
Monte Carlo tree search (MCTS) is a tree search algorithm first
introduced in 2006 in [3, 4, 7] for the board game Go. It highly
improved the performance of the agent when compared to other
state-of-the-art techniques at the time. Since then, MCTS has been
expanded to other games and domains, and turned into one of the
most popular algorithms for General Video Game Playing. In fact,
in recent GVG-AI competitions, the controllers with the highest
ranking positions on the Planning Track are often based on some
variation of the original MCTS [9].
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In the MCTS algorithm, an iterative tree search is performed,
where each node stores statistical information about play-outs made
from that node. Chaslot [2] talk over the application of this tech-
nique in game AI, and describes the four basic steps of a MCTS-
based algorithm:

• Selection: a selection strategy is applied from the root node
until a leaf node is reached. In GVGP, the Upper Confidence
bounds applied to Trees (UCT) [7] is often used as the selec-
tion strategy.

• Expansion: a new node (action transition) is appended to the
tree, unless the game has ended in the current node.

• Simulation: from the newly expanded node, a simulation is
executed, performing a number of actions according to a sim-
ulation strategy until reaching a specified depth. Due to the
cost of biasing the simulation with domain knowledge, a ran-
dom simulation strategy is often employed in GVGP.

• Backpropagation: a reward associated with the final state of
the simulation is backpropagated to all visited nodes. The
number of visits of each node is also incremented.

At the end of execution, in GVGP usually given by the end of
the available computational time, the action to be taken by the con-
troller is obtained through the best child from the root node. The
recommendation policy is usually given by the number of visits
(Robust child) or the highest score associated with a node (Max
child), or a combination of the two values [1]. For MCTS in GVGP,
a common recommendation policy is the Robust child one.

Even though the Monte Carlo tree search has turned into one
of the most popular and successful algorithms in GVGP, the orig-
inal form of the algorithm yields only about 20% of victories [5].
Moreover, it has some issues [8] that can be aggravating on a GVGP
environment, such as non-informative and redundant simulations.

3 PROPOSED METHODS

This section describes the methods proposed and integrated to
MCTS in this paper. The first method addresses the problem of
redundancy in the simulation strategy, while the second modify the
recommendation policy to improve performance in corner cases.

3.1 Redundant Action Avoidance
Considering that games on a GVGP environment have previously
unknown rules and the fact that we can not make any assumptions
about what is the goal of a certain game beforehand, a random sim-
ulation policy has been adopted as a common simulation strategy
for the MCTS algorithm [5]. Moreover, a complex simulation strat-
egy can increase the computational cost of the simulation, reducing
the number of iterations of the algorithm and decreasing the gen-
eral performance of the controller. On the other hand, it is clear
that performing random actions produces a lot of redundant actions
(e.g. moving left and right), which can increase the number of un-
informative simulations.

Therefore, it becomes interesting to develop a policy to reduce
the occurrence of redundant actions, however, without completely
eliminating them, since there could exist situations in that executing
said actions could be useful (e.g. avoiding many projectiles).

First, redundant actions are defined. A sequence of actions-state
(a1,s1), (a2,s2) is redundant if and only if the execution of both
actions from a given state s1 does not result in a change of the state
of the avatar. A change in the state of the avatar can be given by
the position, orientation, properties of the avatar, or execution of a
certain action. Therefore, two actions a1, a2 can be redundant in 4
situtations:

• Position: when the action a1 causes a change in the avatar
from the position p0 to the position p1 and the action a2
causes a new change of position to p0.

• Orientation: when the action a1 causes a change in the orien-
tation of the avatar and the action a2 causes a new change in
orientation.

• Properties: when the action a1 causes a change in the proper-
ties value p0 of the avatar (such as a change in the currently
drawn weapon) to value p1 and the action a2 causes a new
change of property value to p0.

