
A supervised learning approach to build a recommendation system for
user-generated content in a casual game

Paulo de Freitas Coleta Neto1∗ Túlio Braga Moreira Pinto1†

1Universidade Federal de Minas Gerais, DCC, Brasil

ABSTRACT

There is a growing tendency in games that made use of user-
generated content, artifacts created for a game by the players in-
stead of game developers. This type of content may allow games
to have an extension of playable hours and then a greater longevity.
However, allowing users to provide their own content may result
in low-quality game experience to other players, caused by the dif-
ficulty to find a content that delight the user base that will con-
sume the user-generated content. In this paper, we present an ap-
proach to creating pleasant content recommendations to the users.
We propose the use of Supervised Learning to build a model capa-
ble of predicting positive ratings from a user over a specific content
and use this information to build the recommendation system. The
recommendation system is capable to handle each user individu-
ally and create their own content recommendation list. To validate
and measure our strategy performance, we collected user ratings of
stages created by others user in a mobile puzzle game called Mr.
Square, during a period of 5 months. Our results show that we
can improve the percentage of positively rated content, and then the
user satisfaction, to 96.2%, while the current strategy implemented
in Mr. Square holds a satisfaction of only 70.1%.
Keywords: Recommendation, Classification, User-Generated
Content, Games

1 INTRODUCTION

One of the hardest and most important challenges of game devel-
opment is how to keep your players base active and interested in
your game. A possible solution to this problem is to use what is
usually called user-generated content [1]. User-generated content
is any kind of resource provided by regular people while users of a
system or service. This content is most likely provided voluntarily
and presented to others users in an entertaining way. Examples of
such content can be a location rating, a wiki page or even a video.
The use of User-Generated Content is growing fast because it is not
expensive to obtain, as most users will provide this content seeking
only recognition for their contributions [2].

In video games, the user-generated content can vary from a wide
range of possibilities. Examples of this type of content are: (1)
new stages, common in games that provided level editor and similar
tools; (2) cosmetic items, that are items that provided visual modi-
fications in game but no changes to the game mechanics or balance,
and (3) mods, that are advanced modifications capable of creating
new game modes of even a entirely new game. The level of depen-
dency and use of User-Generated Content will change with each
game. There are games designed to be totally dependent on such
content[3].

Some examples of games that use user-generated content are:
(1) Counter-Strike, an FPS game created from a Mod of the game

∗e-mail: paulo.freitas@dcc.ufmg.br
†e-mail: tuliobraga@dcc.ufmg.br

Half-Life in 1999; (2) Defense of the Ancients, an MOBA game
created as a custom map of the game Warcraft III using his built-
in level editor; (3) Dota 2, a more recent example that comes with
workshop tools that allow users to create cosmetic items, custom
maps, and mods; (4) Super Mario Maker, a game entirely focused
on levels created by other users with the built-in level editor.

Adoption of user-generated content in a system or game have
some benefits but also points a challenge, the bad content can pro-
vide an unfair experience to users [1]. Such experience can influ-
ence users to quit the game instead of extending its longevity.

Systems with user-generated content commonly implement a rat-
ing methodology to curate the resources. This may be a simple like
and dislike system, a star rating or a number grading representing
the user approval or disapproval. These evaluations represent what
the whole community thinks about a specific content. Sometimes
this strategy may fail to reflect the preferences of each individual
user.

Recommendation systems are able to list a specific set of items
most likely to please each user individually. Build such systems is a
work already done in other contexts such as presented by Davidson
et al. [4] in Youtube, by Linden et al. [5] in Amazon or by Gomez-
Uribe and Hunt [6] in Netflix.

Recommendation systems have already been suggested [7] as a
way to solve the disadvantages of the usage of user-generated con-
tent [1]. Such tools can provide to each user an individual list of
content that the system believes will please him. Constructing this
list, the system is able to minimize the high ratio of bad content.
Our users will not interact with these undesirable resources and by
so having a good experience.

