
L-Systems and Procedural Generation of Virtual Game Maze Sceneries
Gustavo Santarsiere Etchebehere∗ Maria Amelia Eliseo

Presbiteriana Mackenzie, Faculdade de Computação e Informática, Brazil

ABSTRACT

Nowadays, the size of the sceneries of game worlds and the amount
of content present in them raised their production costs. At this
context, the procedural content generation presents itself as a partial
solution to this issue. Among the techniques used to implement the
procedural generation, there are the L-Systems. This work proposes
a study of the use of L-Systems to generate maze sceneries, which
are common in virtual games. Therefore, it was developed a maze
game whose scenery is generated by a L-System, and this prototype
was submitted to experimentation by the users. By means of this
paper it was intended to verify the effectiveness of this technique at
the generation of maze-type sceneries. As results, it was found out
that the use of this technique produced effective and fittable results.

Keywords: Procedural Generation, Mazes, L-Systems.

1 INTRODUCTION

Game Content (GC) is a key aspect for public interest and approval
for a given virtual game. With the constant evolution of electronic
entertainment, the development of broad game sceneries such as
large terrain and cities full of characters and objects has become
possible, causing a fast-growing production costs of games [2].

Therefore, Procedural Content Generation (PCG), the creation
of game content by computational procedures or algorithms, is pre-
sented as a way to assist in the solution of such problems. The bene-
fits provided by this concept are, according to [6], [7]: 1) reduction
of production costs of a game; 2) games with virtually unlimited
duration, and 3) generation of content other than those developed
by humans.

In order to implement such automatic generation techniques,
several types of technologies can be employed. Among these, the
L-Systems have aroused our interest for research.

L-Systems are a type of deductive system developed by the bio-
logist Aristid Lindenmayer. L-Systems were designed to simulate
cell growth of living organisms. This deductive system can be in-
terpreted by the LOGO language, which provides a graphical repre-
sentation of the results, making it possible to simulate the growth
of more complex beings, such as trees [5]. This method also allows
the easy automated description of other types of structures, such as
complete cities [4], [10]. As a result, L-Systems have the potential
to be used as a sceneries-generating tool for movies and games. Be-
cause of the ease of L-Systems in generating lines and branching, it
is an opportunity to exploit its potential in other areas, such as maze
generation.

The aim of this research is to study the potential of L-Systems
as a PCG method for the automated generation of maze-type sce-
neries and their implementation in a virtual game, through the cre-
ation of a system called “maze generator”. Such implementation
should address game requirements, such as the balanced progres-
sion of difficulty in successions of stages, and the achievement of

∗e-mail: gustavo.etchebehere@mackenzista.com.br

challenging and attractive sceneries for the user. From the imple-
mentation, tests were performed with users in order to evaluate the
defined requirements and then perform an analysis of the results
obtained to validate the potential of the method used and to delimit
its limitations.

For this article, we have studied concepts such as PCG, gram-
mars, and L-Systems. Later, applications of L-Systems as PCG
method were studied. Then, a L-System was described to execute
the procedural generation elaborated for the algorithm, being deve-
loped a virtual game. The implemented game was then tested and
evaluated by users. Finally, analyzes and conclusions were made
on the results obtained.

2 THEORY

2.1 Procedural Content Generation (PCG)

Game content is almost the entirety of what is present in a virtual
game. PCG refers to software components capable of creating game
content on their own, or in conjunction with one or more players or
developers [6], [7].

To implement PCG, there are techniques such as evolutionary
algorithms, fractal algorithms [6], cellular automata, genetic algo-
rithms, and generative grammars [9], each of which is appropriate
for certain sets of applications. In addition to the generative gram-
mars, there are the L-Systems, used in the procedural generation
of vegetation in commercial games, and in the generation of entire
sceneries in academic projects [4], [10].