• Execution: when the action a1 produces a new object from
the avatar in the game (e.g. a shot fired, a sword swinging,
etc) and the action a2 is null (does not cause any change to
position, orientation, properties or change in the number/state
of created objects from the avatar).

An illustration of two play-outs, one with redundancy based on
movement and one without redundancy is given by Figure 1.

Two things are important to note. First, the proposed definition
is established for the discrete, grid-based physics adopted in the
GVG-AI framework. Second, this definition deals independently
with the state of the avatar. We do not compute interactions with
the other elements in the game, or the general state of the game
itself. In fact, if any kind of interaction (i.e. collision) is detected
during action testing, the search for a subsequent redundant action
is halted. This decision is based on the high computational cost of
tracking the state of too many elements in the game. As observed
previously, increasing the computational cost of the simulations can
significantly reduce the number of simulations performed during
each step of the game.

Figure 1: Two play-outs of the same game. The arrows indicate the
action performed from the current state. In (a), one redundant move
is executed in the second frame. In (b), a similar play-out but without
any redundant action.

In this work we tackle movement, properties and execution ac-
tions. These are the less expensive actions to identify and to bias
during simulation, i.e., it is possible to know which actions are re-
dundant just by checking the previous step. For orientation actions,
at least the two last actions would need to be checked in order to
do so, due to the fact that movement and orientation are usually
changed with the same key presses. This problem will be addressed
in a future work.
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Initially, we define a uniform probability distribution to every
available action transition as

P(a,s) =
1
n
, (1)

where P(a,s) is the probability of choosing a certain action a from
state s and n is the number of available actions in the game. Given
that a certain action a is chosen for the state s, and there is an action
a′ so that a′ is a redundant action of a, the probability of choosing
the action a′ for the state s′ is given by

P(a′,s′) =
1
n
(1− p), (2)

where p is a penalty coefficient. The penalized value is redistributed
among the remaining actions so that it sums 1. Here, as we have
only one redundant action for each action, the probability adopted
for the non-redundant actions is given by

P(a′′,s′) =
1
n

(
1+

p
n−1

)
, (3)

where a′′ represents a non-redundant action of a. The uniform dis-
tribution is maintained when no redundant actions are identified for
a certain game.

If the initial position of the avatar is surrounded by obstacles,
it will not be possible to identify some or any redundant actions
for the game. Regardless of the policy adopted to identify these
actions in-game, it is not possible to provide any guarantee about
the possibility of finding all redundant actions for a given match.
In practice, the proposed solution was able to identify redundant
actions for most of the games tested.

3.2 Non-Defeat Policy
The MCTS algorithm tries to find the best action to take from the
current state by performing random simulations of d depth and
backpropagating the reward for the state given at this depth. How-
ever, in GVGP there are situations in which a precise sequence of
keys must be pressed in order to avoid an instantaneous loss.

When this type of situation occurs during the MCTS execution
and none of the random simulations were able to find at least one
sequence of actions that would avoid a defeat in the game, all chil-
dren nodes from the root node will likely have the same reward
value and action selection will be random.

Figure 2: Illustration of a situation where MCTS (player red) often
fails at finding the best action and end up hitting the wall.

We propose a simple method to avoid those instant death mo-
ments, the Non-Defeat Policy. Whenever the selection phase takes
place, and a simulation is made from the root node to one of their
children, we check the state of the children and, if it is a state where
the player lost the game, we mark it as a defeat node. This verifica-
tion is repeated at the beginning of every simulation in the game.

At the end of execution, the Non-Defeat Policy changes the de-
fault recommendation policy in order to consider only nodes that

have not been marked as defeat nodes. The choice from the recom-
mendation policy remains unchanged when all children nodes are
defeat nodes. This strategy should avoid most of the simple situa-
tions where MCTS is defeated, such as the one depicted in Figure 2.

