
kNarrator: A Model for Authors to Simplify Authoring Process Using
Natural Language Processing to Portuguese

Adriano Kerber∗ Daniel Camozzato Rossana Queiroz Vinı́cius Cassol

Universidade do Vale do Rio dos Sinos (Unisinos), Escola Politécnica, Brasil

Figure 1: kNarrator’s result using multiple sentences in a single pseudo-text.

ABSTRACT

In this paper, we propose a model to help writers to produce narra-
tives or text fragments using only few words as input. The proposed
model uses pseudo-text as input and returns full fluid text as output.
The facts described in the pseudo-text can be transcribed with a
different level of detail set by the user, from a simple sentence to
an expanded description, adding details according to a user-defined
semantic dictionary. This allows authors to visualize ideas and con-
cepts of narratives. Our model can also be used in games as a tool
to generate narratives and descriptions in natural language text. In
order to evaluate our approach, we performed a comparative study
with some authoring models and results are further discussed.

Keywords: Natural Language Processing, Natural Language Gen-
eration, Authoring Model, Portuguese, Storytelling.

1 INTRODUCTION

There has been a growth of research focusing on authoring models
in recent years. Most research done has focused on improving the
way authors create their own narratives, stating that individuals or
teams of writers need to tirelessly create huge amounts of content
by hand, which is impractical for full length narratives and game
titles. Different techniques have been proposed to help authors in
the creation process, and we proposed a taxonomy which divided
the techniques in two types:

• Not plot-based: The author define the entire creation with one
type of rules.

∗e-mail:kerberpro@gmail.com

• Plot-based: The author has different levels of rules to describe
each character or element that can be presented.

In the not plot-based techniques, the author creates text pieces
and simple rules that may rearrange the text pieces in the final com-
position. Then the rules created by the author are responsible di-
rectly for the final composition and the task of plot control is inside
the author’s mind.

This is the case of the Tracery model [2]. In a first step, the user
creates sets of words and rules. In a second step, these rules are used
to choose words from the sets to randomize specific words in an
annotated sentence. Another not plot-based model is Expression-
ist [14], which also uses rules and sets of words for the annotated
sentences, with the difference that the order in which the words are
retrieved from the set is probabilistic instead of random.

Another interesting not plot-based model described in a platform
study from Friedhoff [3] it the Twine. Twine [6] is a system inspired
by interactive fiction which allows the author to create branched
stories in a visual way, allowing the author to see the connections
among the branches.

Thus the previous models are not plot-based, they do not treat
the narrative structure as part of the model. They allow the author
to deal with the plot organization by himself.

On the other hand, there are the plot-based techniques, where
the author still creates text pieces and rules, but the text pieces are
organized by complex rules with different types and levels of us-
age. Then each type of rule on plot-based is directly related to plot
structures definition such characters or situations.

This is the case of the Wide Ruled 2 model [15], in which the
organization of the stories is completely controlled by the system,
enabling the author to focus on writing characters, worlds and story
plots in its data structures.

The main difference between the previous models and Wide
Ruled 2 is that the previous concern themselves with giving the

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 538



author almost full control over the narrative with no focus on the
plot, while in Wide Ruled 2 the main point is to enable the author
to simply set preferences and the story is generated by the system
itself.

In all the reviewed models, the author creates the text fragments
and templates, which the system uses to generate the final text in
natural language. Then all the knowledge of natural language is ex-
pressed by the author. Thus, we could identify a lack of a model
which uses a natural language processing module (NLP) within the
textual creation pipeline, to allow the creation of the final text auto-
matically.

We propose a model that uses a simple approach to text creation,
such as in the Tracery model [2], in addition our model inhibits the
necessity of learning a specific syntax which is present in all the
previous models. The model will allow the author to have full con-
trol over the narrative and at the same time, it will not be necessary
to create a full text such as in the previously presented models. The
focus of our model, named kNarrator, is to put the task of natu-
ral language processing directly within the model’s pipeline. This
allows the author to create text, without needing to focus on the
details related to generating the final text.

For this purpose, kNarrator does receive pseudo-text as input, as
well as details about words and context for the input to generate a
full fluid text with as much detail as the author wants.

It is important to notice that our work is currently focused on
the Portuguese language, but on the other hand, our model can be
easily adapted to other languages.