In this paper, we present a strategy to build a recommendation
system using Supervised Machine Learning techniques. We eval-
uate our results using data collected from Mr. Square, a mobile
casual puzzle game with a built-in level editor. At the end of this
paper, we also discuss the applicability in a real world with time
constraints.

2 RELATED WORK

Researches involving recommendation systems exist in several con-
texts. One of the most famous examples is the work of Linden et al.
[5], that uses a Collaborative Filtering variation to create person-
alized product recommendations to each user in a virtual store. In
a work presented by Davidson et al. [4] a recommendation system
was created and evaluated over the platform of videos Youtube.

There are also works regarding recommendations systems in con-
texts more related to electronic games, as published by Sifa et al.
[8] and Skocir et al. [9]. In the first work, the authors recommended
new games to a determined user using the data from the platform
Steam, that focus in computer games. In that paper, classification
models are compared using the neighborhood of each item, the
games, and the Factor Oriented Model. The work of Skocir et al.
[9] creates their own new model called MARS, Multi-Agent Recom-
mendation System, that generates a profile with each user’s abilities
using the historic of games played before. The work presented in
our research differ from those cited above, since the content we
recommend is related to game levels, in this case, puzzles inside a

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 546



unique game. The other papers focus in recommend new games to
each user inside a unique platform.

A different approach to the problem of the low ratio of good user-
generated content is presented by Hicks et al. [10]. The authors
deal with this problem in the context of the game called BOTS, in
which the players can create puzzles and share with others users. To
handle this issue, they added a process of levels’ self-validation, in
which each player needs to solve its own puzzle before submitting
it to the server. The authors of the paper reported that this process
reduced the number of low-quality levels created by the users.

In comparison, our work differs from the others since our rec-
ommendation system is based on content. Also, our data source
is uncommon. In the mentioned studies, the authors had user de-
tails available to build a representation. In our work, we created
an individual user representation taking into consideration the rat-
ing history over the user-generated content consumed. Each puzzle
the gamer played interfere into the representation. This makes our
recommendation system different than the other since we have ap-
plied a technic called Content-Based Recommendation System in
the context of games without using any additional data, what also
minimize any questions about loss of privacy.

Our research uses a totally different approach than that proposed
by Hicks et al. [10]. Even though we have the most similar goals,
we handle the same problem with completely different solutions.
Their work focus in reducing the creation of what is called low-
quality content, while our study is able to send a set of recommen-
dations to each user regarding predictions of what our system be-
lieves will be considered high-quality content. This difference rep-
resents a big advantage since we do not change the whole spectrum
of available levels, and then we keep a large database of levels that
can be enjoyable to different sets of users, respecting each user own
preferences of what is low-quality or high-quality content.

3 PUZZLE RECOMMENDATION

The puzzle recommendation inside a game is the task to only show
to each user the set of puzzles we predict that he will rate positively.
The success of this task can be easily measured by the changes in
the value of what we call satisfaction for each user. The satisfaction
of a given user can be defined by the ratio of puzzles that the user
rated as good over the total amount of puzzles he rated, or alterna-
tively the percent of positively rated puzzles.

Accomplish this task is hard because we need to understand the
profile of each user. Different users have different criteria and
reasons to approve or disapprove a given content, and then they
will like or dislike different subsets of levels. A Recommendation
System must be capable of understanding this difference between
groups of users and the various features the users will notice on
each content, the puzzles.

In our approach to building a Content Based Recommendation
System, we must create a model representation of each level, that
will be the content to be recommended, and a representation of
each player, that will be the users to consume the recommenda-
tions. Also, there is a representation for the user-level pair, that
relates to a user’s content rating over that level in the past. Our task
in building such Recommendation System can be seen as learning if
each of those possible user-level pairs will hold a positive or nega-
tive rating. It is equivalent to predict whether the user approves or
disapproves that level he just played.

Commonly, the profile’s representation of each user shows data
that highlights his preferences and history in the game or system.
The representation of levels, content, is a much complex task since
it depends on which data are already available. Guyon et al. [11]
discuss the process of constructing and selecting features to repre-
sent items for the task of machine learning and classification mod-
els.

