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Figure 1: Rise of Mitra logo.

ABSTRACT

Games have been used as a good test environment for AI. This pa-
per describes the outcomes of Monte-Carlo Tree Search (MCTS) in
the AI of Rise of Mitra(RoM), a discrete world turn-based game.
This algorithm consists of Selection, Simulation, Expansion and
Backpropagation phases. MCTS had successful outcomes in two-
player games with perfect information like Go, where it managed
to win some competitions. Therefore, the main goal of this work
is to reach a challenging AI that can contribute to creating a more
realistic and immersive game, besides being capable to consider un-
certainty elements. Some strategies like OMC and UCB were used.
Both of them resulting in a good win rate, approximately 70% for
OMC and 60% for UCT. Therefore, this algorithm can win against
normal players, but not at a point where a player can get frustrated,
in other words, it allows the player to be challenged and more im-
mersed in the game world.

Keywords: Monte-Carlo Tree Search, Game AI, Uncertainty, Rise
of Mitra.

1 INTRODUCTION

Gameplay is a process highly affected by the player’s interactions
with the virtual world. Gameplay experience, as said in [10] is a
complex process in which several player characteristics are com-
bined with a meaning-making gameplay setting. Immersion ad-
dresses how much a player becomes distracted from the surround-
ing real world and creates empathy to the simulated game world. In
current games, this is a carefully treated topic since that means how
much time players will spend playing their games, or also how they
will feel about the game.

Being capable of creating elements with persuasive behavior
may contribute to a more realistic player interaction with the game
world. Most current games have poor, not challenging, predictable
AI which takes totally random actions. These approaches are likely
to create poor feedback and prejudice the player experience as
shown in the model [17]. Thus, creating an AI with a decision-
making process that takes into consideration the player’s behavior
and also learns from it can create a more immersive world. The
game Alien: Isolation shows a great example of how a good AI
can contribute to that aspect[1] where there is an enemy that can
change his behavior, spending more time nearby the player or im-
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proving his search by looking at places he already found the player
hiding.

Therefore, this paper describes a Monte-Carlo Tree Search
(MCTS) AI-based for the game Rise of Mitra(RoM). It is a new
algorithm family that has reached good outcomes in games with
perfect information, like Go or Chess. MCTS is an incomplete tree
search algorithm that uses several kinds of statistics to choose a
valid move.

This paper is organized as follows: section 2 describes Rise of
Mitra story and mechanics. Following that, section 3 is a descrip-
tion of MCTS Algorithm and a brief state of the art. Next is where
the algorithm functions, weights, and decision-making are shown,
in other words, that section explains how domain knowledge is in-
serted into the algorithm. Finally, the results are shown and fol-
lowed by conclusions.

2 THE GAME: RISE OF MITRA

Rise of Mitra is being developed by the author. Its source code
can be downloaded in [2]. This section will introduce the game
story and mechanics to help understand the decisions taken in the
algorithm.

2.1 Story
Rise of Mitra tells the history of a small planet called Mitra, where
an ancient battle for resources between two races takes place. This
planet is the only place in the galaxy where Argyros Crystal grows.
A small piece of it has an almost infinite energy source that can be
used to sustain a large city for many centuries. Rakhars and Dalri-
ons inhabit the planet. The Rakhars are a technological race. They
are half organic and mechanical species that have a knowledge su-
perior to that the Dalrions. Whereas the Dalrions are a more ar-
chaic culture, venerating the old gods and making sacrifices in their
names. Both of them have their interests on Argyros, and they have
been battling for the control of this resource since ancient times.

The following section describes what is a valid move in the
game, how they work, illustrates an idea of the game board, and
describes all the units of Rise of Mitra.

2.2 Mechanics
RoM is a two-player turn-based board game composed of a discrete
world, this means that the characters can move only in a determined
cell with constant size, for instance, common games of this genre
are Go, Chess and Risk. In turn-based games, each player takes
turns when playing and only one movement can be performed per
turn. Moreover, RoM also has imperfect information, added by a
decision tree. The main objective of RoM is to destroy the oppo-
nents culture representation, called Cultural Center. Rise of Mitra
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Figure 2: RoM board example. The green squares are the moving
range, while red squares are attack range.

has the following units: Cultural Center and Pawns. The former
represent the race culture and can generate more Pawns. If this unit
gets destroyed, its owner loses the game. The latter is the movement
unit, it can move around the board, attack, and defend.

