
A Methodology for Creating Generic Game Playing Agents
for Board Games

Mateus Andrade Rezende∗ Luiz Chaimowicz†

Universidade Federal de Minas Gerais (UFMG), Department of Computer Science, Brazil

ABSTRACT

General Game Playing (GGP) consists in developing agents capa-
ble of playing different games. Normally these agents go through
an initial learning process to gain some knowledge about the game
and be able to play it well. In board games, this normally requires
learning how to evaluate a great variety of states in a game tree.
This work introduces a methodology called UCT-CCNN to gener-
ate value functions for evaluating states in generic board games.
The UCT-CCNN method executes a large number of matches be-
tween Monte Carlo Tree Search (MCTS) agents using a tree policy
known as Upper Confidence Bounds for Tree (UCT) in an off-line
process that generates a database of state-utility examples. From
those examples, a value function for the game states is learned
through the use of constructive neural networks known as Cascade
Correlation Neural Networks (CCNN). The UCT-CCNN method
was tested with two classical board games: Othello and Nine Men’s
Morris, and the obtained agents were capable of winning matches
against agents specifically developed for these games. Moreover,
the UCT-CCNN method can control the strength of the obtained
agent, ensuring a flexible method capable of generating intelligent
agents with different levels of difficulty. Another set of experiments
shows that the UCT-CCNN method can also be easily integrated
into any algorithm such as the MCTS itself, leading to higher win-
ning rates when compared to the standard UCT with the same num-
ber of simulations.

Keywords: General Game Playing, Board Games, Monte Carlo
Tree Search, Cascade Correlation Neural Networks.

1 INTRODUCTION

Normally, intelligent agents are developed for playing a specific
game, exploring the unique characteristics and specific domain
knowledge of each game. One problem with this approach is the
need to develop a different agent for each game. Thus, a novel area
of research named General Game Playing has emerged with the
objective of creating agents capable of efficiently playing differ-
ent games, maybe with an initial learning process [23]. The name
GGP comes from the AAAI GGP competition, in which submitted
agents are tested in many games described in the Game Descrip-
tion Language (GDL) [18]. The recent winners of the AAAI GGP
competition are mostly based on Monte Carlo Tree Search [3], a
technique that explores the game to infer state utilities using sim-
ulations. In the GGP competition, agents have a short time to run
simulations in order to estimate better utilities for actions because
those simulations run during the official matches of the competi-
tion. A greater challenge would be, given the rules of any game, to
generate in a completely unsupervised way an intelligent agent that
is competitive compared to specific agents for the game.

∗e-mail: mandraderezende@ufmg.br
†e-mail: chaimo@dcc.ufmg.br

In this paper, we present a methodology called UCT-CCNN for
creating generic game playing agents for board games. Thus our
test scenarios are composed by two players, zero-sum, perfect infor-
mation, deterministic, discrete and sequential games. These games
are excellent domains for Artificial Intelligence (AI) experiments
because they have a controllable environment defined by simple
rules, but that typically have complex strategies and a large state
space.

The UCT-CCNN receives as input the rules of any game, accord-
ing to the constraints previously described, and generates as out-
put a value function for the game states. Basically, a large number
of matches are played between Monte Carlo Tree Search (MCTS)
agents using a tree policy known as Upper Confidence Bounds for
Tree (UCT) in an off-line process that generates a database of state-
utility examples. An important parameter of the MCTS algorithm,
known as exploration constant, is optimized for a specific game us-
ing the Cross Entropy Method (CEM). The generated examples’
database goes through a filtering process to eliminate utilities that
probably do not have the necessary accuracy to ensure good deci-
sions. From those examples a value function for the game states
is learned with the use of constructive neural networks known as
Cascade Correlation Neural Networks, capable of iteratively build-
ing an architecture that adapts itself to the submitted problem, thus
allowing the GGP characteristic of this work. A trained neural net-
work represents the obtained value function.

UCT-CCNN is a GGP learning method since it does not use
domain-specific knowledge. Unlike agents participating in the
AAAI GGP competition, the UCT-CCNN requires an earlier stage
of off-line processing before the agent is capable of effectively play-
ing a new game. In this way, the generated agent will present
“strong” decisions from the beginning of the matches, but will not
be capable of learning during them or playing without the execution
of the previous learning phase. The UCT-CCNN method was tested
with two board games, Othello and Nine Men’s Morris, and the ob-
tained value functions were integrated into the Minimax search with
Alpha-Beta Pruning algorithm. The resulting agents were capable
of winning against specific-domain agents.

This paper is organized as follows: Section 2 discusses some re-
lated works and present some background on the techniques used in
this work. Section 3 describes our methodology, detailing the steps
taken by UCT-CCNN to implement the agents. The experiments
are presented in Section 4 while Section 5 brings the conclusions
and directions for future work.

2 BACKGROUND AND RELATED WORK

Our methodology relies on the Monte Carlo Tree Search (MCTS)
method in conjunction with a specific type of neural network called
Cascade Correlation Neural Network (CCNN). Moreover, the Cross
Entropy Method is used to determine some parameters of the
MCTS. This section presents a brief overview of these methods and
also discusses some related work.