After building our rating’s representations, our user-level pairs,

we are able to use Machine Learning models to train over the data
and classify each of these pairs. These classification models will
learn how to predict the perception of users about each specific
level, that are the puzzles created by others users. This task is nor-
mally measured by accuracy in its prediction of each rating. Ad-
ditionally, we adopted another key metric we call precision score,
in which its value for the positive class is equivalent to the average
value among all users, what we previously called user satisfaction
metric. Therefore, an increase in the positive class’ precision score
causes an equivalent increase in the user satisfaction.

4 METHODOLOGY

Through our work, we considered a dataset that consists of a col-
lection of user ratings over user-generated levels under the mobile
puzzle game Mr. Square. With this dataset, we trained some classi-
fication models based on three techniques: (1) SVM, Support Vector
Machine; (2) Decision Trees; and (3) Random Forests. Then, using
the built classifiers we were able to predict the rating of a given user
over game’s specific levels. This information enabled us to provide
recommendations to each user taking into consideration only the
positive class predictions.

In this section, we present the algorithms and detail the required
tasks in order to build the classifier models. First, we present the
classification algorithms evaluated in this work. Then, we present
the process of collecting the dataset and the process of constructing
the representation of each level and user, what we call Feature En-
gineering. Finally, we discuss our process of sampling and disclose
the metrics to evaluate our results.

4.1 Classification Models

In this work, we evaluate the use of different types of classifiers to
use in our task of building a content-based recommendation system.
In this subsection, we make a brief description of the algorithms
used to train our classifiers: Support Vector Machines, Decision
Trees, and Random Forests. Then, we introduce the key metrics to
evaluate the results of our classifiers: accuracy and class precision.

The classification models presented here can be described as su-
pervised learning models. These methods adjust their answers bas-
ing in training datasets. Therefore, we consider the training data as
a set of n points in a d-dimensional space, and for each point, we
assign a label yi ∈ {+1,−1} representing the class that the point
refers to. In our case, there are two different classes: like or dislike.
In this way, we defined the dataset as D = {(xi,yi)}n

i=1.

4.1.1 Support Vector Machines

In this work, we used the Support Vector Machine, SVM, a binary
classification method based on maximum margin linear discrimi-
nants. The goal of the SVM model is to find the best hyperplane that
maximizes the margin or space between points of different classes.
Additionally, we can employ a method known as Kernel Trick to
find that optimal nonlinear discriminant between the classes, corre-
sponding to a hyperplane in a high-dimensional ”nonlinear” space.
This process is detailed in Zaki and Wagner Meira [12, Chapter 21].
The SVM model is also considered to be optimal in binary classifi-
cation, as said in Boser et al. [13].

A d-dimensional hyperplane is given by the set of points x ∈ Rd

that satisfy the equation h(x) = 0, in which h(x) is the hyperplane’s
function as below:

h(x) = wtx+b = w1x1 +w2x2 + ...+wdxd +b (1)

Where w is a vector of d-dimensional weights and b is a scalar
value known as bias. The hyperplane’s function h(x) can be used as
a linear classifier or a linear discriminant and can predict the label
y for any given point x following the decision rule below:

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 547



y =

{
+1 if h(x)> 0,
−1 if h(x)< 0

(2)

Given the above classification model, the SVM is an algorithm
that allows to refine the value of the vector w, that represents the
hyperplane h((x)), maximizing the distance margin between the
points x that belongs to different values of labels, y. In the train-
ing stage, the algorithm adjusts the values of weights w, with d
dimensions, relative to each features of each item of the training
dataset. At the end of the training process, the algorithm provides
a hyperplane h(x) capable of split the data. The detailed version
of the SVM algorithm employing the Kernel Trick can be found in
Boser et al. [13]. In our paper, we evaluate three different Kernels:
polynomial with degree 2, polynomial with degree 3, and the Radial
Base Function, RBF. Details about the RBF kernel can be found in
the work of Musavi et al. [14].