2 RELATED WORK

In this section we present the most relevant researches found un-
til this paper was written. The Twine model [6] is an approach to
creating interactive fictions. In this model, a graph is used to give
structure to the narrative. Each node in this graph contains a frag-
ment of text, and can lead to other nodes. The sequence of events is
defined by the author in a visual editor. First, the author manually
divides the text into text boxes. Then, the text boxes can be linked,
such that each text box is a piece of the narrative that can be linked
to different text boxes. This allows the author to create interactive
narratives, with text fragments that lead to different text fragments.

Thus, Twine enables the creation of user-defined (fixed) text vari-
ations. Twine also handles user-defined rules such as programming
code and variables, which can be used to define specific behaviors.
For example, “enable this node if the character has 3 gold stones”.

The Twine model differs from our model by the use of nodes
and links, and user-defined rules. In our case we use pseudo-text
that after processed becomes a linear full fluid text, as described in
Section 3.

The Tracery model [2] has a different approach from Twine’s.
Tracery uses two types of information. The first type holds differ-
ent sets of words, each with the same general purpose. Examples
of such sets would be names, nationalities, genders, greetings, etc.
The second type are text fragments. These text fragments can con-
tain tags which indicate places where a tag will be replaced with
words from a specific set.

Thus, the final text is formed from a simple rule, which replaces
tags with a random word from a specific set. The Tracery model
differs from our model with the concept of user-defined rules and
the use of templates to generate the final text.

The Expressionist model [14] has a visual editor and a similar
approach to Tracery [2], in that both use sets of words and rules.
This model also uses text fragments containing tags which can be
replaced by a word from a set of words. The difference is that
Expressionist allows the user to assign a value to each word in a
set. These values are then used as weights to select words with a
probabilistic order. This is different from Tracery, which selects
elements randomly.

In addition, Expressionist provides an editing tool to facilitate
the workflow of the author. The tool is organized in panes, and
each pane is used to organize a step of the production flow. There
are four panes in the tool: in, todo, write and out. The in pane is
used to populate a list of deep representations, which are structured
representations of the semantic content of a sentence. The todo
pane receives the list of deep representations from the in pane. The
write pane is used to specify production rules, which are sets of
words with weights defined for each word. Finally, the out pane is
used to export the resulting database, defined by the author, into a
structured format, enabling its use with other applications.

The Expressionist model differs from ours in relation to the defi-
nition of the rules and templated text, which are characteristics that
we avoided to have in our model to achieve the goal of NLP. Expres-
sionist has an interesting interface to treat its deep representations
that could be used as a reference for a future visual interface for
editing the semantic dictionary of our model.

The Wide Ruled 2 (Wide Ruled) model [15] is a story authoring
tool that attempts to reduce the technical expertise required from the
user and creates a bridge between algorithms and art by providing
a non-technical, writer-oriented authoring interface to a text-based
interactive story generator.

The Wide Ruled model is templated, as were all the previous
models, but with a defined structured interface that allows the au-
thor to create the elements, plot points and goals to define the gen-
eration of the narrative. The visual editor of Wide Ruled is divided
in four panes:

1. Characters - this pane is filled by the author with a list of
characters that can have attributes and relationships with other
characters;

2. Environments - where a list of scenarios that can have at-
tributes and relationships with other scenarios;

3. Plot Point Types - a pane where plot points can be defined
with their attributes;

4. Goal and Plot Fragments - is the pane where the story is struc-
tured and prepared by the author. This pane has a tree like
structure to organize and prepare the narrative for the final
generation of Wide Ruled. The elements of this final pane
are: author goal, that is an initial point (root of the tree struc-
ture) for the story that is always executed; plot fragment, the
element that can be selected by Wide Ruled and that takes
place under an author goal; and story actions, the nodes that
are sequentially-executed under a plot fragment.

In a first step the author fills the lists of characters, environments
and plot point types. In a second step the author uses the Goals and
Plot Fragments pane to organize and use the elements created. In
this step the author creates author goal and plot fragments with its
story actions.

Wide Ruled is a versatile model to authoring process but difficult
for beginners since it demands from the author a knowledge of all
the control structures of the model.

Wide Ruled differs from our model in that we do not aim to
define a plot-based structure. Despite the focus difference, Wide
Ruled has an interesting concept of plot-based generation of the
text that we used in our model, but with a different approach.