2.1 Monte Carlo Tree Search
Monte Carlo Tree Search (MCTS) is a method for finding optimal
decisions in a given domain by taking random samples in the de-

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 528

cision space and building a search tree according to the results [3].
Given a game state, the MCTS returns an action to be executed in
that state. MCTS maintains a game state tree that is built incremen-
tally and asymmetrically.

At the beginning of its execution, the MCTS algorithm receives
a game state and creates a game tree containing only the root node
representing the received state. After the process initialization, the
MCTS starts an iterative process divided into four stages called:
Selection, Expansion, Simulation and Backpropagation.

In the first stage, called Selection, the tree nodes are selected by
the tree policy. The tree policy tries to balance between exploration
(selecting nodes with few samples) and exploitation (selecting more
promising nodes with higher average utility). From the tree root
node, nodes are selected by the tree policy until a node with at least
one child not expanded is reached and then the second stage begins
from that node.

In the second stage, one child is chosen uniformly at random
among the children that have not been expanded. The selected child
node is expanded, which means that it is added to the tree.

The third stage is called Simulation and starts from the expanded
node in the previous stage. The moves, or actions, are selected
during the simulation by a default policy, which in its simplest form
selects actions uniformly at random. In the end of a simulation,
when a terminal node is reached (end of the match), the real utility
for the end game state is returned according to the game rules.

The fourth and last stage is called Backpropagation and begins
upon reaching a terminal node at the end of the simulation phase. In
this last phase, the game tree is updated based on the final utility of
the simulation. The number of visits is incremented and the average
utility is updated for each node in the path taken by the simulation
starting in the expanded child back to the root node.

The four stages of the MCTS algorithm are shown in Figure 1.
In the figure, on the Selection stage the highlighted nodes were se-
lected by the tree policy known as Upper Confidence Bounds for
Tree (UCT), on the Expansion stage the highlighted node is ex-
panded, on the Simulation stage the smaller nodes represent se-
lected nodes by the default policy and on the Backpropagation stage
the highlighted nodes have their statistical values updated.

Expansion

Expanded Node

Simulation BackpropagationSelection

.

.

.

Figure 1: Stages of the MCTS algorithm.

If a simulation ends up with a low utility value, it does not mean
that the expanded state is poor. Statistically speaking, there is a con-
fidence interval for a state’s expected utility, given how many times
that state has been selected during the selection phase. Optimistic
policies exploit the upper limit of this confidence interval in order
to find the best action to take. The Upper Confidence Bounds 1
(UCB1) algorithm ensures a policy within a constant factor of the
optimal bound on the growth of the regret value [1], which is the
utility loss for not taking the best action. In addition, UCB1 is sim-
ple and efficient. In the Upper Confidence Bounds for Tree (UCT)
algorithm, the UCB1 was incorporated into the tree policy, where a

child node (j) is selected in the Selection phase in order to maxi-
mize the UCT value:

UCT = X j +2 Cp

√
2lnn

n j
,

where X j is the observed average utility for the node j, n is the
number of times that the parent node j was visited, n j is the num-
ber of times that the child node j was visited and Cp > 0 is a con-
stant. It is considered that for n j = 0, the UCT value for the state
j is infinite so that states never explored before have priority to be
expanded. States with the same UCT value should be randomly se-
lected. The constant Cp is called exploration constant and can be
adjusted to increase or decrease the priority in exploration rather
than prioritize states with the highest observed average utility. The
optimal value for the exploration constant depends on the problem
being addressed and the improvements implemented in the MCTS
policies. Each node stores a number N(s) of visits and a total accu-
mulated utility Q(s) of the simulations passing through the state s,
so Q(s)/N(s) is an approximation to the average utility of state s.

In this text MCTS-UCT is an abbreviation for the MCTS algo-
rithm that uses UCT as a tree policy and whenever the abbreviation
MCTS is mentioned without specifying the policy, it is not rele-
vant to the context. It is known that if enough execution time and
memory is given to the MCTS-UCT algorithm, the game tree con-
verges to the minimax one [16, 17]. Among the main features of the
MCTS are that it is independent of domain-specific knowledge and
the tree growth is asymmetrical, favoring more promising regions
of the state space. It is worth mentioning that other policies may be
used instead of the UCT tree policy.

When using the MCTS, many iterations of the algorithm must
be executed to obtain good results. Unfortunately, the decision of
which action to take in games cannot take too long. In GGP, as
in the AAAI GGP competition [13], an agent must be capable of
playing any game with a restricted time of preparation for the match
and for taking an action (startclock and playclock, respectively). If
the server does not receive a response until the timeout, a random
action is selected for the agent. Due to this restricted time, the
most successful agents use learning mechanisms during the official
matches of the tournaments, and the learned information is used to
guide the MCTS search, which is parallelized in order to be able to
execute as many simulations as possible in the short time available.