Finding the hyperplane h(x) that split perfectly the points of dif-
ferent labels can become an impossible task if the points can not
be correctly split, or can lead to very complex model, a problem
known as overfitting. To avoid these undesired cases it was intro-
duced a regulation parameter C in the SVM model, that needs to be
empirically chosen with the goal of minimizing the validation error.

Objective function: min
w,b,ξi

{‖w‖2

2
+C

n

∑
i=1

ξ
k
i

}
(3)

Linear restrictions: yi(wtxi +b)≥ 1−ξi,∀xi ∈ D
ξi ≥ 0,∀xi ∈ D

(4)

In the equation 3, the expression ∑
n
i=1 ξ k

i represents the classifi-

cation errors in the training stage, while the expression ‖w‖
2

2 repre-
sents the goal to maximize the margin. The parameter C controls
the trade-off between maximizing the margin and minimizing the
error during the training stage. The constant k defines the type of
loss function considered. When k = 1 is said that we use the hinge
loss and when k = 2 we use the quadratic loss [12, Chapter 21].

4.1.2 Decision Trees

The Decision Tree classifier is a model that creates a tree that parti-
tions the dataset space recursively until achieve the prediction of the
class yi of a given point xi. The decision tree applies an axis-parallel
hyperplane with the intent to split the space, R, of the dataset into
two resulting half-spaces or regions, also partitioning the points of
the dataset in two partitions. Each of these regions will repeat re-
cursively this process of splitting until the partitions are stated as
pure. We can say that a region of the Decision Tree is pure if it just
contains points of the same class.

The resulting hierarchy of this process is a tree model in which
the leaves are the last partitions. We assign a class to each leaf
according to the most popular label of the points in that region. To
classify a new point, we have to walk recursively on the tree until
reach a leaf and assign the leaf class to the point. More details over
the Decision Tree model can be found in the book published by
Zaki and Wagner Meira [12].

In a similar manner to SVM models, the Decision Tree mod-
els also have their own regulation parameters to avoid overfitting.
Some examples of this parameters are the deep of the tree, the num-
ber of elements in each leaf, and the maximum number of leaves.
For the purpose of this work, we only used the number of elements
in each leaf as regulation.

4.1.3 Random Forests
The Random Forest model is a combination of multiple tree predic-
tion models. Each one of these tree models are built considering
only a random fraction, independently distributed for each model
and with same distribution, of the whole vector that represents each
element of the dataset.

Random Forest can achieve great results once that the general-
ization error for forests converges to a limit as the number of trees
that ensemble the forest grows. This property leads us to an inter-
esting consequence: Random Forest, as others ensemble models,
rarely overfit. Besides that, there is still a regularization parameter,
the number of trees, that is also used to reduce the time to compute
the model. For a detailed explanation on how this model works, see
the work of Breiman [15].

4.1.4 Validation Metrics
It is possible to employ a wide range of metrics to evaluate and
compare the results of different classifiers. Here we present the
accuracy and the class precision, as they are the metrics we use
to evaluate our models. The Accuracy of any given classifier is
the ratio between the correctly predicted labels over the total of
predicted elements. It can be defined as:

Accuracy =
1
n

n

∑
i=1

I(yi = ŷi) (5)

The Accuracy is an estimative of the probability of a given clas-
sifier makes a correct prediction. High values of accuracy indicates
a better classifier.

The next metric is known as class precision. The class precision
of a classifier M for a class ci is the ratio of correct predictions over
all predictions to the class ci. In our work, this metric is impor-
tant since the class precision of the positive label is equivalent to
what we defined as user satisfaction. The mathematical definition
of class precision is as follows:

Class Precision for class i =
nii
mi

(6)

Where mi is the total number of points predicted as belonging
to the class i, and nii is the number of points correctly predicted as
belonging to the class i.

4.2 Dataset
To evaluate our results, we used a dataset from the game Mr.
Square, developed by the Ludic Side Game Studio company. Mr.
Square is a puzzle game for mobile devices in which users can, be-
sides playing the default set of levels, create and submit new puz-
zles using the built-in level editor. While playing the mode with
random levels, the player will be challenged to solve the puzzles
created by others users. After solving each puzzle in this mode the
player can provide a positive or negative rating for the solved level.
During the period of collecting the individual ratings, the game de-
livered each level to the user in a completely random manner.