Other related works are: the model presented in [13], which en-
ables querying Probabilistic Context-Free Grammars (PCFGs) us-
ing an algorithm to construct a Bayesian network from PCFGs to
allow generalized queries; the model presented in [7], that creates
a method called the Scheherazade system which generates a simple
story using plot graphs learned through crowdsource from stories
generated by human authors; and a model called Curveship [9],
which is an approach for natural language processing in interactive

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 539



fictions. This model has a variety of templated sentences that are
inserted in a random order in the interactive fictions.

These models can be exploited by our model for the matching
process (see Section 3.1) to identify or classify the words from the
input.

2.1 Simple taxonomy of Natural Language Processing
algorithms

In Natural Language Processing (NLP) the algorithms can be di-
vided in:

• Normalization algorithms: Lemmatization (From [11] or [5])
and stemming [12] are algorithms of normalization. They
identify a canonical representative for a set of related word
forms. Then it means that the algorithms group words and
link them as morphed forms of a base word.

• Word-category disambiguation: Also known as Part-Of-
Speech tagging (POS tagging or POST), is a technique that
usually uses a dictionary (or corpus). The POS tagging ana-
lyzes a text to identify the possible word classes of each word
or group of words, then based on its positioning on the text de-
fine the correct word class for the word in the text. A study of
tagging techniques can be read in Part-of-speech tagging [17].

The normalization techniques differ in their approaches. Stem-
ming usually refers to a crude heuristic process that removes the
suffixes and affixes of a word to find its stem. On the other hand,
the Lemmatization technique usually refers to using a vocabulary
and morphological analysis of words, normally aiming to remove
inflectional suffixes and returns the base or dictionary form of a
word, which is known as the lemma. The stemming techniques are
faster but less assertive while the lemmatization techniques, using
its vocabulary rules and dictionary, tend to be less efficient but ac-
curate.

The word-category disambiguation techniques can be mainly
rule-based or stochastic. A rule-based technique such as “A Sim-
ple Rule-Based Part Of Speech Tagger” [1] has its own tagger that
classifies the words initially by their most common classes, then
starts the process of comparison of the result tags with a percentage
of assertion and error from the corpus used and resetting new word
classes to each word. The technique goal was to learn from the re-
sult set to improve the next results becoming faster then a stochastic
method.

Another rule-base technique is “Dependency parsing with com-
pression rules” [4] which combines two POS taggers with compres-
sion rules to create a reliable and fast disambiguation model.

3 THE KNARRATOR MODEL

Our purpose is to create an authoring tool that uses a pseudo-text
to generate a full fluid text using natural language processing, and
that is able to not only generate this fluid text but also insert new
content to expand the output text at runtime. We aim to create a ver-
satile model that can facilitate the creation process for the author by
removing the need to learn a complex structure of rules. The kNar-
rator is currently implemented using the C# language from .NET
framework [8], this language was chosen to enable a future integra-
tion of the

kNarrator model to game engines as Unity3D [16], which sup-
ports the C# language. In addition we use a SQLite database [10]
to store the words’ data.

The main input of our model is a pseudo-text. The pseudo-text
is a term we used to describe an incomplete sentence or text. For
example: “Maria ir casa”, is a pseudo-text that can be translated to
a natural language sentence as “A Maria foi para casa.”.

Then a pseudo-text can be primarily described as lemmatized,
which means that all the words presented on it are in its lemma

form. Although it is important to notice that to facilitate the use for
authors, our model allows that the pseudo-text uses inflected forms
beyond the lemmatized forms, which inhibits the necessity for the
author to learn a specific syntax to use the kNarrator model. our
model receives a pseudo-text as input and converts that to a full
fluid text in natural language as output (see Figure 2). current goal
for kNarrator model is to construct the basic tool, basic pipeline,
capable of classifying pseudo-text in Portuguese language and gen-
erating the output text in natural language. Then we propose our
own implementation of a rule-based model.

Our model is divided in three main modules: the Classifier, the
Expander and the Organizer.

3.1 Classifier Module

The Classifier module is where the input pseudo-text provided by
the author is analyzed and classified.