The approach of this work is somewhat different from the con-
text of agents involved in the GGP competition. The objective is
to generate an agent that has strong decisions early in the match,
which is specially important when playing against a strong oppo-
nent. The agent can still be considered a GGP agent because it does
not use domain-specific knowledge to learn, just the rules of the
game. The main difference is in a prior offline learning process be-
fore the agent is able to play effectively. With this approach, the
agent is strong from the beginning of the match, and its “strength”
can be controlled by the learning process, if there is interest in gen-
erating agents with varying levels of strength (difficulty modes as
there are in many games). The greater the number of MCTS simu-
lations the greater the accuracy of the estimated utilities, which will
lead the agent to make stronger decisions, increasing its difficulty
level. The downside would be that the agent does not learn during
official matches.

MCTS is a good strategy when there are no predefined strate-
gies nor examples of actual matches, due to its ability to estimate
utility values for game states without domain-specific knowledge.
But, unfortunately, it is impractical to generate and store a complete
game tree through MCTS. A possible solution is to use an Artifi-
cial Neural Network (ANN) to generalize a value function to other
states based on the expected utility values processed by MCTS. In
this paper, we use a specific type of ANN called Cascade Correla-
tion Neural Network, which is described in the next section.

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 529

2.2 Cascade Correlation Neural Network

Creating a neural network whose architecture is capable of gener-
alizing different problems is a challenging task. In order to achieve
a satisfactory convergence of the neural network and thus correctly
generalizing entries never seen before with minimal error, a specific
knowledge of the problem is needed in order to make the necessary
adjustments in the neural network parameters. Among these pa-
rameters, the most critical are related to the network architecture
(for example, how the hidden neurons are organized and how they
connect between the input and output layers) and to the parame-
ters of the learning algorithm, such as the learning rate parameter
of the Backpropagation algorithm. In the Backpropagation algo-
rithm, an error is calculated comparing the input example and its ex-
pected output value, and this error is propagated back adjusting the
weights of the connections according to its corresponding gradient.
This process can lead to convergence at a local minimum, which is
avoided by random initialization of the weights. In addition, mul-
tiple networks are trained and the one with the best convergence
is chosen. The step-size parameter, known as learning rate, deter-
mines the size of the adjustment made in the weights and therefore
influences in the network convergence. Bad parameter values can
lead to overfitting, which means a low error for the training set, but
a high error for the test set that represents a set of examples never
seen before by the network. There is no obvious way to adjust these
parameters and there are no guarantees involved.

The problems described above can be minimized by using con-
structive neural networks such as Cascade Correlation Neural Net-
works (CCNN). The CCNN has a special architecture that grows
to adapt to the problem, and also has a different learning process
that reduces computational costs and solve many problems of the
backpropagation algorithm [8] [2]. The CCNN stars with a mini-
mal architecture with only the input and output layers. Neurons are
added to the network one at a time and each one in a new hidden
layer connected to all previous layers. Figure 2 shows a CCNN with
two hidden neurons added.

x
1

x
2

x
3

1

First hidden neuron added

Second hidden neuron added

y
1

y
2

Figure 2: Basic CCNN architecture.

The CCNN training consists in an iterative process in which a
neuron is trained and added to the network at each iteration. Before
being added to the network, a neuron is trained and, after being
added, has its weights of the input connections frozen. To train a
new neuron, the input weights are calculated through gradient as-
cent to maximize the covariance C between the output of the can-
didate neuron and the output of the network built so far. All the
input weights of the output layer, including the output weights of
the candidate neuron to be added, are trained after the candidate is

added to the network. The covariance C is defined according to the
following formula:

C = ∑
o∈O

∣∣∣∣∣∑s∈S
(ys− y)(eo,s− eo)

∣∣∣∣∣ ,
where O is the set of the network output neurons, S is the set of the
training examples, ys is the candidate output for the example s, eo,s
is the output error of the output neuron o for the example s, y and
eo are the mean values ys and eo,s over the examples set S.

Another approach to train the candidate neurons was imple-
mented by Fahlman, the creator of CCNN architecture, known as
Cascade 2 [19]. In that approach, the candidate neuron is trained to
minimize through gradient descent the difference C2 between the
output error of the output neurons and the input of the output neu-
rons received from the candidate being trained. The difference C2
is represented by the following formula:

C2 = ∑
o∈O

∑
s∈S

(eo,s− ys ·wy,o)
2,

where eo,s is the output error of the output neuron o for the ex-
ample s, ys is the candidate neuron output for the example s and
wy,o is the weight of the candidate neuron y to the output neuron
o. Both the candidate neuron input weights and the candidate neu-
ron output weights are updated to minimize the difference C2. The
weighted candidate neuron activation will have a value close to the
network error by minimizing the difference C2, so the candidate
output weights must have their signal inverted to contribute to the
minimization of the network error. The Cascade-Correlation ap-
proach that uses the C maximization is best for classification prob-
lems, while the Cascade 2 approach that uses the C2 minimization
is best for regression problems [19].

