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ABSTRACT
Path Tracing algorithms can be used to render photo-realistic ima-
ges in a considerable amount of hours. The efforts to make this 
process faster have received more attention with the popularization 
of the GPU. One of the main issues is the poor cache use when the 
rendered scenes are complex. This work presents a novel approach 
that aims to improve its use. Our method performs an iterative tiled 
BVH traversal, where the BVH is split into sub-BVHs and reor-
ganized in a breadth first l ayout. At each s tep, the rays traverse a 
sub-BVH, then they are sorted based on the last node intersected. 
Which increases the data coherence and the GPU usage, leveraging 
the performance.
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1 INTRODUCTION

The results of the rendering algorithms research over the years, 
since Ray Tracing creation [22], have shown that it is possible to 
achieve images indistinguishable from reality [17]. Ray Tracing 
algorithms use rays to find and intersect geometry in a  scene, and 
each geometry has specific properties that will determine to where 
the ray should go from that intersection [22]. A large amount of 
these rays is required to get a realistic image, and this takes a long 
time. To reduce the rendering time, in the last two decades, some 
accelerations have been proposed, focusing on parallel processors,
e.g. the Graphical Processing Units (GPU).

The GPU is a graphical card optimized for rendering using ras-
terization [5], which relies on several buffers to render the objects
and defines what is going to be displayed based on their depth
[21]. Although rasterization is a rendering technique that runs in
real time, it does not produce directly any photo-realistic effects,
like soft shadows, reflections, refractions, caustics, color bleeding
and more [6]. To render these effects it is necessary to compute
the Global Illumination (GI), which is the illumination that de-
pends on everything that is on the scene [8]. To simulate the GI on
rasterization, it is necessary to use shaders and external programs
[14, 23], differently from Ray Tracing, that easily renders these ef-
fects without any shader [6].

In Ray Tracing, a common spatial data structure used is the
Bounding Volume Hierarchy (BVH). It divides the 3D space ba-
sed on the bounds of a set of objects. This structure reduces from
O(n) to O(logn) the complexity of querying the scene object set to
find an intersection.

Recent studies achieved interactive frame rates – between 1 to 20
FPS – by using parallel devices to accelerate the Ray Tracing and
the BVH traversal [19, 6, 12]. However, most of their scenes do not
include more complex effects, like reflections and refractions, not
exploring most of the GI effects. The reason for using simpler sce-
nes is that diffuse (or Lambertian) objects produce more coherent
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rays. These rays follow the same path under the BVH fetching the
same memory regions, doing a heavy use of caches, which accelera-
tes the render. However, when objects with reflective and refractive
properties are added to the scene, the rays will hardly match their
destination generating the incoherent rays [16].

Incoherent rays access different parts of the memory, which is
known as spatial incoherence. This causes performance loss be-
cause the GPU is forced to query multiple memory lines, using only
a small part of each line. On an ideal spatial coherent access, the
data comes in sequence, using the same line or, if it is bigger than a
line, a sequence of lines.

If it could be possible to trace incoherent rays avoiding the data
incoherence, the GPU would greatly accelerate the algorithm exe-
cution. However, to achieve data coherence it is necessary to spa-
tially organize the rays, and this can be done with a better spatial
data structures and sorting routines.

In this work, a novel approach is presented. It handles incoherent
ray data on the GPU by using a packet-less BVH traversal. Where
the BVH is arranged in a breadth-first layout to reduce memory
incoherent accesses. It uses a tiled pattern for loading sub-BVHs
and traverses them to find the last intersected node in this sub-BVH.
To traverse other sub-BVHs given the last intersection, it uses a
radix sort routine to reorder the rays, improving data coherence at
each iteration.

2 RELATED WORK

Efficient ray traversal is one of the main concerns on Ray Tracers
[9]. Traversal of coherent and incoherent rays has been explored
by several researchers over the last two decades. Coherent rays are
those that have some spatial consistency, following the same path
on the acceleration structure traversal [13]. Different from incohe-
rent rays, their path diverge inside the acceleration structure.

The first attempt to improve the ray traversal efficiency was to
use ray packets, introduced by Wald et al. (2001). The main idea is
to encapsulate several rays into a pack and traverse it on the acce-
leration structure. In their work, a 4-ray pack was used to traverse
a kd-Tree, in a depth-first manner. And to perform the ray-box in-
tersection test, a 4-wide SIMD unit was used. Their results show
that the processing time and the memory bandwidth were reduced
by a factor of 4 because the kd-Tree nodes are only fetched from
memory once for each pack [20].