Then this module uses a POS tagger technique. Each word on
Classifier module is assigned a Word Class and stored in a structure
called Token. To classify each word, this module uses a dictionary
to search for words matching the input. Thus, each word from the
input text is stored alongside its Word Class in a Token.

A Word Class is a representation of a word class in Portuguese
and is stored in the Token with its name and an array of all the
inflections the word class in question allows.

For a better understanding, the Portuguese language word classes
with their respective inflections are: Verb - with inflections in mode,
time, number, person and voice; Noun - with inflections in gender,
number and grade; Article - with inflections in gender and number;
Adjective - with inflections in gender, number and grade; Adverb -
with inflection in grade (just in a few cases); Pronoun - with inflec-
tions in gender, number, person and case; Numeral - with inflections
in gender, number and grade (just in a few cases); Preposition - with
no inflections; Conjunction - with no inflections; Interjection - with
no inflections.

Based on these word classes we created a base structure with
unique identifiers to represent these word classes called Word Class
Identifiers. An example of a pseudo-text input could be “Urso at-
acar homem floresta denso”. In this example all the words are in a
base form, and our model would classify the words and generate the
following Tokens: “Urso” as a noun, “atacar” as a verb, “homem”
as a noun, “floresta” as a noun, “denso” as an adjective.

In this case the classification of the words could use a simple
dictionary with templated words, to match and classify the words.
However, this kind of pseudo-text, written using only the base form
of words, is not practical to write. Thus, as explained previously in
this section we propose a different approach for our dictionary, such
that our model can not only accept pseudo-text, but also regular text,
avoiding the need for the user to learn the correct way to write the
pseudo-text input.

3.1.1 kDictionary

Our dictionary called kDictionary has pre-classified words stored
in a database. Then our dictionary uses a SQLite database [10] to
store the words and its inflections.

Our dictionary uses the concept of normalization algorithms,
such as lemmatization algorithms, by having the words stored as
lemmas and all the respective inflections connected to them.

Thus in our dictionary, the base word, which is a lemma, is con-
nected with the respective inflections, which are saved as inflected
words with all their respective classification (Such as gender, num-
ber, person, case, degree, mode, time and voice) related to identify
what the inflection represents for a respective word class.

We divide the tables of the SQLite database in one main table
that has all the words and its inflections, and the secondary tables
that represent each word class. The main table has the words with

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 540



Figure 2: An overview of the model’s base flow, where the input passes on a classification process and a structuring process to generate the
output in full fluid text.

Figure 3: Overall architecture of the kNarrator, showing the regular
and expanded flow (dashed line means that the Expander module is
optional).

all their possible word classes, then it is divided in two types of
words:

• Lemma - a word that represents a lemma and has all its possi-
ble word classes listed.

• Inflected - a word that represents an inflection, which is an
inflected lemma and has only its word class and the detailed
information about what it represents from the lemma.

For example, the lemma “viver” would have an inflected form
“viveu”. In the dictionary structure this lemma “viver”, in the main
table, would have all its word classes connected to it, and the in-
flection “viveu” would have attached to it its classification such as
inflection in person (E.g.: first person), number (E.g.: singular),
mode (E.g.: indicative), time (E.g.: past) and voice (E.g.: active).
Thus our dictionary stores each lemma with all its inflected words
pre-classified. Then in the secondary tables we have all the inflected
words information connected to the specific lemma.

3.1.2 The POS tagging algorithm
Our POS tagging algorithm uses a preference classification (also
called probabilistic), that based on the word position on the pseudo-
text the word is more likely to be one word class than other.

The POS tagging steps to classify the input are:

• Step 1: Process the pseudo-text removing punctuation and ob-
taining all the words

• Step 2: Match all the input words with the words from the
dictionary, retrieving all the possible word classes for each
word

• Step 3: Find a possible auxiliary verb or verb and set as verb

• Step 4: Classify verb adjacencies searching through all the
possible word classes of the current word. The preference
order of classes are:

– Noun

– Pronoun

– Article

– Conjunction

The final result of this step is a list of Tokens. It is important to
notice that we ignore the punctuation from the pseudo-text input to
show that pseudo-text if well structured can be correctly processed
by a rule-based model.

Any unidentified words are passed to another module, called Er-
rorManager (see Section 3.4).