2.2 L-Systems

L-Systems are deductive rewriting systems, where productions are
applied in parallel, replacing all the letters of a word simultane-
ously, using certain substitution rules, in order to compose more
complex objects. Deductive systems are composed of a set of
axioms, the initial symbols, and the set of rules, which determine
the sequence of symbols by which a given character is substituted
in the iterations of the deductive system. The symbols that have no
productions associated with it are considered the terminal symbols
of the L-System [3].

2.2.1 Classes of L-systems

The simplest class of existing L-Systems are DOL-Systems, which
substitution rules are static, pre-defined and independent of the ele-
ments around them. DOL-Systems, in a simplified way, can be
described as an ordered triple G = V, ω , P, where V is the alpha-
bet associated with this deductive system, ω is a non-empty word
called axiom, and P is the finite set of productions of the deductive
system.

There is a variant of L-Systems called the stochastic OL-
Systems. This variant consists of a quadruplet Gπ = {V, ω , P,
π}, where V, ω and P have the same definitions of traditional OL-
Systems, and π is a function π: P→ (0,1] , called of probabilistic
distribution, and in which it is possible to have more than one pro-
duction rule for the same symbol A. Such distribution function as-
signs to a given symbol A production rule the probability of it being
chosen in an evolution, with the sum of the probabilities of all rules
referring to A being equal to 1 (100%). This way, it is possible to

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Short Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 602



obtain different final results from each evolution of this deductive
system.

In the parametric OL-Systems, each symbol is accompanied by
one or more real numbers, denoted by parameters, forming struc-
tures with the form A (a1, a2, ..., an) for a symbol A accompanied
by n parameters, called a module. Parameters may also consist of
undefined symbols, on which arithmetic and logic operations are
performed to define the value of the new parameter. A parametric
OL-System is defined as a ordered quadruplet G = (V, Σ, ω , P),
where V is the system alphabet, Σ is the set of parameters, ω is a
nonempty word called axiom, and P is a finite set of productions
[5].

2.2.2 Edge Rewriting and Node Rewriting
When using the LOGO interpretation machine, there are two pos-
sible interpretations for graphical growth: edge rewriting and node
rewriting. Edge rewriting consists of replacing the edges (rows) of
a word from the L-System with a set of new graphics. Node wri-
ting consists of replacing the vertices of the structure with a new
group of graphs, that is, at the connection between two lines [5].
Figure 1 illustrates the differences between them in a graphical and
simplified form.

Figure 1: Differences between edge rewriting (left) and node rewri-
ting (right) [5].

2.3 Related Works
The reference [4] have used L-Systems to generate the streets in
their system of procedural generation of cities. In this approach,
parametric L-Systems were used whose parameters values are not
defined by the deductive system itself, but by external functions.
These functions take into account global goals and constraints de-
fined in the model to determine the final value of the parameters of
the production rules.

In his research, [1] developed software capable of using L-
Systems to generate virtual worlds for electronic games, equipped
with rudimentary physical mechanics such as collision detection
and gravitational action to allow for a certain degree of interaction.
His work consists of a system that interprets information from a file
containing the description of a L-System and generates its graphic
interpretation within a possible field of play.

Based on [4], [8] and [1] this research developed and imple-
mented L-Systems to generate sceneries of maze games. Stochas-
tic, parametric OL-Systems and also stacks were used, which dif-
ferentiates this proposal from this other studies.

3 A MAZE GENERATED BY L-SYSTEMS

Mazes are puzzles whose challenge is to discover the path that must
be taken to get from a starting point to an arrival point through an
scenery with corridors, bifurcations and dead-ends. Such a game is
commonly found in the print media, but they have also been used in
some virtual games, like Pac-Man game field (Namco, 1980) [6].