Several candidate neurons can be trained independently with dif-
ferent activation functions and different random initialization of
weights. The neuron with greater covariance C or smaller differ-
ence C2 is selected, discarding the others. When adding a neuron
in the network the weights of its input connections are frozen, and
in the case of covariance maximization C, all the weights of all
the neurons connected to the output layer are trained again. The
adjustment of weights in any step is done through some learning
algorithm like Backprop, Quickprop [7] or Rprop [20]. The name
CCNN refers to the correlation because, in the original work, in
a first attempt the correlation was used for training the candidate
neurons, but later it was decided that covariance would be the best
option since it worked better in many situations [8].

For this work the learning algorithm chosen to train the weights
of the CCNN was the iRprop [14], which is an improved variant of
the original algorithm Rprop. In Rprop the update of each weight is
based on the signal of the partial derivative of the error in relation
to the weight, making the parameter step-size independent of the
partial derivative absolute value. Roughly, being the weight wi j
of the connection between the neuron j and the neuron i and E a
differentiable error mean with respect to the weights, if the partial
derivative ∂E/∂wi j has the same signal for the consecutive steps
of the weight updating, the step-size is incremented, if the signal
changes the step-size is decremented. Each weight has its own step-
size.

The step-size adjustment constant, the initial values of the step-
sizes, and the maximum and minimum limits for the step-sizes are
parameters of the algorithm. This learning technique dispenses
the learning rate parameter because the step-size value is dynami-
cally adjusted, making the Rprop ideal to constructive architectures
such as CCNN. In the iRprop variant, previous adjustments of the
weights are reverted in case of signal change of the partial deriva-
tive only if the overall network error has increased. In addition,

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 530

when the partial derivative changes the signal, the value of the sig-
nal is ignored in the next iteration and the weight update will occur
without first changing its related step-size.

2.3 Cross-Entropy Method
The Cross-Entropy Method (CEM) was originally developed as a
simulation method to estimate probabilities of rare events and later
also came to be used as a stochastic optimization method [21]. In
this work, the CEM is used to optimize the exploration constant of
the UCT tree policy, and thus ensure better estimates for the states’
utility in the MCTS [5].

The CEM involves an iterative procedure divided into two steps.
In the first step, a random sampling of parameter value examples
is performed through some parameterized probability distribution.
In the second step, the parameters of the distribution used for the
examples generation are updated based on the produced data, in or-
der to generate better examples in the next iteration. An important
characteristic of the CEM is its asymptotic convergence, where un-
der mild conditions of regularity the process ends with probability 1
in a finite number of iterations [6].

As will be discussed in Section 3, we use the Cross Entropy
Method to determine the best exploration constant (Cp) to be used
by the MCTS in each of the games. The CEM has been success-
fully used to estimate MCTS parameters faster than other methods
and with guaranteed convergence [5].

2.4 Related Work
In the GGP competition, the recent winners are all based on MCTS-
UCT [3], as is the case of the CadiaPlayer, who won the competition
in the years 2007, 2008 and 2012 [9]. One of the restrictions in the
use of MCTS for GGP is the simulation time that is limited to the
maximum response time allowed to the agent during the matches.
Another problem is that uninteresting portions of the search tree
are explored for most of the simulation time, especially in the first
simulations, which leads to a need for longer simulation time or
techniques to redirect the MCTS search.

There are techniques that redirect the MCTS selection and sim-
ulations based on accumulated data from the simulations, which
are often simple features of the board game and actions. Among
such techniques are the First-Play Urgency [12], All Moves As
First (AMAF) techniques such as Rapid Action Value Estimation
(RAVE) [11], selection improvements such as Progressive Bias [4],
and Pruning techniques. These and other techniques are listed in
[3], and most of them were used in winning agents from the GGP
competition. Many of these techniques do not guarantee better win
rates for any games, even though they improve agent performance
on many of them [9]. Worth mentioning that some of these tech-
niques require specific-domain knowledge, which is not interesting
for GGP.

The MCTS algorithm, besides being the main algorithm used in
GGP agents, has also proved to be a decisive tool in the creation
of AlphaGo, an intelligent agent for the GO game capable of beat-
ing professional players, thus solving one of the biggest challenges
of the AI [22]. AlphaGo uses general purpose techniques such as
Deep Learning Neural Networks and MCTS, and is the first algo-
rithm capable of beating experienced Go players in the standard
board size (19x19). This shows the power of the MCTS algorithm
if the search can be directed with the use of auxiliary techniques,
such as the Neural Networks applied to the MCTS in AlphaGo. De-
spite the use of general purpose techniques, AlphaGo uses domain-
specific knowledge in order to obtain a stronger agent: the neural
networks are trained from examples of real matches between pro-
fessional players and some features of the game Go are manually
set to ensure their evaluation and improve learning on the network.

This work took inspiration from the CadiaPlayer [9] and its strat-
egy for the generalization of the MCTS algorithm for GGP and non-

domain-specific improvements and also from the AlphaGo [22] and
its strategy of integrating MCTS with neural networks. The pro-
posed technique improves some of the approaches found in litera-
ture. Specially, Regarding AlphaGo, the proposed technique does
not depend on examples of professional moves and it is not nec-
essary to define the neural network architecture for each different
game. Regarding the MCTS improvements of the GGP agents, the
proposed technique uses a full set of game state features and the
generated agents are capable of performing strong actions early in
the match.