The board consists of a 25×35 grid separated into sections. Each
section, called Terrain is a set of cells with nature in common, mod-
ifying the attributes of game units while they are in this terrain. Ta-
ble 1 shows how each pawn is affected by the Terrains and Figure
2 shows an example of RoM board where blue icons are Dalrion’s
units and yellows are Rahkars, dots represent an empty cell and up-
percase x are blocked cells. The agglomerated ‘@’ and ‘%’ are,
respectively, the Dalrion and Rahkar cultural center.

Table 1: Terrain effects on pawns

Terrain Dalrion Rakhars

Mountain -1 MOV +1 MOV
Plain +1 ATK -1 DEF
River +1 ATK -1 MOV
Field +1 DEF +1 DEF

Marsh -1 DEF +2 ATK
Forest +1 MOV +1 ATK
Desert +2 MOV -1 ATK

Each player starts with 6 pawns. Each pawn has health, attack,
defense and movement points. They can move, attack enemies, and
defend enemies attacks. They die if their health is less than or equal
to zero. A player can not have more than 6 pawns, and the Cultural
Center will create more pawns in defined turns. Valid movements
in RoM are Move a pawn n tiles, where n≤movepoints using Man-
hattan distance, Attack an enemy unit within k tile distant, where
k is the pawn’s attack range, and Defend an enemy attack. In case
the enemy’s attack points are less than or equal to the allied defense,
then the ally takes no damage.

Unit’s attributes were pseudo-randomly selected from two vec-
tors consisting of 5 values which sum 27 points each. Moreover,
Dalrions have 1 movement and 5 extra life points, whereas Rahkar
has 2 defense and 1 attack range.

Now, with a basic understanding about RoM, next section gives
an introduction for the MCTS algorithm which is the main goal of
this paper.

3 MONTE-CARLO TREE SEARCH

Monte-Carlo Tree Search(MCTS) is an adaptive incomplete tree
search method that uses statistical values in the decision-making
process. Another definition is a procedure for finding optimal de-
cisions, based on probabilistic values, for a problem by extracting

Figure 3: Monte-Carlo phases illustration.

random samples in a given solution space and creating an incom-
plete search tree in memory[4]. This is a good definition because it
elucidates all four phases of an MCTS program, each of them will
be better described further on.

MCTS is a fairly new algorithm family, which has been success-
fully applied in games like Poker[11], Pac-man[16], Go[13][12][4]
and Settlers Of Catan[18]. Each of these games has different gen-
res, attributes, and gameplay. Therefore MCTS can be applied to
different sorts of games, even with hidden information. In poker, it
is not possible to see which cards the opponents are holding. Con-
sequently, MCTS can be seen as an independent game algorithm, as
defined by [7], and can be implemented as a framework for every
game [5].

In [13] the authors were able to obtain a win rate between
50% and 60% using the rapid value estimation MC-RAVE against
GnuGo 3.7.10 at level 10 in MoGo with a 9×9 grid. Also [4]
obtained the best results with the simulation technique based on
[6] and won several competitions. Furthermore, in Settlers Of
Catan[18] the writers used MCTS to play against the game AI ob-
tained approximately 50% win rate and an average score of 8.3
while [11] with their MCTS adapted to consider uncertainty were
able to get an average profit of 150 against other specific bots like
RuleBotBestHand, which consider the probability that he has the
best hand and take his decisions based on that, and about 15 against
standard bots.

MCTS has four phases: Selection, Expansion, Simulation, and
Backpropagation. In Selection phase, the algorithm searches for
the move to be played from the tree root to the leaves. Then, the
Expansion will add nodes to the tree if the Selection reached a non-
finishing leaf node. Next, Simulation phase will play k random
games with pseudo-random valid actions using Monte Carlo sim-
ulations. Finally, the Backpropagation will update each node in
Selection path with a given metric(win rate, for example). These
behaviors were adapted from [7].

MCTS is mostly applied to games with perfect information,
which is not the case RoM. In [5], the author evaluates every le-
gal move of the game Settlers of Catan using his knowledge about
the game to balance the moves according to what is worth playing.
For instance, creating more settlements has a high weight because
it can provide more resources which are used to buy more settle-
ments, roads, trade with other players, etc.Therefore, the purpose
of this article is to combine the successful outcomes from the ideas
in [5] and the uncertainty handling used by [11].