Our dataset features (1) level rating’s logs, composed by likes
and dislikes given by real game players, and (2) each puzzle details
such as its dimensions, initial player position, obstacle positions,
puzzle solution, and the number of positive and negative reviews.

Our user rating’s logs were collected during a period of 5 months.
They are made of 646,838 user ratings of 70,323 active players
through the period of collection. Our dataset is complemented by
a total of 457,823 levels that were created since the game launch
and until the end date of the log collection process. From the total
of ratings, 453,455 are positive ratings, remaining 193,393 nega-
tive ratings. By the ratio of positive and total number of ratings, we
can state that the overall user satisfaction over the user-generated
content is 70.1%.

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 548



4.3 Feature Engineering
When using content-based recommendation systems it is necessary
to create a vector of representations for the user and for the content.
These two vector representations can be combined as a single vector
representation for the user-content pair, bringing a representation
for the user rating. The dataset collected provides structured data
about all the levels created by users until the collection’s end date.
Regarding users, the data available relates to a log of their ratings.

To build the representation of each puzzle, we choose a set of 11
features, in which all of them belong to the puzzle original data.
They are: the height; the width; the number of steps to the solution;
and the presence of each one of the eight possible obstacles in that
puzzle. Some of them can be seen in Figure 1.

Figure 1: Mr. Square level editor screen.

Our vector representation for each user represents and derives
from their history of ratings. Each user has 22 features, divided
into features of positive ratings and features of negatives ratings.
The first 11 features relate to the average of the features’ values
over only the positive-rated levels. Similarly, the other 11 features
relate only to the negative-rated levels. This way, to create a user’s

rating representation we just needed to join the 22 features repre-
senting the user and the 11 features representing the specific level
into a single vector of 33 features as user-level representation, or
user rating.

While creating the vector representation for each puzzle it was
detected 4,960 levels with invalid configurations, such as size below
the minimum or higher than the maximum value possible. These
invalid levels were ignored in all remaining tasks and the remaining
number of valid levels was 452,863. Due to the removal of invalid
levels, it was also needed to remove 8,499 user ratings related to
these levels.

4.4 Sampling
The process of building a classification model is a time-consuming
operation that can be even worse while evaluating different models
on a try to find the best configuration of parameters. One of the
factors that largely impact the amount of time spent to construct
each model is the size of the dataset used in training tasks. To be
able to evaluate a diverse range of models, we used a sampling of
our whole dataset in order to tune each of the models. Our sampling
size was configured with 50 thousand ratings.

The process of sampling can compromise the overall quality of
results case the resulting sample does not represent well the original
dataset. A way to measure how well does the sample represent the
original dataset is to compare the variance values of each one of the
features in the resulting sample with the values in full dataset.

To ensure that the sample technique used cannot lead to a unique
bad sample we added to our process a confidence interval for the
variance of features. In total, we built 10 different samples, and for
each sample, we repeated the following process of calculating the
variance of each feature of the dataset. For each feature, we cal-
culate the ratio between the variance of the feature in the original
dataset over the value found in the sample. Therefore, we expect
this ratio to be as close to 1 as possible. The average between all
the features’ ratios of all the samples was 1,0006 and the standard
deviation found was 0,0039. These values show that our different
samples represent our original dataset in a proper manner, making
reasonable the use of sampling in our process. Regarding the calcu-
lus of confidence interval, we found, at a 99% confidence, that our
variance ratio is between the interval of 0,997 and 1,005.

5 RESULTS

The first task while working with classification models is to tune
each one of the models. For the SVM we needed to find the optimal
value for the regularization parameter C, while in Decision Trees
one of the values that were optimized is the number of elements in
each leaf. For the Random Forest, it is common to choose the best
number of components to ensemble the classifier.