As hardware got better and SIMD units wider, the idea of pac-
kets was improved by Reshetov et al. (2005). They group rays in a
frustum, called ray beam. Those frustums hold 16 rays each and tra-
verse the kd-Tree performing a reverse frustum culling algorithm,
where the node AABB is tested against the frustum. These beams
are subdivided into sub-frustums if the rays inside it diverge. And
the process is repeated until they get into a kd-Tree leaf, where each
ray is tested against the geometry. They show that for primary and
shadow rays their method has doubled the performance [13].

Boulos et al. (2007) were the first to work with the performance
of secondary rays using ray packets. The main problem identified
by them was the performance loss as the rays of the same pac-
ket lose their coherence. Their solution was to pack the rays by
their type, and with this modification they achieve a 2x speedup
over single-ray tracing, using 8 x 8 packet, achieving an interactive
frame rate on secondary rays [6].
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Overbeck et al. (2008) create a new method, called partition
traversal, which improves the ray coherence. In their method, they
use the same technique presented on [19], but when they select the
rays they put the active rays in the first positions of the array of
rays, and keep track of last active ray index on the traversal stack.
With that, it traverses only the active rays inside each node. This
method shows a good scaling when the packet size varies up to 32
x 32, and also outperforms the methods of Wald et al. (2001 and
2007) achieving interactive frame rates for scenes with refractions
and reflections [12]. Gribble et al. (2008) present a similar idea
for ray selection, the stream filtering, where they show that this
approach is independent of the acceleration structure [11].

Wald et al. (2008) present a new technique for ray traversal that
does not rely on packets. They use wide SIMD units to perform
single-ray front-to-back traversal, but they also use a BVH with a
high branching factor to match the SIMD size. They measured the
same performance compared to the use of packets for primary rays.
However, for secondary rays they had a performance gain [18].

Garanzha et al. (2010) use packets with ray reordering on the
GPU. They present a Compress-Sort-Decompress (CSD) scheme
to increase the coherence of ray packets. On the compress stage, a
hash is extracted from every ray based on their origin and direction,
then, rays with the same hash are grouped together. Afterwards
a radix sort is performed on this compressed array and all data is
decompressed. During the decompression, the rays will be already
reordered in right position. Their results show that the CSD takes a
little amount of time, not negligible, but the results are only shown
for primary and shadow rays, which suits better in packets [10].

Benthin et al. (2012) combine packet traversal with single-ray
traversal on a hybrid approach. It performs the packet traversal for
primary rays, measuring in each traversal step a number of active
rays. When this measure is below a defined threshold, the packet
traversal switches to single-ray traversal using SIMD. Since they
target a very specific platform, Intel Multiple Integrated Coproces-
sor (MIC), their architecture is very specific. But they show an
almost interactive frame rate for very complex scenes in a full path
tracer, achieving almost 2x more performance than the packet tra-
cing alone [4].

Barringer et al. (2014) perform the single-ray traversal using
SIMD units, to avoid packets. Their methods maintain three stacks
of rays, one for each node of the BVH, left and right, and one for
the rays that hit both. Besides, there is a global stack that keeps a
number of rays added to each stack. In this way, it can traverse in
a depth-first manner keeping the ray coherence. They show a 30%
improvement over the hybrid approach [3].

Aila et al. (2009 and 2012) present their study about ray tracing
on several NVIDIA’s GPU architectures: Tesla, Fermi, and Kepler.
Given several methods on their bibliography, they showed for each
architecture some improvement to achieve more performance. One
of the improvements is the use of textures to load triangles and no-
des data, which improves the access speed because textures allow
the incoherent access. Moreover, their results show that the power
of these architectures is doubling from the oldest to the newest,
which allows more rays to be processed [1, 2].

3 PROPOSED MODEL

The proposed model improves the ray coherence on the GPU by
guaranteeing that rays residing in the same warp follow the same
traversal path inside the acceleration structure [10]. If the rays are
coherent, they access the same memory locations during traversal,
reducing memory bandwidth. However, it is possible for rays in
the same warp to traverse a distinct path keeping the low memory
bandwidth.

Exploiting this fact the proposed model uses a tiled BVH tra-
versal algorithm to improve the traversal of incoherent rays. The
basic idea is to load a smaller sub-BVH into the shared memory

and traverse it. When the rays reach the sub-BVH leaves, which we
are going to reference as inner-leaves, they record which inner-leaf
they’ve reached. When all rays finish the traversal, they are reor-
dered based on inner-leaf index. The reordered rays can be used to
restart the process. When all rays reach a leaf from the BVH, all
the geometry stored on it is tested against the rays.