4 DOMAIN KNOWLEDGE

This section describes which game characteristics are used by
the Monte-Carlo Tree Search algorithm(from now on described as
MUSASHI) and the Decision Tree(from now on described as Gaia).
Adding knowledge to the algorithm stages can effectively increase
its play strength. In [7] it is possible to see that even heuristic func-
tions may be added to common strategies for each stage.

In Rise of Mitra, all information is contained on the board. This
means that MUSASHI will create a partial RoM game tree in the
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memory, where each node is a different game state. A Game Tree,
as defined by [8], is a tree where the root represents a game’s ini-
tial state before any moves have been taken. Each level below it
represents all the possible outcomes from a valid move in a game
and leaf nodes are final states. Therefore, each edge is one possible
move of the game, for instance, the ones described in section 2.2.
Moreover, it is common for each level to represent a move of a dif-
ferent player, so in a two player game like RoM the first level is the
outcome of a valid move from player one, the second level is the
outcome of player two move, and so on. This work evaluated each
node(move) by the given constraints:

1) Every unit at ally side of the board will have move and attack
values increased if there are enemies close to the Cultural center.
Moving in the enemy’s direction or attacking them.

2) An ally pawn that has attack range to hit the cultural center will
have this move weight increased by 15.

3) Attacking an enemy in the range has an increased weight of 10.

4) If there is an enemy at a maximum distance of 10 then moving
an ally in its direction will have an increased weight of 10, rising
as it gets close to the enemy.

5) Moving to a cell within a terrain that gives a positive bonus to
the pawn has an increased weight of +1 otherwise -1.

6) Moving towards the enemy’s Cultural Center has its weight in-
creased the closer the pawn is to it.

Next sections will explain which strategy we used for each
MCTS phase. The last section briefly describes Gaia’s uncertainty.

4.1 Selection
The selection phase controls the balance between exploration
and exploitation. Therefore, as said in [18], high or low re-
strictions will make MCTS weaker, by restricting or selecting
a bad set of actions. Accordingly to [7], some strategies of-
ten used are PBBM(Probability to be better than best move)[9],
UCT(Upper Confidence Bounds to Trees)[14] and OMC(Objective
Monte Carlo)[6].

The OMC uses a Urgency function U(i) to determine the imme-
diacy of each node

U(i) = er f c
(

v0− vi√
2σi

)
(1)

Where er f c is the complementary error function, v0 is the best
move value, vi and σi are respectively the value and standard devi-
ation of move i. Furthermore, a fairness function selects the move
considering the visit count n j of node j, given by the equation 2
where Si is the set of i siblings.

fi =
ni ·U(i)

n j · ∑
j∈Si

U( j)
(2)

Another strategy used in this work is the UCT[14] used in
Mango, an adaptation of UCB[3] for trees. UCT is a confidence
bound based on the visit count of the current node ni and the direct
ancestor np. This strategy selects the node that satisfies the equa-

tion m ∈ argmaxi∈I

(
vi +β ·

√
logni

np

)
, where vi is the node i value

and β is a coefficient that can be experimentally chosen[7].
In [7] the author defines some node types. The Max Child node

has the highest value, a Robust Child has the highest visit count,
the Robust Max Child has both highest value and visit count and
the Secure Child maximizes a lower confidence bound given by a

function l. Each of these can be used as the selected movement.
This work used different kinds of nodes, but without significant
change in results.

The following section shows the Expansion phase and its close
relationship with the Monte-Carlo Simulations and the memory
management.

4.2 Expansion
The expansion stage will add nodes to the game tree. Here, it may
evaluate if adding a given node is worth. This stage is respon-
sible for the memory management, and it is important because,
for instance, determining the winner in an n× n Go board is a
PSPACE-Hard problem[15]. This task can be done in many ways,
but MUSASHI will add one node per simulated game[9]. This sim-
ple and efficient strategy was used without a big loss in playability,
that is, not choosing bad moves very often. Another strategy is to
add only the Robust Child. This has a better chance of being a
good move since Monte Carlo simulations will tend to choose the
best move more often. Next, this paper describes the simulation
stage and how it is applied with the algorithm.