3 METHODOLOGY

Our methodology is divided in two main steps. Firstly, we run a
series of MCTS-UCT simulations in order to infer the utilities of a
large number of game states. The exploration constant used by the
simulations is determined by running the Cross Entropy method,
so that it can be adapted to different games. To generalize the re-
sults obtained by the MCTS-UCT to other states, we use a Cascade
Correlation Neural Network, trained with the iRprop algorithm. As
discussed in the previous section, the architecture and parameters
of this network do not need to be defined beforehand, which is im-
portant for the different game scenarios faced by our methodology.
The details of each of these steps are presented in the next sections.

3.1 Off-line examples generation via MCTS-UCT

The first phase of the UCT-CCNN method is the generation of
state-utility examples extracted from matches between MCTS-UCT
agents, called MCTSPlayers. In this phase, it is crucial that the sim-
ulation time of the MCTSPlayers to be as long as possible, which
will require more system resources, in order to generate state-utility
examples with better accuracy.

In order to build the game tree, game description interfaces must
be implemented, which indicate the game initial state, the actions
that are possible from a given state, the resulting state from taking
a valid action and if a state is a terminal one. The UCT exploration
constant to be used in the matches is obtained by the CEM opti-
mization method, in which the examples generated in each iteration
represent a possible value for the constant, following a uniform dis-
tribution that generates values in the range [0.2,2.0]. This range of
possible values is suggested by [5]. By default, the initial distri-
bution mean is the average of the lower and upper bound and the
standard deviation is the half of the distance between the lower and
upper bound.

First, i matches are executed from the initial default state be-
tween two MCTSPlayer agents. The greater the maximum simu-
lation time t defined by the user, the better will be the utility esti-
mation for the states. It all depends on the available time, compu-
tational power in terms of the amount of threads and memory and
agent’s target strength. Usually, a MCTS-UCT agent only returns
an action from a given state that leads to the child state with the
highest average utility. In the examples generation phase, before
an agent returns the best action, the first child states of the current
game state are persisted as examples in a database specific to the
current match and player.

All the first children of the current state are persisted in order to
generate examples of both good and bad states for better general-
ization of the neural network to be trained. Each persisted example
contains the state in binary form, the number of visits to the state
during simulations and the average utility computed for the state,
represented by the formula Q(child)

V (child) . Figure 3 represents a match
between two MCTS-UCT agents with states that are persisted as
examples. Before an agent makes a move on his turn, the first chil-
dren of the node relative to the current game state, which is the root
node of the MCTS tree, are persisted in a database specific to the
match and the player. This is because, afterward, the filtering is

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 531

performed on the persisted examples and it is necessary to identify
the examples of a match relative to the player who won the match.

Initial game state

Terminal game state

Player 1 persisted states

Player 2 persisted states

Figure 3: States that are persisted as examples in a match.

As more matches are executed, the number of generated exam-
ples increases, which will favor the neural network training. Mul-
tiple matches are performed because of the stochastic nature of the
MCTS agents, ensuring a greater coverage of generated examples
since, within each match, the MCTS agents explore different re-
gions of the search space. However, since there are two “strong”
agents playing against each other, a portion of the search space
more consistent with actions chosen by “strong” players will be
explored. In order to generate examples with not very common
states, specially in situations where the opponent is not experi-
enced, matches that begin from randomly generated valid interme-
diate states are also executed.

To generate the randomized intermediary states, matches are ex-
ecuted between random agents that choose actions uniformly at
random. The visited states during the matches are persisted in a
database. Initially (e/J)+ 1 matches are executed, where e is the
number of random states to be generated and J is the average num-
ber of moves in a match for the related game, calculated from the
matches executed previously from the default initial game state.

Of all the generated random states, those closest to the initial
default state are first selected through the matches, one per match,
until e unique random states are selected. If after that random states
are still missing, new matches with random agents are executed un-
til e unique random states are generated. Matches that starts in ran-
dom states near the default root state will generate more examples
and that is why these random states are preferred.

For each generated random state, r matches are executed be-
tween MCTSPlayer agents with the random state as initial one.
From these matches, examples of state-utility are also generated
and persisted in the database using the same logic.

3.2 Filtering and CCNN training
This section presents the preparation process of the test and train
data for the CCNN. Each example generated in the previous phase
contains the game state in its binary form, an average utility calcu-
lated by the MCTS-UCT and the number of visits from the simula-
tions in the MCTS-UCT, plus the player and the match result.

First, the example database is filtered to deliver the best exam-
ples to the neural network, in an attempt to work around the high
variance of the MCTS-UCT utility estimation. Of all the generated
examples in a match, only those of the player who won the match

are considered because probably the estimated utilities of those ex-
amples have led to choices closer to the optimal policy.

Among the different executed matches, repeated states may have
been generated as examples. To favor a better training of the neural
network the utility that will lead to a policy closer to the optimal
policy must be selected. The utility calculated by a greater number
of simulations presents a lower statistical variability, approaching
the real utility of the state (the one that leads to the optimal policy).
Therefore, in the case of repeated states, the one with the highest
number of visits in selected. Another possibility would be to com-
pute a new utility value as the mean of the utilities obtained for the
repeated states.