To validate the use of the proposed procedural generation in a
practical scenario, a maze game was developed that had the follow-
ing requirements: 1. Sceneries with forked bifurcations and alleys,

as observed in most mazes; 2. Galleries of varying sizes, to reduce
the monotony of the scenery to provide a better use of the game
field; 3. Sceneries with a single entry and a single exit, to simplify
the gameplay and the tests to be performed; 4. Sceneries generated
at random, the generation of each element is drawn, so that a new
challenge is provided with each game; 5. Three game levels for
test purposes of different sizes and complexities to test the natural
growth of L-Systems by limiting the size of the game field; 6. Pro-
gression of the difficulty as the player finishes each scenery, that is,
changes level, so that players can experience the difficulty provided
by each level; 7. At the end of the last scenery, the game restarts
so that players can experiment with different sceneries and better
understand the characteristics of the project.

The generation of each scenery used a deductive system that was
developed for the ”maze generator”. It was decided to use the node
rewriting model, due to the way this model positions the new seg-
ments of the graph, allowing better control of how and where the
corridors will be generated. With this, the productions are applied
to nodes that are always created at the ends of the corridors, not
the corridors themselves. These functionalities are the base of the
construction of the application and will be described in the next sec-
tion showing the generator algorithm that allows the formation of
the scenery, from an empty field to the beginning of the interaction
with the player.

3.1 Scenery Creation Algorithm

The algorithm starts with an empty game field. Then, a point on the
game field is chosen randomly to position the axiom. The axiom of
the deductive system constitutes a cross, with varying sized corri-
dors, so that the corridors are propagated from the first iterations in
all directions available. The corridors can be 3, 4 or 5 units length,
with the new generator node formed at the end. Next, a production
rule is chosen randomly and applied over each of the new node,
resulting in new corridors and new nodes connected to them. The
process repeats for all nodes generated until the number of prede-
fined iterations is reached, or until there is no more space available.
The number of iterations predefined varies with the complexity of
the scenery, being 100, 250 and 500 for the 1st, 2nd and 3rd level
of the game, respectively. Figure 2 shows a flowchart summarizing
the process of maze creation.

Figure 2: Flowchart of the maze generation process.

The size of the game field will be defined by the degree of dif-
ficulty, with ascending dimensions as the level of challenge in-
creases, and will have the measures of the sides of the playing space
determined by pre-defined values, these being 25X25, 45X45, and
65X65 in their respective three phases of the game. Each scenery is
constructed based on the number of iterations for L-System graph
generation, consisting of fewer iterations for the simpler sceneries
and more iterations for the more complex sceneries. Iterations con-
sist of symbol replacement cycles that result in the growth of the
L-System. The illustration of the three game field sizes, with the
same distribution logic of corridor in the final design, is shown in
Figure 3.

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Short Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 603



Figure 3: The three game field sizes present in the project.

Stochastic OL-System was used so that it was possible to obtain
different results every time the scenery was generated, taking into
account the need to obtain different mazes in each game.

Parametric OL-System was necessary in order to meet the re-
quirement of creating variable-length corridors, since this model
provides greater practicality and flexibility in controlling the size
of generated segments. The parameter of each segment is obtained
from an external source, as defined in the application [4]. In this
article, the parameter of each segment will have its value defined
by drawing among defined values as possible.

The stack was essential in the description of this L-System, to
allow the correct formation of the bifurcations existing in the de-
velopment of the maze.

Figure 4 shows the L-System deductive system developed for
the creation of the maze game. The deductive system consists of
only four types of symbols, F, G, “-” and “+”. F are symbols that
constitute the corridors already formed; G are the generating nodes,
which create corridors and new nodes, in quantities and directions
provided by the rule chosen at random. “-” indicates conversion
to the right and “+” conversion to the left. The angle used in this
system is 90◦.

Figure 4: L-System designed to describe the mazes.

The symbol that has associated productions in this deductive sys-
tem is G and F has only the function of drawing the segments, ac-
cording to the node rewrite model [5]. Since it is a stochastic L-
Systems, there is the probability of occurrence of a given produc-
tion in the upper part of the arrow of the production rule, shown as
a decimal number (.11 means 11% probability of be chosen). The
corridors generated are subdivided into 3 forms: one-way corridors,
bifurcations and trifurcations, all three cases with the same possibi-
lity of occurring. Equal distribution of rules was desired to provide
the greatest diversity and unpredictability of corridor distribution as
possible.