4 COMPUTATIONAL EXPERIMENTS

4.1 Setup
The vanilla MCTS controller provided by the GVG-AI competi-
tion was adopted as the baseline for the experiments. The proposed
methods were incorporated into the vanilla MCTS, and 5 differ-
ent configurations were tested: four controllers employing the Re-
dundant Action Avoidance method with penalty coefficients 0.4,
0.5, 0.6 and 1, and one controller employing the Redundant Action
Avoidance method with penalty coefficient 0.5 and the Non-Defeat
Policy. The MCTS parameters used for all configurations are the
same as of the vanilla MCTS of the GVG-AI framework. A de-
tailed description of the parameters used follows.

The UCT was adopted as selection strategy, with constant C = 2
and rewards normalized between [0,1]. The simulation depth was
set to 10. A random simulation strategy was adopted, with the ex-
ception of the configurations using the Redundant Action Avoid-
ance method, in which case the probability of performing a certain
action during a simulation is given by Equation 1, Equation 2 or by
Equation 3, according to the state of the game. The robust child
policy was used as the recommendation policy, with the exception
of the configuration using the Non-Defeat Policy, in which case the
child with the highest number of visits is chosen only if it is not a
defeat node. An open loop approach was used for the algorithm,
with only statistics of the states being stored in each node.

To ensure enough diversity in the set of games used in this exper-
iment, the same subset of games from [6] was adopted, which com-
bines games from two different classification methods proposed for
the games in the GVG-AI framework. Table 1 shows the selected
games for this experiment.

Id Name Type Id Name Type
0 Aliens S 4 Bait D

13 Butterflies S 15 Camel Race D
22 Chopper S 18 Chase D
25 Crossfire S 36 Escape D
29 Digdug S 46 Hungry Birds D
49 Infection S 58 Lemmings D
50 Intersection S 60 Missile Command D
75 Roguelike S 61 Modality D
77 Seaquest S 67 Plaque Attack D
84 Survive Zombies S 91 Wait for breakfast D

Table 1: Indexes, names and types of games chosen for this experi-
ment. Legend: D - Deterministic, S - Stochastic

Each game was run 20 times for all of its 5 levels, totaling 100
runs for each game for each controller. The number of victories was
used to compare their performance. The budget used for planning at
each step followed the GVG-AI competition rules: 40ms of allowed
time to plan. If at some step the controller takes from 40ms to 50ms,
its action for that step is set to null, and if it takes more than 50ms,
the game is halted and the controller disqualified.

4.2 Results
The percentage of victories per game can be seen in Table 2. The
subject with p = 0, equivalent to the vanilla MCTS, already has
100% victories for games Alien (Id 0) and Intersection (Id 50). The
modifications proposed, over all parameters, were able to keep this
percentage of victories, indicating that we did not harm the perfor-
mance for these games. Four other games deserve special attention:
Digdug (Id 29), Escape (Id 36), Lemmings (Id 58), and Rogue-
like (Id 75). These are all games that offer a varying of different
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hard challenges for the vanilla MCTS. None of the proposed mod-
ifications were able to increase the performance obtained in these
games, but since the modifications do no address these challenges,
this result was expected.

Game p = 0 p = 0.4 p = 0.5 p = 0.5+NDP p = 0.6 p = 1
0 100% 100% 100% 100% 100% 100%
4 8% 10% 10% 10% 7% 6%

13 97% 95% 99% 98% 97% 99%
15 6% 7% 4% 7% 4% 3%
18 7% 11% 8% 6% 5% 8%
22 17% 21% 14% 22% 22% 23%
25 2% 5% 3% 5% 3% 4%
29 0% 0% 0% 0% 0% 0%
36 0% 0% 0% 0% 0% 0%
46 5% 6% 6% 5% 4% 5%
49 95% 98% 96% 98% 96% 94%
50 100% 100% 100% 100% 100% 100%
58 0% 0% 0% 0% 0% 0%
60 61% 65% 67% 62% 66% 64%
61 27% 26% 24% 27% 29% 25%
67 89% 86% 89% 91% 91% 93%
75 0% 0% 0% 0% 0% 0%
77 58% 58% 59% 58% 49% 56%
84 42% 42% 37% 47% 43% 46%
91 9% 17% 11% 12% 19% 6%

# bests 6 12 11 11 8 9
# better/equals p = 0 17 16 19 15 14

Table 2: Percentage of victories for each game, for each configuration
tested. The first one (p = 0) is equivalent to the vanilla MCTS.