3.2 Expander Module
The Expander module is responsible for the insertion of new words
in the list of Tokens, to expand the text with descriptions for se-
lected words.

The input for this module is the list of Tokens generated by the
Classifier module, and the output is a list of Tokens augmented with
new words.

In the first step this module analyses the list of Tokens searching
through the lemma’s word classes for a specific word class from the
semantic dictionary (see Section 3.2.1).

Then, in the second step, the Tokens with the corresponding class
will be selected to receive a new word.

Thus, in the third step, each one of the selected tokens receive a
word from the set of words registered for them.

An example of result, from this module, for the input “Urso at-
acar homem floresta”, is the expansion to “Urso grande forte atacar
homem floresta denso silencioso”. Where the words “Urso” and
“floresta” received an addition of words. It is important to notice
that the use of this module (Expander Module) is optional by the au-
thor. Then our model can be considered with two different pipelines
for generating the full fluid text as an output: 1) Regular pipeline -
which generates full fluid text with no textual expansion (see Fig-
ure 3). In this pipeline the Expander Module is not used, then the
text passes through Classifier Module and go directly to Organizer

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 541



Module; 2) Expanded pipeline - which generates full fluid text with
textual expansion. In this pipeline the Expander Module is used,
then the text passes through Classifier Module, Expander Module
and Organizer module respectively.

3.2.1 Semantic Dictionary

The semantic dictionary stores words that represent elements from
the narrative world. These elements are defined as new word
classes for our kDictionary, the classes are Character (“Person-
agem”) which represents an actor that can perform actions and
Place (“Lugar”) that is an environment where actions happen. Each
lemma registered on the semantic dictionary has a set of words.

The lemmas are represented by nouns while the words on the
word sets are adjectives and each token from a word set is obtained
via randomic order.

It is important to notice that the semantic dictionary stores the
words and concepts from a specific narrative universe. Thus each
story needs a dictionary which is adequate for its context.

3.3 Organizer Module

The Organizer module processes the list of Tokens to generate the
final text in natural language. The module is responsible for creat-
ing meaning for the text, as well as using phrasal rules to insert new
tokens and punctuation, removing unnecessary words and reorder-
ing words that do not make sense in the current order.

This module can be controlled by the author defining four pa-
rameters of inflection control, called Output Parameters, they are:

• Person - assuming the values: first, second and third

• Number - assuming the values: singular and plural

• Gender - assuming the values: male and female

• Time - assuming the values: present, past and future (The spe-
cific values are: “presente do indicativo”, “pretérito perfeito
do indicativo” and “futuro do presente do indicativo” )

It is important to notice that the previous output parameters do
not need to be defined by the author, since a concordance step is
done to ensure that all the words are properly inflected. Also, there
are default values for the parameters, that are used in the concor-
dance step if possible. The default values for the parameters are:
Person as third, Number as singular, Gender as male and Time as
present.

This module is divided mainly in five steps for processing the
text from the list of Tokens:

1. Create Sentences - this step divides the tokens in sentences
and adds final punctuation. To find the possible sentence the
algorithm follows these steps:

• Beginning of the sentence - search for the first noun

• Middle of the sentence - search for a verb or auxiliary
verb

• End of the sentence - search for a next verb or auxiliary
verb, if a token comparison is found, it goes back from
the current verb back to the current verb that represents
the middle of the sentence, until it finds a token that
breaks a chain of nouns or pronouns or until it reaches
the middle sentence verb.

2. Concordance - this step inflects the tokens so that they con-
cord among themselves. In this step the adjacent words are
analyzed to keep concordance.

3. Connectives - this step adds connectives to the sentences, such
as comma and “e” (and). The connectives are added among
repeated word classes. The comma connective is added only
if there is no two repeated word classes or more after the in-
sertion point.

4. Articles - this step inserts articles before nouns.

5. Finishing - this step adds capital letter to the beginning of
phrases.

The input “Urso atacar homem floresta denso Urso matar homem
Urso ir dormir” (with the control parameters: Person = third, Num-
ber = singular, Gender = male and Time = past) after processed by
this module will result in “O Urso atacou e matou o homem. O
Urso matou o homem. O urso foi dormir.”.

Figure 4: Screenshot from kNarrator’s console log with output pa-
rameter Time set to present.

Figure 5: Screenshot from kNarrator’s console log with output pa-
rameter Time set to future.