The function “rand [2-4]”, located within the parameters of the
symbols F of the production rules, draws the value for the length of
the generated corridor. The values can be 2, 3 or 4 units of mea-
surement.

The symbols “[” and “]” provide the demarcation and recovery

of the positions of the “maze generator”, respectively, in both coor-
dinates and direction.

The proposed system has sensitivity to the environment to avoid
corridors overlapping, or even that the maze left the boundaries de-
fined for the game field. This mechanism is applied during the gene-
ration of each new corridor, in which an analysis of the space neces-
sary to generate the new corridor and generator node is made. This
collision avoidance system also provides a mechanism for joining
generator nodes, applied when there is a generator node at the exact
location where a new node is to be created, and there is no other
structure between them. If two corridors were disputing the same
place of creation, priority will be given to the structure generated
by the node created first in the process of generating the corridors.
The symbols of the production that failed to create the structure are
eliminated from the word.

The reading of the input and output nodes of the maze is done as
follows: The input node will be, by convention, the central node of
the axiom that generates the maze. The output node is assigned to
the maze node that is generated last, since it is most likely to be the
farthest from the input node.

The process of transcription of the maze, step by step, is shown
in figure 5 and uses the L-System described in Figure 4, operating
until the fourth iteration. The black frame of the pictures repre-
sents the limit of the space of the maze. To the left of each line, the
respective iteration number, demarcated by the letter i. The graph
shows in green the nodes on which the rule will be applied, in red
those in which the rule has already been applied, and corridors in
black. The blue lines are the empty space verification process. In
frame 9, a loop is formed. Frame 8 shows a broker formation con-
flict in the upper right corner. In frame 12, the allocation of the
input node (in yellow) and the exit point (in purple).

Figure 5: Simulation of the maze transcription process.

3.2 The Application

In order to verify the competence of the proposed generator method,
a maze game has been implemented using the L-System to create
the scenery.

For the implementation of the game we used the JavaScript lan-
guage. The final product is a maze game with three phases, with
increasing degree of difficulty. We chose to use three phases to
simplify the tests. The player begins controlling a blue cube that is
located in the spot with the house figure (entrance node), and should
lead it to the spot with the arrival flag figure (exit node), after which
the player moves on to the next phase. At the end of the last phase,
the game returns to the first phase, giving the possibility of experi-

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Short Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 604



encing it again. Each of the phases generated has a zero-chance to
repeat. Figure 6 shows an application game screen.

Figure 6: Image of game field on the first level.

4 DISCUSSION AND RESULTS

The application proved capable of generating complex sceneries,
which meet the requirements of a maze. The sceneries have variated
and interesting shapes that reduce their monotony. The application
also has a simple way to adjust the complexity of the challenge, by
defining the number of cycles. These features were obtained from
the use of L-Systems, through the description of a deductive system
with the planned aspects. However, it has been realized that there
is a possibility of generating a very small maze, or some mazes too
easy to solve.

In order to validate the requirements of the game, it has been
submitted to user tests. Twenty-two users participated in this test,
who used the application individually, going through all three levels
of the game. After the test, each participant answered an evaluative
form. Users were previously informed of the purpose of the expe-
riment, as well as basic instructions on how to play. The form con-
sisted of assertions in a Likert scale of five degrees, two positive,
two negative and one neutral, which evaluated the technical com-
petence of the game (difficulty of the phases), the aesthetic com-
petence of the game (scenery, motivation) and the gameplay of the
application (completion of each level without external assistance,
understanding of the objectives of the game), as well as a space for
suggestions. Figure 7 shows the evaluation results. These results
and their analyzes are shown below.

The statements about gameplay were: (P1) I was able to under-
stand what I should do in the game. (P2) I was able to finish the first
level of the game. (P3) I was able to lead the character through the
maze. The statements about aesthetic competence were: (P4) I was
motivated to continue playing. (P5) The appearance of the scenery
was interesting when compared to others of the same nature. The
statements on technical competence were: (P6) The degree of diffi-
culty in each scenery was challenging. (P7) The progression of the
sceneries was balanced and adequate.