The algorithm is divided into four parts, where the first one des-
cribes how to properly organize the BVH, called Layer BVH. The
second shows how to load and traverse a sub-BVH tree, the third
presents the ray reorder strategy, and the fourth shows the final ray-
triangle intersection.

The complete model can be overviewed at Figure 1. The model
start its process with a BVH Tree, then it organizes the tree in the
Layer BVH layout. In an iterative step, the model traverses the sub
trees extracted from the Layer BVH, then it sorts the resulting in-
tersections. If there is any intersection to be process yet, the model
restarts at the traversal part. Otherwise, the leaf intersections are
performed, and the rendered image is presented.

Figura 1: Flat Reorganized BVH

3.1 Layer BVH Organization

The BVH can be built using any algorithm, but the final array con-
taining the tree will be reorganized into smaller trees, that will be
placed sequentially in an array. Those smaller trees will be formed
by a set of n tree layers.

Given the n tree layers, we can calculate the maximum subtree
height H. Then, the algorithm performs a breadth-first traversal,
appending the nodes in a subtree until its height does not exceed H.
When it does, the subtree is written at the Layer BVH array. And
the process is repeated until all nodes are attached to their subtree.

The exception of this method are the BVH leaf nodes. They
should be processed in separate because they do not belong to any
subtree, since they will be traversed in a different part. And just like
the subtrees, they need to be placed sequentially in the Layer BVH
array. Since the tree levels and leaves are contiguously located in
memory, this new tree array is a cache friendly arrangement for a
breadth-first traversal in the subtrees.

An example of Layer BVH can be seen in Figure 2, where the
maximum subtree height is 2. It is important to notice that this
method does not require a well-balanced tree since most of the
BVHs aren’t balanced. For that reason, it is required to keep track
of the number of nodes in each layer.
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Figura 2: Flat Reorganized BVH

3.2 BVH Traversal
The tree traversal is divided into subtree traversals, where each sub-
tree is traversed by several rays using one or more blocks in the
GPU. The goal of this part is to determine which inner-leaves or
leaves the rays will intersect at the end of subtree traversal.

The main difference between this algorithm and many other
GPU tree traversal algorithms, like Garanzha et. al. (2010), is the
use of the tiled pattern, where the data used in the kernel execution
is gathered and stored in the shared memory. Following the pattern,
rays and tree nodes are placed into the shared memory. Since both
are spatially coherent located into the global memory, it is possible
to load them using minimal overhead.

When the whole data is loaded, the algorithm can perform a non-
recursive breadth-first traversal routine. The output data, the last
inner-leaf intersections, is simultaneously stored in the global me-
mory. However, this data will be spatially incoherent, which requi-
res an extra sorting part. Otherwise, it won’t be suitable for the next
algorithm iteration.

3.3 Sorting
The traversal kernel needs sorted data to launch. Even though all
coherent rays traverse the same subtree in the first iteration, this is
not guaranteed in the subsequent iterations. When the algorithm
gets to this part the rays array is filled with the rays and their inner-
leaf intersection index. The sorting method needs to group the rays
with the same index. To perform this task, the radix sort [15] is
used, since it is the sorting algorithm that outperforms on the GPU
compared to other sorting algorithms [7]. In this sorting routine, the
index is used as sorting key, and the ray as the value. Leaf nodes
must have the lowest priority during the sorting because they will
not be considered on the next traversal iteration.

3.4 Leaf Objects Intersection
The last part is to traverse the leaf nodes found, which contain the
scene geometry. Since the data will be sorted at this point, it is
possible to use the data coherence to improve the intersection. This
part of the algorithm uses a thread per ray to check its intersection
against the geometry inside the leaf node and outputs the closest
intersection. With this information, the Ray Tracing can proceed
and compute the color related to that intersect or generate more
rays.

4 RESULTS

The algorithm two main parts are the Layer BVH Organization and
the tiled pattern applied on the BVH traversal. The other two parts,
the ray reordering and the ray-object intersection, do not have a
complex implementation.

The Layer BVH Organization, implemented in this work, uses
two queues, one to keep track of the subtrees root nodes and another
to perform the breadth-first traversal on the subtree. The traversal

stops when the subtree size is greater than the maximum subtree
size, and at this point all the nodes that are in the second queue are
enqueued on the first queue. This transference from one queue to
another happens because all nodes that are out of the subtree be-
come a root node to another tree. Another implementation decision
was to keep a vector of subtree size, so it is possible to know how
many nodes each subtree has.

The tiled traversal is done in a CUDA kernel and uses the first
thread of the block to determine which subtree that block is going
to load. Since the data is ordered, most of the threads in the block
point to the same tree. The threads that point to another tree are
scheduled for a later iteration. When the subtree is determined, the
kernel uses all threads in the block to load the subtree into the sha-
red memory, even those that do not belong to that tree. This way
the load operation can use the full potential of the block. Most of
these load operations from global to shared memory require a bar-
rier synchronization after them, which avoids threads using invalid
data.