In order to evaluate the learned classifiers with different param-
eter values, we split our dataset into a training set and a validation
set. The first one is used only to learn the model and the second one
is used only to evaluate our results. This process is relevant since
it helps our model’s metrics to avoids an overffiting interference,
meaning that it preserves our model of memorizing the training data
instead of learning the generalized pattern regarding the classifica-
tion problem. All results presented in this section were calculated
using only the validation set.

In the Figure 3, Figure 2 and Figure 4 we see the plot of accuracy
and user satisfaction in function of the parameter C for the SVM
models trained with kernels, polynomial with degree 2, polynomial
with degree 3 and RBF, respectively.

For the polynomial with degree 3, the best model was found
when C is equal to 22 with accuracy of 87.1% and user satisfaction
of 96,2%. When using the polynomial with degree 2, the optimal
value of C was also 22, with the values of accuracy and user satis-
faction only differing from the polynomial with degree 3 after the

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 549



2−4 2−2 20 22 24

0.85

0.9

0.95

C

Pe
rc

en
tV

al
ue
(%

)

Accuracy
Satisfaction

Figure 2: Optimizing C value for SVM-Poly2

2−4 2−2 20 22 24

0.85

0.9

0.95

C

Pe
rc

en
tV

al
ue
(%

)

Accuracy
Satisfaction

Figure 3: Optimizing C value for SVM-Poly3

2−5 2−3 2−1 21 23 25 27 29

0.8

0.85

0.9

0.95

C

Pe
rc

en
tV

al
ue
(%

)

Accuracy
Satisfaction

Figure 4: Optimizing C value for SVM-RBF

0 50 100 150 200 250

0.84

0.86

0.88

Numbero f Estimators

Pe
rc

en
tV

al
ue
(%

)

Accuracy
Satisfaction

Figure 5: Optimizing N Estimators for Random Forest

0 10 20 30 40

0.8

0.85

0.9

MinLea f Size

Pe
rc

en
tV

al
ue
(%

)

Accuracy
Satisfaction

Figure 6: Optimizing Min Leaf Size for Decision Trees

8a decimal case. Finally, for the RBF kernel the best value found
for C was 23, while the values for accuracy and user satisfaction
was 84.8% and 95.1%, respectively.

The values for the SVM with polynomial kernels with degree
3 showed as irrelevant for the given task. We can interpret that
the hyperspace built with the polynomial kernel with degree 2 was
sufficient for splitting the points in this task. This way, for degree
3, the relevant features remained the same as in degree 2.

While evaluating the Random Forest classifier, we can see a se-
quential significant improves in the model Accuracy until hit the
value of 50 estimators. After hit this value the value of accuracy
vary a little under and above, but at no significant value and we can
not find a clear local maximum. We believe that this behavior is
due to the randomness nature of the algorithm.

The highest User Satisfaction value, 88,8%, was found when the
total of estimators was 140, and the value of Accuracy for the same
parameter value is 85,6%.

The curve values for the Decision Trees show us as an interesting
pattern and highlight one problem that could occur if we only evalu-
ate our models using the user satisfaction. In this last model, we re-
alized an always growing value for the satisfaction while the accu-

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 550



Pol2 Pol3 RBF Forest Tree

82

84

86

87.1 87.1

84.8

85.6

81.3

A
cc

ur
ac

y

Figure 7: Accuracy comparison between Models

Pol2 Pol3 RBF Forest Tree

90

92

94

96
96.2 96.2

95.1

88.8

90.2

U
se

rS
at

is
fa

ct
io

n

Figure 8: User Satisfaction comparison between Models

racy slowly degrades. If we continued plotting this chart we would
be able to see that the disparity between the population of classes
would make the decision tree model to lose accuracy while grow-
ing the class precision in favor of the most popular class. While
this is not seen as a problem at a first glance, it could lead to not
recommending many true positive puzzles.

The best value for the model’s accuracy was found when the
minimum leaf size was equal to 11, with accuracy of 81.3% and
user satisfaction of 90.2%.

The Figure 7 shows a comparison between the accuracy values
in the best configuration of each model. We can see clearly that
the SVM with polynomial kernels have the best accuracies but by
a tiny margin. The third best option was the Random Forest and in
last place, we see the Decision Tree.