After the examples filtering, the selected examples are separated
into two data sets, according to the parameter t relative to the per-
centage of the total examples to be used in the test set. The default
value for that parameter is 10%. The test examples are chosen uni-
formly at random from all examples. The remaining 90% of the ex-
amples are separated into a training set. The network is not trained
with the examples from the test set.

Even though it is a constructive algorithm, it is necessary to spec-
ify the input and output configuration of the neural network since in
the CCNN only hidden neurons are added. Therefore, it has been
defined that the number of neurons in the input layer is equal the
number of bits in the binary representation of the game state. Each
input neuron receives zero or one according to the binary sequence
of the state to be evaluated. The output layer consists of a single
neuron whose output represents the expected utility for the state
received as input.

The utility value calculated by the MCTS-UCT algorithm is in
the range [−1,1], because when the utility value calculated for the
examples generation is equal to Q(child)

V (child) , where Q(child) is the num-
ber of wins minus the number of losses of the player who made the
move in the parent state and V (child) is the number of visits to the
child state. If in all n visits to the child state the player who made
the move won in the simulation result, the calculated utility would
be (n−0)/n = 1, and if in all n visits the player losses in all simu-
lations the utility would be (0−n)/n =−1.

For that reason, the hyperbolic tangent function tanh(x) =
1

1+exp−x was chosen as the activation function for the output neuron
because it returns a value in range [−1,1]. One of the weaknesses
of that approach is that the neural network only learns to evaluate a
state individually, without a transition represented by a state plus an
action. In order to evaluate a child state, it is necessary to calculate
the transition from the parent state with the executed action to ob-
tain the child state. Because of this, the neural network is best used
in situations that the transition to a child state would be calculated
anyway. For situations in which one action must be selected in a
given state, it is necessary to calculate the transition to all the child
states, in order to evaluate them with the trained neural network.

During the CCNN training, at each neuron addition, the mean
square error in the training set and in the test set are calculated and
then a copy of the network constructed so far is saved along with
the test and train error obtained. The network training continues
until the maximum number of neurons is reached.

When the CCNN training is finalized, the iteration of the neural
network with the lowest error is chosen since it is the network that
best generalized to the states never seen before. The file of the best
network is then returned by the algorithm. This file can be used as
a value function in conjunction with other algorithms, as a way of
guiding the search in the MCTS algorithm or as an evaluation func-
tion in the Minimax algorithm, as will be shown in the following
sections.

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 532

4 RESULTS

We evaluate the method UCT-CCNN by applying it to two games:
Nine Men’s Morris and Othello. In the generation of examples via
MCTS-UCT, two different groups of examples are generated for
each game: one with 200 seconds and other with 600 seconds of
simulation time. A CCNN network is trained for each group of
examples, resulting in two neural networks for each game. In order
to evaluate the strength of the value function associated to each of
the obtained neural networks, these networks are used as evaluation
functions in two scenarios for each game: (i) as Minimax agents for
playing the game and (ii) as the tree policy for MCTS agents.

Nine Men’s Morris, also called Mill, is a two-player board game
with 24 intersections, where the pieces are placed. Each player
has 9 pieces and chooses a piece color. Both players start at the
first phase, where the pieces must be placed on the board, one per
turn, in any free position. When a player puts all his nine pieces,
he moves on to the second phase. In the second phase, a player
can move his pieces to adjacent free positions, one per turn. A
player enters the third phase when only three of his pieces remain
on the board. In the third phase, a player can move his pieces to
any free position of the board. When a player’s move, in any phase,
results in three of his pieces consecutively aligned horizontally or
vertically, the player forms a mill and can choose an opponent’s
piece to be removed from the board. When removing an opponent’s
piece, the player must give preference to a piece that is not in a mill.
A player loses when only two of his pieces remain on the board and
the game ends in a draw when a board configuration is repeated.
Figure 4 shows a white player action that leads to a mill formation
and therefore to a capture of one opponent’s piece.

Figure 4: A white player move in the Nine Men’s Morris game.

Othello, also called Reversi, is a two-player board game with
64 pieces that are black on one side and white on the other. The
player that begins a match must place the pieces on the board with
the black side up. The game begins with four pieces in the center
with the same color on the same diagonal. Each player must place a
piece in a position next to an opponent’s piece that results in at least
one piece captured, i.e at least one of the opponent’s pieces will be
trapped between two of the player’s pieces in any direction (verti-
cally, horizontally or diagonally). The captured pieces are turned to
change their color. The game ends when neither player is able to
make a valid move and the player with the most pieces on the board
wins. Figure 5 shows a white player action that leads to a capture
of two opponent’s pieces.

The experiments were executed in a machine with Intel(R)
Xeon(R) CPU E5-2650 v3 @ 2.30GHz with 40 cores / 80 threads
and 250 GB of RAM. Only 64 threads were utilized. The execution
time of the experiments would be almost the same in different ma-
chines, but the faster the machine the greater the number of MCTS
simulations performed.