3.4 ErrorManager Module
The last module in our model is responsible for treating errors. It
receives a list of words which could not be recognized by the Clas-
sifier module in the input text. Each unidentified word is in a struc-
ture that contains the word, the number of the line from the input

Figure 6: Screenshot from kNarrator’s console log when a sentence
with multiple verbs is presented.

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 542



text, if divided in lines and the counter that identifies the counting
of the word at the line. All this data is passed to the author to facil-
itate the identification of the error, so the author can either correct
or add a new word to the dictionary.

4 RESULTS

Our current goal was to show the capabilities of our model, then we
used a console log for the testing purpose as seen in figures 4, 5 and
6. Then the results obtained from our model show that the pseudo-
text purposed as input can be used to generate full fluid texts.

It is important to notice that the kNarrator model can be con-
sidered multi-language, since the model can be adapted to support
other languages by changing or adding new rules. Then we present
the results from our model divided in two sets: 1) Regular pipeline
(see Figure 3), where the pseudo-text is converted to full fluid text
only; 2) Expanded pipeline (see Figure 3), where the pseudo-text is
expanded and then converted to full fluid text.

4.1 Regular pipeline results
The results from this pipeline are purely the conversion of our
model of pseudo-text to a full fluid text without textual expansion.
It is important to notice that all the output parameters with the value
“Not set” are going to be ignored on the concordance step described
on Organizer Module Section.

The input “homem abraçar menino” with the output parameters
set as [Person: Third; Number: Singular; Gender: Not set; Time:
Past] generates the output “O homem abraçou o menino“. Other
example is the input “homem abraçar menina feio” processed with
the parameters [Person: Third; Number: Plural; Gender: Not set;
Time: Past] generates the output “Os homens abraçaram as meninas
feias”.

In this example all the nouns (“homem” and “menina”) are in-
flected to the plural and the adjective “feio” is converted to the plu-
ral to concord with the noun “meninas” that preceded, the adjective
was inflected also in gender to concord with the gender from “meni-
nas”, then the gender was inflected even not being defined by the
author, to concord with the previous word.

Another result using the same input “homem abraçar menina
feio”, but with the output parameters modified to [Person: Third;
Number: Plural; Gender: Female; Time: Future] we have the out-
put “As mulheres abraçarão as meninas feias.”. In this example the
input word “homem” inflected in gender and number became “mul-
heres”, since in the dictionary of kNarrator model we have male and
female forms for each noun. The rest of the sentence was inflected
as the last example.

4.2 Expanded pipeline results
The results from this pipeline are the results of the additional use of
the Expander module to insert in a randomized order new words for
the final fluid text. For the examples we used the list of semantic
words and its respective word sets below:

• Word: “homem” with the set of words:

– “sábio”

– “velho”

– “cansado”

– “careca”

– “cabeludo”

• Word: “guerreiro” with the set of words:

– “burro”

– “mau”

– “bom”

– “bonito”

– “feio”

With inflections as [Person: Third; Number: Plural; Gender:
Female; Time: Present] set for the input “bode atacou morder
abraçarão homem guerreiro” we obtain the result “As cabras at-
acam, mordem e abraçam as mulheres velhas e as guerreiras
bonitas.”. In the pseudo-text input we have the verbs either in-
flected or in the infinitive form and they (“atacou”, “morder” and
“abraçarão”) are recognized and inflected to concord with the out-
put parameters person, number and time. We used the verbs in-
flected to show the possibility of using words already inflected in
the pseudo-text, to show that the author do not need to learn a spe-
cific syntax of the pseudo-text input we proposed in the Section 3.

Beyond that, the words “homem” and “guerreiro” (Both nouns)
received each randomically an adjective from its own word set.
In the current result we had the adjective “velhas” (“velho”) to
the semantic noun “mulheres” (“homem”) and we had the adjec-
tive “bonitas” (“bonito”) to the semantic noun “guerreiras” (“guer-
reiro”). Then as the processing randomly selects a word from the
word set, if the same input with the same parameters is processed
again we could have a different result as “As cabras atacam, mor-
dem e abraçam as mulheres sábias e as guerreiras más.”. In this ex-
ample the selected adjectives were “sábio” and “mau” respectively.