Comparing the same models but using the metric of class preci-
sion for the positive class, in this work often called user satisfac-
tion, the Figure 8 shows us that the polynomial models are still the
best model option. However, here the SVM with RBF kernel shows
better results than the next option by a significant margin. Also, it
is interesting to notice that the Random Forest shows poor results
on this metric.

To better evaluate our learned classifier and estimate a confi-

dence interval, we submitted our SVM classifier with Kernel Poly-
nomial with degree 2 and Log C value equals to 2 to a K-Fold val-
idation process, employing K as 10. In this process, we split our
database into K partitions with the same size, and we train K clas-
sifiers with the same configuration.

Each one of the models were trained with K-1 partitions and their
metrics were validated with the remaining partition. Considering
the results of the different K classifiers, we estimated the average
value of model’s accuracy and the standard deviation of these val-
ues. Along with the number of samples created, we estimated the
confidence interval of our model [12, Chapter 12]. In the Table
1, we present the values calculated with K equals to 10 and confi-
dence interval of 99%. The values presented in the table show that
our results are stable and reliable.

Table 1: K-Fold Validation
Metric Average Standard Deviation Confidence Interval
Accuracy 86.14% 0.436597959% 85.69% to 86.59%
Satisfaction 96.28% 0.276532735% 95.99% to 96.56%

6 APPLICABILITY

The study presented in this paper occurred in a offline environment
of the game Mr. Square, with a static number of levels, and using a
history of each player ratings. Here we present a discussion about
the use of these models in a dynamic environment.

To ensure the accuracy of the recommendation system, it is nec-
essary to update the user representation for each new level rated,
while the level representation can be built when it is submitted to
the servers once that the level representation is static. A second
challenge that will arrive in an online environment is the need to
update and construct a new classification dynamically. This may be
needed (1) when new elements are added to the game, what may re-
flect on new features to the user and level representations; (2) when
the user’s playing preferences change significantly while experienc-
ing more the game. Both examples of needs can be detected by the
quick calculus of the variance of the dataset and by setting the de-
sired threshold as a trigger value to training new models. This task
can be addressed through the use of a daily job in the game server,
or manually checked while an update occurs in the game. Keeping
a record of the accuracy and the user satisfaction for the recom-
mendation system may be a good approach too. A drop in these
values indicates a strong need to training a new model.

Additionally, we made a quick experiment measuring how many
recommendations we can produce in a small time interval. In the
Mr. Square case, the user consumes about 5 levels per minute, that
is a case far different from the context of others recommendations
systems, while a single recommended content can take hours of the
user. In order to validate the viability of producing recommenda-
tions for each active user we estimated how much time a single
machine take to predict the rating of each user to a small set of
levels.

We run this experiment using Spark [16] and his library ML-
lib [17] on a setup using 8 cores and a remote single MongoDB
database. We loaded all users and 0.01% of level representations al-
ready stored in the database and evaluated all combinations between
this subset. All positive predictions have been written to the Mon-
goDB, so our server quickly consumed then. This process experi-
mented a total of 3,164,535 user-level pairs and classified 2,505,703
of them as a positive rating. All this process took about 4.9 minutes,
resulting in a rate of 7 recommendations for each user per minute.

The number is just a bit higher than the 5 levels consumed per
minute and was calculated using all active users during the period
of collecting the rating logs. The peak number of active users is cer-
tainly lower than the amount considered in this experiment. There-

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 551



fore, we believe that the recommendation system can be used with-
out the fear of creating a bottleneck in the whole game server.

7 CONCLUSION

In this work, we used a classification model to accomplish the task
of creating user-generated content recommendations. Our results
showed that we were able to increase the players’ satisfaction from
70.1% to 96.2%. Lately, we discussed the applicability of these
models and demonstrated their viability in a real world environ-
ment.

Our method does not directly solve the low ratio of high-quality
user-generated content problem. Instead, we were able to handle
the problem by individually listing only the puzzles that would
please the user. By not removing the low-quality levels from the
game, we were able to keep a diverse content capable to be con-
sumed by any kind of gamer. This is the biggest advantage of our
work against related works that aim to solve the same problem.