An example of the traversal kernel execution is shown at Figure
3, that shows the active threads during the execution. This example
uses a 3 by 3 block structure, required by the tiled pattern, with
subtrees of 7 nodes at maximum, with height 3. When the traversal
kernel starts, all threads are active, the first thread on block stores
0 as the subtree root index. When the subtree is going to be loaded
from the global memory to the shared memory, the 9 threads are
used, the whole block. After this loading phase, the traversal starts,
but since only the first 4 threads have the same subtree root index,
all the other threads are inactivated and scheduled for later. If the
root index is different, it means that the thread points to another
subtree.

Figura 3: Threads state during the traversal

The traversal kernel is executed in a loop because some of the
threads are scheduled for later. To know how many times this loop
needs to run, an atomic counter of active threads is maintained th-
rough kernel calls. When a thread hits a BVH leaf this counter is
decreased, and when it hits zero the algorithm can proceed to the
ray-object intersection.

The two major downsides of the current implementation are the
loop of active threads and the first thread of the block that selects
the subtree. The loop is a downside because there is no guarantee
of how fast the active threads are going to decrease. The first thread
selecting the subtree is a downside too, because in some loops the
selected subtree does not represent the most present subtree in that
block. It may happen that only the first threads, or a few threads,
need that subtree delaying the other threads to latter. This associa-
ted with the loop at the end of active threads causes kernel calls to
process a very tiny amount of rays at each call. And it results in a
longer time executing, because of the kernel call overhead and the
sorting step that happens on each loop.

The traversal algorithm does not handle the intersection case
where the ray hits both children yet. It only accepts one hit, which
makes for most of the rays a bad decision because it is ignoring part
of the tree. To handle these children overlap, it is necessary to allo-
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cate more memory in the GPU. And in the worst case, where a ray
intersects all n subtree leaves, it is necessary to allocate n times the
space to store collision data. This can be very memory inefficient,
and would increase by a factor of n the workload size. However,
a workaround for this inefficiency is a better BVH partition algo-
rithm.

The algorithm still is under development, with minor adaptati-
ons, and test. It’s performance and efficiency will be evaluated
when it is done in an environment that has an 8 GB memory, an
Intel i5-4210H with 3.2GHz, and a NVIDIA GeForce GTX 965M
with 2GB GDDR5 using CUDA 7.51. The code and results can be
found at the Github2.

5 CONCLUSION

Incoherent ray traversal was already widely explored on the CPU
with several types of research and algorithms. However, most of
them do not work directly on the GPU, and this needs to be explo-
red. The GPU has several particular issues that need to be addressed
while you are developing an algorithm. And this puts several draw-
backs on the discovery and adaptation of algorithms.

Our method is a novel way to organize the BVH trees and tra-
verse them. It attempts to solve performance issues on the incohe-
rent traversal. By organizing the BVH in several sub-trees, to use
the benefits of the GPU’s shared memory, which is faster than the
commonly used global memory.

The implementation shows that the method can be very memory
consuming, with several memory allocations for auxiliary data.
And the partition method needs to be chosen carefully, because the
algorithm can’t solve correctly the case where there are overlap-
ping nodes. The algorithm is currently under tests and adaptations.
Our goal is to get into a model where it consumes near the same
amount of memory that the naive BVH traversal and has a better
performance.

5.1 Future Work

The algorithm presented on this work can be adapted for any binary
tree. It presents a novel way to organize these trees and traverse it.
In a context where nodes can’t overlap each other, it can be very
efficient.

As presented by Aila et. al. (2009), it is possible to use persis-
tent threads to accelerate the traversal. These threads would persist
in memory through several kernel calls. And with that in mind, a
possible extension of this work is to load all subtrees into persistent
threads, and use a pipeline pattern to traverse the tree. This pipeline
would not need to load the subtrees again, and all traversal stages
would be present on the GPU.
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[3] R. Barringer and T. Akenine-Möller. Dynamic ray stream traversal.
ACM Transactions on Graphics (TOG), 33(4):151, 2014.

[4] C. Benthin, I. Wald, S. Woop, M. Ernst, and W. R. Mark. Combining
single and packet-ray tracing for arbitrary ray distributions on the intel
mic architecture. IEEE Transactions on Visualization and Computer
Graphics, 18(9):1438–1448, 2012.

[5] J. Bolz, I. Farmer, E. Grinspun, and P. Schröoder. Sparse matrix sol-
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