The results show that, in the gameplay requirement, 95.45% of
the participants understood how to play, 100% of them finished the
first level of the game, and 90.91% of the respondents found the
application easy to play. However, only 22.73% strongly agree that
the scenery of the game was challenging, 36.36% found the scenery
interesting and 31.82% considered that the scenery could be im-
proved graphically. Regarding the motivation requirements for the
continuity of the game 59.09% of respondents felt motivated. Also
59.09% strongly agreed that there is balance in the progression of
the complexity of the challenge (Figure 7). This shows that the al-
gorithm was efficient in providing growth with adequate difficulty
at each level.

As suggestions, some participants pointed out the improvement
of the following aspects: 1) A more creative placement of the maze
corridors, 2) The presence of instructions in the game, 3) More
complex game dynamics.

As shown by these results, L-Systems can be considered with a
technology to be used in the development of PGC algorithms for
the construction of maze-type games.

Figure 7: Game Evaluation by the users.

5 CONCLUSION

With this research, it was possible to construct, analyze and verify
the efficiency of L-Systems in the generation of mazes for virtual
game sceneries. The characteristics that L-Systems provided as a
PCG technique for mazes were the variation of the sceneries ob-
tained, the facility to set their standards, as well as to define the
dimensions of each one. However, such a method has poor con-
trol over the adverse rules of its growth, such as regions where the
presence of corridors is prohibited, which requires the L-System
to be accompanied by additional algorithms to ensure the planned
results. Through the practical study carried out, it was possible to
perceive that the good gameplay generated by the sceneries in the
three levels, although the game has presented little challenging.

REFERENCES

[1] M. Fridenfalk. Application for real-time generation of virtual 3d
worlds based on l-system. In 2015 International Conference on Cy-
berworlds (CW), pages 73–78, Oct 2015.

[2] M. Hendrikx, S. Meijer, J. Van Der Velden, and A. Iosup. Procedu-
ral content generation for games: A survey. ACM Trans. Multimedia
Comput. Commun. Appl., 9(1):1:1–1:22, Feb. 2013.

[3] J. Mishra and S. Mishra. L-System Fractals. Elsevier Science, 2007.
[4] Y. I. H. Parish and P. Müller. Procedural modeling of cities. In Pro-

ceedings of the 28th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’01, pages 301–308, New York,
NY, USA, 2001. ACM.

[5] P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of
Plants. Springer-Verlag New York, Inc., New York, NY, USA, 1996.

[6] N. Shaker, J. Togelius, and M. J. Nelson. Procedural Content Gene-
ration in Games. Springer International Publishing, 2016.

[7] J. Togelius, A. J. Champandard, P. L. Lanzi, M. Mateas, A. Paiva,
M. Preuss, and K. O. Stanley. Procedural Content Generation: Goals,
Challenges and Actionable Steps. In S. M. Lucas, M. Mateas,
M. Preuss, P. Spronck, and J. Togelius, editors, Artificial and Com-
putational Intelligence in Games, volume 6 of Dagstuhl Follow-Ups,
pages 61–75. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 2013.

[8] M. A. G. Valverde. Geração de redes vasculares sintéticas tridimen-
sionais utilizando sistemas de lindenmayer estocásticos e parametriza-
dos. Master’s thesis, Universidade de São Paulo, São Paulo, 2012.

[9] R. van der Linden, R. Lopes, and R. Bidarra. Procedural generation
of dungeons. IEEE Transactions on Computational Intelligence and
AI in Games, 6(1):78–89, March 2014.

[10] A. B. Vila Nova. Modelagem procedural de cidades via algoritmo de
colonização de espaço. Master’s thesis, Univ. Federal de Pernambuco,
Recife, 2010.

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Short Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 605


	174978