4.3 Simulation
In this stage, the Monte-Carlo simulations take place by choosing
actions accordingly to a given strategy, which can be random. In [7]
the Urgency-Based Simulation is named, in which given an urgency
function U , the immediacy value is calculated for every possible
move at the current tree level and the probability p j for each move j

is given by p j =U(i) ˙
(∑k∈M Uk)

−1 (3) where M is the set of possible
moves.

Besides, in this paper proposes to use a function which given a
set of states it selects the ones that respect a specified range. In this
case, we can use the following equation Q= {i∈ S|S̄−σS > vi} (4).
There, S is the set of valid moves and vi is the value of move i. With
this equation, the AI may explore a greater number of nodes, thus
allow it to have a higher exploration rate.

Furthermore, the proposed algorithm will have a specified max
depth to control simulations exploitation and use a function to re-
strain the exploration, in this case, the simulation strategies named
before. Next, the Backpropagation phase is described.

4.4 Backpropagation
At this stage, the algorithm will update the simulation outcome of
every visited node in the current play out. For this, there are several
strategies and some of them were described by [7]. Even though
they can increase the Monte-Carlo Tree Search game play, the use
of strategies in this stage did not have a significant outcome[7] when
compared with applying strategies, or domain knowledge, to other
stages. For its simplicity and clarity, this work uses the win rate (the
number of wins divided by the number of games played) which is
the most effective and popular. Therefore, given a node n every
ancestor node visited will receive +1 if the leaf node was a win,
−1 if it was a loss and 0 otherwise.

4.5 Uncertainty
Gaia is a Decision Tree that checks if the current turn is multiple of
a random number from 10 up to 15 (these numbers can be given, so
10 and 15 should be seen as an example), the cultural center risk,
the mean distance between allies and from enemies to it, and the
number of allies at each type of terrain. The Cultural center risk is
calculated by (5) where S is the set of enemies, Di is the i-th enemy
distance from the allied center and Cl is current center’s life. With
this information, Gaia randomly changes positively or negatively
unit’s attributes.

Cr = exp
(

1
Cl

)
+ exp

(
1

Na

)
+∑

i∈S

(
exp
(

1
Di

))
(5)
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Figure 4: Win rate (vertical axis) of each selection strategy against
player-03R with the number of play outs (horizontal axis).

Figure 5: Win rate (vertical axis) of each selection strategy against
player-05R for the number of play outs (horizontal axis).

Therefore, MUSASHI has to be able, in execution time, to store
and classify moves that may trigger a good or bad change from
the Decision Tree. For that MUSASHIstores each Game Tree node
where Gaia was activated and tries to create a relation between the
current move and the stored states.

5 RESULTS

This section presents the outcomes of the proposed algorithm
against a random player-03R which randomly chooses a move that
satisfies v ≥ (1−β )b, where v is the value of the current node, b
is the highest value, and β is a value between 0 and 1 (for 03R its
0.7). Therefore the player-05R take actions that satisfies the same
equation with β = 0.5. Figure 4 shows the win rate of each tech-
nique against player-03R, while figure 5 has the result of playing
against 05R. In both images -U means that equation 3 were used,
and -D for the equation 4. Note that the outcomes are based on 15
games for each number of play out.

Furthermore, some tests with human players were made. The test
was made with 4 subjects and each one played at least 10 games.
After that, they were submitted to a quiz with questions about their
game play experience, but mainly about the AI. They evaluated the
AI difficulty and how they felt about it, where 75% of the subjects
did not felt challenged by the AI.

6 CONCLUSION

Monte Carlo Tree Search algorithms allow virtual games to have
a strong AI by exploring and exploiting the Game Tree. Besides,
the proposed algorithm let it consider even uncertainty allowing it
to become more applicable to modern games. The development of
this AI was satisfactory to the author, by providing more knowledge
about the fields state of the art. Furthermore, this paper presents a
brief review of MCTS and thus is a good resource for initial studies.

The outcomes from the previous section showed that against the
random players (player-03R and player-05R) the AI could reach
good results. However, when playing against humans their review
was that it is not challenging. Even so, they also said that it was
not frustrating and the difficulty was not so high, that is a good
outcome because it means players could have fun and also felt re-
warded while playing. But, by not being characterized as a chal-
lenging AI the work did not fully reach its purpose and this can be
addressed in future works.
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