In Figure 1 is shown a result of multiple sentences inserted in a
single pseudo-text with only one word registered as a lemma for the
semantic dictionary. The word registered is “Guerreiro”, that was
registered as a Character, which received the adjective “burro” from
the semantic dictionary.

4.3 Comparisons
In this section we will make the comparisons from our results and
the results from all the other presented authoring models. It is im-
portant to notice that since all the compared models use templated
texts, they all have repetition patterns on the final text and few re-
use of the text fragments, being inferior of our approach that uses
natural language processing to create texts word by word, avoiding
templated sentences.

4.3.1 Twine

Figure 7: Screenshot from Twine model visual editor.

The Twine model with a structure of nodes as seen in Figure 7 is
simple for the author to write the narrative as full text on each node
and with a simple syntax, creating connections among other nodes
of full text. On the other hand, when the author wants to create and
re-use the text fragments created on each node, adapting the text for
each case or interaction, the syntax becomes complex since knowl-
edge of programming languages is required by the author. Then,
since our model is kept with a simple syntax, the author can create
more variations using no specific syntax. Also, another important
feature that is not supported by Twine is the capability of inflecting
the sentences, since the model does not use a dictionary.

Thus as seen in this comparison, the kNarrator facilitates the text
creation and manages the text itself with no requirement of control

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 543



by part of the author. This features enable the author be free to think
more about the content than on the structure itself.

4.3.2 Tracery and Expressionist

Figure 8: Screenshot from the Tracery model

The Tracery model and the Expressionist model, are equally
based on simple rules that enable the author to create text, either
with random (in Tracery) or probabilistic (in Expressionist) selec-
tion of words.

We had access only to Tracery model when making the com-
parisons with our model, the following explanation is focused on
the Tracery model, but since the Expressionist model only varies in
matters of selecting the word, both models can be considered the
same in the following comparisons.

The rules from these models can be simply the rule “#name# a
#occupation#” where the words between hash symbol are variables
that identify word sets (see Figure 8). The word set “name” with the
words “Arabella”, “Georgia” and “Patricia” and the “occupation”
with the words “trabalhadora”, “corredora” can generate the results
“Patricia a trabalhadora” or “Arabella a corredora”.

As seen in the comparison with Twine model, the results are sim-
ple and demand a time consuming work of textual structuring to
generate similar results to the results from our model. It is impor-
tant to notice that the main difference is that our model creates all
the text structuring by itself, which enables the author to care exclu-
sively about the context instead of working on an exhaustive textual
structuring process.

4.3.3 Wide Ruled 2
While in the previous models presented in this section creating sim-
ple text with simple rules was possible, and to create more complex
text a complex syntax was needed, in the Wide Ruled 2 model a
complex syntax is mandatory in all the text structuring, since the
whole model uses structures that require programming skills and a
sequential logic to organize the final text.

In figure 9 a Plot Fragment from Wide Ruled 2 is being shown
and it is important to notice that the columns of attributes demand
an understanding of programming logic to define the preconditions
and story actions properly.

Thus, the Wide Ruled 2 model is more complex than kNarrator
because requires programming skills from the author. It is impor-
tant to notice that this model also shares the same problems from
all the previous models, since do not control text structuring, giving
this exhaustive task to the author.

The presented facts and comparisons in this Section show that
kNarrator is superior to all presented models when concerning to
freeing the author from the exhaustive task of text structuring, also
giving control for textual variations through word inflections and
semantic word sets. Thus with the natural language processing of
our model we also surpass the other models in relation to re-use of
text fragments for creating more reliable sentences.

5 FINAL REMARKS

In this paper we presented kNarrator, our authoring model that dif-
fers from all approaches presented (see Section 2), since all the
previous authoring models demand that the author creates all the

text fragments and at some level use or learn a specific syntax. In
the previous models the author also was required to use some logic
to be able to generate consistent results. Thus since our model does
not demand the author to learn a specific syntax, accepting varia-
tions of the simple syntax for our pseudo-text input, the author can
reach more results with less input and with no concern about the
text structuring.

Also as our model generates each sentence using idiomatic rules,
the capability of text variation occurs at word level, which differs
from all the previous models that have variations at sentence level.
Thus our model can be considered efficient and less identifiable in
terms of pattern repetition when evaluated by the point of view of
the reader (The person that will read the final text).