We firstly ran the Cross Entropy Method (CEM) to determine
the exploration constant for each game. The Othello’s UCT explo-
ration constant converged to the value 0.780941 and the Nine Men’s

Figure 5: A white player move in the Othello game.

Morris’s constant converged to the value 0.587104, reinforcing that
different games lead to different optimal exploration constant val-
ues. These exploration constant values were used in all following
phases of the UCT-CCNN process.

Consider a two-player board game match with an average of J
total player moves and the following parameters for the CEM: max
number of iterations (i), population size (n), matches executed per
example (r), simulation time in seconds for the MCTS (t) and num-
ber of threads (h). Therefore, the cross-entropy optimization pro-
cess will take approximately

(
i · n·r·J·t

h
)

seconds to run, assuming
that the number of threads does not exceed the number of matches
to be executed during each iteration. The execution of parallel
matches is only possible within the same iteration since the result of
all of them is necessary to calculate the new distribution parameters
for the next iteration. For the Othello game, which has an average
of 60 moves per match, the execution time of the CEM phase was
of approximately 4.4 days with 64 threads for parallel execution of
matches. For the Nine Men’s Morris game, which has an average of
50 moves per match, the CEM phase took approximately 3.7 days.
As can be seen, the CEM phase is very costly in terms of process-
ing time, and because of this we use small values for the parameters
such as population and simulation time for the MCTS algorithm. It
was decided to give more emphasis in terms of processing time to
the examples generation phase.

For the examples generation phase the parameters were defined
as follows: 30 matches executed from the default initial state; 300
random states to be generated; 5 matches executed from each gen-
erated random state; 64 threads for parallel execution of matches.
Table 1 shows the number of examples generated for each config-
uration, according to the example filtering rules described in Sec-
tion 3.2, recalling that in all configurations the number of test exam-
ples was defined as 10% of the filtered examples, and the remaining
90% for the training set, separated uniformly at random.

Game Simulation Time Training Examples Test Examples Exec. Time (days)
Othello 200 s 149.876 16.653 3.32
Othello 600 s 144.219 16.024 9.96

Mill 200 s 167.360 18.596 2.77
Mill 600 s 258.260 28.696 8.30

Table 1: Number of examples generated by each configuration.

The number of generated examples is variable because the num-
ber of moves in a match and the actions selected by the MCTS
agents are also variable since the examples are extracted from those
matches in each player move. Another possibility would be to de-
fine the number of examples to be generated instead the number of
matches to be executed. For simplicity, the last option was chosen.
Also, for simplicity, it was determined that the CCNN are trained
until the number of neurons added is equal to the number of neu-
rons in the input layer since in the experiments the network began
to present overfitting with fewer neurons. During the training, a
copy of the network is saved at each neuron addition, and in the

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 533

end, the network with lowest MSE (Mean Square Error) is cho-
sen. Whenever the network error is mentioned, it is implied that the
error measure referenced is the MSE. The neural network trained
for the Othello game with examples generation limited to 200 sec-
onds of simulation is called Othello:200 and with examples gen-
eration limited to 600 seconds the network is called Othello:600.
The same applies to the Nine Men’s Morris game and its neural
networks Mill:200 and Mill:600.

As expected, the training error always decreased, but the addi-
tion of new neurons in the network, and hence more hidden layers,
caused an overfitting in the training set data, increasing the error in
the test set from a certain number of added neurons.

While in the game Othello the selected network error decrease
from the Othello:200 to the Othello:600, in the Nine Men’s Morris
the opposite happened. This difference may have been influenced
by the estimated utilities for the examples, the number of gener-
ated examples and the binary codification of each game. The Oth-
ello:200 and Mill:200 networks have very close test errors (MSE of
0.015167 for the Othello and 0.015397 for the Mill), as well as the
number of examples used in training (149876 for the Othello and
167360 for the Mill), but the number of added neurons is higher for
the Othello game (51 for the Othello and 34 for the Mill).

The Othello:600 and Mill:600 networks have a greater error dif-
ference (0.012592 for the Othello and 0.017419 for the Mill), al-
though the amount of examples in the training set is higher for the
game Mill (144219 for the Othello and 258260 for the Mill). The
numbers of added neurons remain close to those of the previous
networks (47 for the Othello and 37 for the Mill).

Figures 6 and 7 show the MSE evolution in the training set and
test set for each addition, for each training configuration, limited
until the addition of the hundredth neuron in the network.

0 20 40 60 80 100

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

Othello 200

Added Neurons

M
S

E

test error

train error

0 20 40 60 80 100

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

Othello 600

Added Neurons

M
S

E

test error

train error

Figure 6: Error evolution in the Othello neural networks.

0 20 40 60 80 100

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

Mill 200

Added Neurons

M
S

E

test error

train error

0 20 40 60 80 100

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

Mill 600

Added Neurons

M
S

E

test error

train error

Figure 7: Error evolution in the Nine Men’s Morris neural networks.