Looking at the percentage of victories for the modifications pro-
posed, it is possible to see that there were improvements for every
parameter tested. The highest percentage of victories is observed
when p = 0.4 or p = 0.5. However, the one with the highest im-
provement over the vanilla MCTS was the subject with p = 0.5
combined with the Non-Defeat Policy, getting an equal or better
performance in 19 of the 20 games tested. Configurations of p =
0.6 and p = 1 presented good results nevertheless, but indicates that
higher values of penalty do not increase the overall performance of
the Redundant Action Avoidance method.

In a general sense, the Redundant Action Avoidance method tend
to improve the performance of the MCTS in most games, as most
of them have multiple redundant actions and therefore tend to per-
form many uninformative simulations during execution. There is no
guarantee, however, that avoiding these kind of actions will actually
lead to better results. In some games, performing redundant actions
can be useful. In practice, the results show that the performance can
be improved with the use of this kind of method.

The games in which the Non-Defeat Policy yield an improve-
ment (Ids 4, 25, 49 and 84, with the exception of 15), are all games
in which the avatar can be surrounded by multiple dangers and that
the vanilla MCTS may fail to choose an action that does not result
in a game over. The strategy proposed can postpone or avoid the
defeated states in those situations.

With the exception of the games that result in 100% or 0% of
victories, at least one of the configurations tested was able to in-
crease the performance in comparison with the vanilla MCTS. It is
important to note that due to the stochasticity of execution, small
variations on the percentage of victories can occur at each execu-
tion. That is why, in order to mitigate this effect, the games were
run 100 times for each controller.

5 CONCLUDING REMARKS AND FUTURE WORKS

This paper introduced the definition of redundant actions in Gen-
eral Video Game Playing, and proposed an algorithm to identify
these actions for a given game and a method to bias the rollouts
in the simulation phase of the MCTS algorithm in order to reduce
the number of redundant actions and improve the general quality of

simulations. A modification to the recommendation policy of the
MCTS is also proposed in order to avoid some defeat states.

Results show that the general performance of a MCTS-based
controller can be improved by applying a penalty to the occurrence
of redundant action. The proposed recommendation policy was also
able to increase the performance over certain games.

The Redundant Action Avoidance method is a first step in an
effort to improve the quality of simulations in GVGP by biasing
the path taken during the simulation using the concept of redun-
dant actions. There are many improvements that can be added to
this method. First, the identification of redundant action always fail
when there are obstacles adjacent to the avatar spawn point. A strat-
egy could be developed to move the avatar around until there are no
obstacles nearby, in order to properly identify all redundant actions.
Second, the changes in orientation could be integrated in the algo-
rithm. In board-physics games like the ones tested in the GVG-AI
environment, this might not be a frequent problem, however, for the
general case, it is fundamental to integrate orientation actions into
redundancy avoidance. Finally, the proposed strategy can be tested
in other GVGP environments. The adaptation of this method to a
3D environment is also a challenge proposed as future work.

GVGP has shown to be a hard problem, with factors such as
time limitation and heuristic independent algorithms. The research
and publications in the field has increased with the development
of the GVG-AI framework, and different algorithms and strategies
have been tested in this environment. This work can be a first step
towards a strategy that can be integrated into different algorithms in
order to improve the general quality of techniques in GVGP.
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of vanilla rolling horizon evolution parameters in general video game
playing. In European Conference on the Applications of Evolutionary
Computation, pages 418–434. Springer, 2017.
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