It is important to notice that the kNarrator model was thought to
be used along with real time applications, such as games or other
interactive systems, in order to enable procedural storytelling in real
time.

Another interesting conclusion from the current study was
that the kNarrator model could be used together with models as
Twine [6] to improve the author experience, approaching a natu-
ral language processing capability to a text structuring for branched
stories.

5.1 Future Work
As future work the Expander module will be improved together
with all the concept of the semantic dictionary integrated, allowing
more elaborate descriptions for the words.

We also intend to create a narrative manager algorithm for the
Expander module that will manage the text creation allowing nar-
rative creation in a level of characters, scenarios and events.

In Organizer module some difficulties to divide the phrases have
been found due to our approach of ignoring punctuation. Then we
expect to define with more specialized rules the pseudo-text classi-
fication creating a more fluid and variable final text.

Also, our current structure of idiomatic rules is set to the Por-
tuguese language, but we purpose the creation of a symbolic rule
system to enable the easy creation of independent idiomatic rules
that would enable multi language capabilities. With the symbolic
rule system the kNarrator model could load a rule set for a specific
context, which could create more flexibility for the creation process
also.

Thus, as commented before, a narrative creation via Expander
module could be interesting, but with the symbolic rule system, the
narrative creation could be implemented and detailed by the author
itself if needed. This feature would enable a infinity of possibilities
for the textual creation with NLP.

REFERENCES

[1] E. Brill. A simple rule-based part of speech tagger. In Proceedings
of the workshop on Speech and Natural Language, pages 112–116.
Association for Computational Linguistics, 1992.

[2] K. Compton, B. Filstrup, M. Mateas, et al. Tracery: Approachable
story grammar authoring for casual users. In Seventh Intelligent Nar-
rative Technologies Workshop, 2014.

[3] J. Friedhoff. Untangling twine: A platform study. Proceedings of
DiGRA 2013: DeFragging Game Studies, 2013.

[4] P. Gamallo. Dependency parsing with compression rules. IWPT 2015,
page 107, 2015.

[5] A. K. Ingason, S. Helgadóttir, H. Loftsson, and E. Rögnvaldsson. A
mixed method lemmatization algorithm using a hierarchy of linguistic
identities (holi). In Advances in Natural Language Processing, pages
205–216. Springer, 2008.

[6] C. Klimas. Twine / An open-source tool for telling interactive, nonlin-
ear stories. http://twinery.org/, 2009. [Online; accessed 22-November-
2016].

[7] B. Li, S. Lee-Urban, G. Johnston, and M. Riedl. Story generation with
crowdsourced plot graphs. In AAAI, 2013.

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 544



Figure 9: Screenshot from the Wide Ruled 2 model

[8] Microsoft. .NET Framework. https://www.microsoft.com/net, 2002.
[Online; accessed 13-December-2016].

[9] N. Montfort. Natural language generation and narrative variation in
interactive fiction. In Proceedings of the AAAI Workshop on Compu-
tational Aesthetics, 2006.

[10] M. Owens and G. Allen. SQLite. Springer, 2010.
[11] J. Plisson, N. Lavrac, D. Mladenic, et al. A rule based approach to

word lemmatization. In Proceedings C of the 7th International Multi-
Conference Information Society IS 2004, volume 1, pages 83–86. Cite-
seer, 2004.

[12] M. F. Porter. An algorithm for suffix stripping. Program, 14(3):130–
137, 1980.

[13] D. V. Pynadath and M. P. Wellman. Generalized queries on probabilis-
tic context-free grammars. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 20(1):65–77, 1998.

[14] J. O. Ryan, A. M. Fisher, T. Owen-Milner, M. Mateas, and
N. Wardrip-Fruin. Toward natural language generation by humans.
In Proceedings of the INT, 2015.

[15] J. Skorupski and M. Mateas. Interactive story generation for writers:
Lessons learned from the wide ruled authoring tool. Digital Arts and
Culture 2009, 2009.

[16] Unity. Unity 3D - Game engine. https://unity3d.com/, 2005. [Online;
accessed 13-December-2016].

[17] A. Voutilainen. Part-of-speech tagging. The Oxford handbook of com-
putational linguistics, pages 219–232, 2003.

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 545


	175503