In further work, we still need to validate our approach toward
different datasets, proving that our strategy can be generalized to
others games or environments. In this paper, we have not evaluated
the impact of user preferences changing over the time. One ap-
proach should be degrading the weight of old ratings and favoring
most recent ratings when constructing the user representation.

Besides our good results for user satisfaction, we still need to
improve our model accuracy. Further work should focus on min-
imizing the number of positive user-level’s relations predicted as
negative, what is called false-negatives and apply this model on a
live environment, more susceptible to failures. This is important
since the user can lose the opportunity to play some high-level con-
tent.

REFERENCES

[1] P. Jasek, “User generated content for video games,”
Department of Computer Science Aalborg University, Tech.
Rep., January 2014, 9th semester project report of the
Software Development program. [Online]. Available: http:
//vbn.aau.dk/ws/files/176764496/Report\ swd903e13\ .pdf

[2] J. Krumm, N. Davies, and C. Narayanaswami, “User-
generated content,” IEEE Pervasive Computing, vol. 7, no. 4,
pp. 10–11, Oct 2008.

[3] K. Graft, “User-generated content: When game players
become developers,” Oct. 2012. [Online]. Available: http:
//gamasutra.com/view/news/179493

[4] J. Davidson, B. Liebald, J. Liu, P. Nandy, T. Van Vleet,
U. Gargi, S. Gupta, Y. He, M. Lambert, B. Livingston, and
D. Sampath, “The youtube video recommendation system,”
pp. 293–296, 2010.

[5] G. Linden, B. Smith, and J. York, “Amazon.com recommen-
dations: Item-to-item collaborative filtering,” IEEE Internet
Computing, vol. 7, no. 1, pp. 76–80, Jan. 2003.

[6] C. A. Gomez-Uribe and N. Hunt, “The netflix recommender
system: Algorithms, business value, and innovation,” ACM
Trans. Manage. Inf. Syst., vol. 6, no. 4, pp. 13:1–13:19, Dec.
2015.

[7] M. J. Pazzani and D. Billsus, “Content-based recommenda-
tion systems,” pp. 325–341, 2007.

[8] R. Sifa, C. Bauckhage, and A. Drachen, “Archetypal game
recommender systems,” pp. 45–56, 2014.

[9] P. Skocir, L. Marusic, M. Marusic, and A. Petric, “The mars
- a multi-agent recommendation system for games on mobile
phones,” pp. 104–113, 2012.

[10] A. Hicks, V. Cateté, and T. Barnes, “Part of the game: Chang-
ing level creation to identify and filter low quality user-
generated levels,” 2014.

[11] I. Guyon, S. Gunn, M. Nikravesh, and L. A. Zadeh, Feature

extraction: foundations and applications. Springer, 2008,
vol. 207.

[12] M. J. Zaki and J. Wagner Meira, Data Mining and Analysis:
Fundamental Concepts and Algorithms. Cambridge Univer-
sity Press, May 2014.

[13] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algo-
rithm for optimal margin classifiers,” pp. 144–152, 1992.

[14] M. Musavi, W. Ahmed, K. Chan, K. Faris, and D. Hummels,
“On the training of radial basis function classifiers,” Neural
Networks, vol. 5, no. 4, pp. 595 – 603, 1992.

[15] L. Breiman, “Random forests,” Machine Learning, vol. 45,
no. 1, pp. 5–32, Oct 2001.

[16] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica, “Spark: Cluster computing with working sets,” pp.
10–10, 2010.

[17] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman,
D. Liu, J. Freeman, D. Tsai, M. Amde, S. Owen, D. Xin,
R. Xin, M. J. Franklin, R. Zadeh, M. Zaharia, and A. Tal-
walkar, “Mllib: Machine learning in apache spark,” J. Mach.
Learn. Res., vol. 17, no. 1, pp. 1235–1241, Jan. 2016.

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 552


	175543