In the Othello game, no matter what the players’ actions, the
match will always have a maximum of 60 moves, when the en-
tire board is filled. In the Nine Men’s Morris game, the stronger
the players are, the more defensive actions are taken leading to a
greater number of moves until the game is finished, which may ex-
plain the greater number of examples generated from MCTSPlayer

agents with greater simulation time. With a larger number of train-
ing examples, the function that the neural network tries to approach
is better characterized, which for the Nine Men’s Morris game has
proved to be a more difficult function to learn. The Nine Men’s
Morris game has four different action types that include the move-
ment of pieces, as well as different game phases that change the
rules for the possible actions, which may explain the difficulty in
learning the value function. Despite this, it cannot be said that
learning Nine Men’s Morris is harder than learning Othello, given
the differences in the feature modeling and in the number of exam-
ples used in the network training.

4.1 Neural network as evaluation function in the Mini-
max algorithm

In order to evaluate the strength of the four generated value func-
tions, matches were executed between Minimax with Alpha-Beta
Pruning agents. One player, called NeuralMinimax, uses the value
function generated by the UCT-CCNN process as an evaluation
function, and the other player uses an evaluation function devel-
oped specifically for the game. In this work, the specific Minimax
agents, one for each game, were developed by students in a Arti-
ficial Intelligence course. The selected agents were the winners of
the competition, roughly the best agents among 12 other competi-
tors.

For each experiment configuration, 100 matches were executed
between the NeuralMinimax agent and one of the specific agents.
Both specific agents have the Minimax search limited up to three
levels. To evaluate different game states and test the generalization
capacity of the value function, the NeuralMinimax agents have the
search limited from 3 up to 7 for the Othello game and from 3 up to
6 for the Nine Men’s Morris game. It is expected that the higher the
height of the state in the tree, the better the neural network estimate
since in the MCTS-UCT algorithm states next to terminal ones are
most visited because each simulation is finalized in a shorter time.

In addition to the variation in the tree height, it was also consid-
ered whether the NeuralMinimax agent starts or not the match in the
experiment configuration. This is important because in some games
the starting player can have a certain advantage. This strategy will
be maintained for the game Nine Men’s Morris, even though it has
already proven that in perfect plays the game always ends in a draw
[10], since the evaluation of different states can lead to different
results.

Next, in the Tables 2 and 3 are listed the experiment configura-
tions for the game Othello, between the agents NeuralMinimax and
the specific one called Bothello, with the experiment configurations
indicating if the NeuralMinimax agent starts the match and its max
search height, as well as the results for the NeuralMinimax agent of
the number of wins, losses, draws and the 95% confidence interval
for the win rate.

Starts the matches Height Wins Draws Losses IC 95% win rate
(%)

No 3 100 0 0 (96.4 , 100)
No 4 0 0 100 (0 , 3.6)
No 5 0 0 100 (0 , 3.6)
No 6 0 0 100 (0 , 3.6)
No 7 0 0 100 (0 , 3.6)
Yes 3 0 0 100 (0 , 3.6)
Yes 4 0 0 100 (0 , 3.6)
Yes 5 0 0 100 (0 , 3.6)
Yes 6 100 0 0 (96.4 , 100)
Yes 7 0 0 100 (0 , 3.6)

Table 2: Matches result for NeuralMinimax Othello:200 agent against
Bothello.

The variation of the maximum search height for the NeuralMin-
imax Othello:200 agent did not result in improvements in the win
rate as was expected. The benefit of previewing a final state in the

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 534

Starts the matches Height Wins Draws Losses IC 95% win rate
(%)

No 3 0 0 100 (0 , 3.6)
No 4 0 0 100 (0 , 3.6)
No 5 57 0 43 (46.7 , 66.9)
No 6 100 0 0 (96.4 , 100)
No 7 100 0 0 (96.4 , 100)
Yes 3 0 0 100 (0 , 3.6)
Yes 4 0 0 100 (0 , 3.6)
Yes 5 0 0 100 (0 , 3.6)
Yes 6 100 0 0 (96.4 , 100)
Yes 7 30 0 70 (21.2 , 40)

Table 3: Matches result for NeuralMinimax Othello:600 agent against
Bothello.

game tree, during the final moments of a match, also made no dif-
ference in the win rate. The reason is that the Othello game tree has
an average height of 60 levels, and the advantage of evaluating up
to four levels was not enough for the NeuralMinimax agent since
the actions performed earlier in the game determined who would
win.

The variation in the max search height allowed different states
set to be evaluated by the evaluation function, leading to a better
understanding of its generalization capacity. Of the ten experi-
ment configurations, the agent NeuralMinimax Othello:200 won
all matches in only two configurations. It can be concluded that the
generated value function is not precise although the NeuralMini-
max Othello:200 has won against the opponent Bothello with the
same max search height. In the matches with the agent NeuralMin-
imax Othello:200 there was no draw and the behavior was abso-
lutely deterministic, with players winning or losing all matches in
all experiment configurations.

In the case of the NeuralMinimax Othello:600 agent, of the ten
game configurations, the agent won 100% in three configurations,
57% in one and 30% in another. With the increase in the simulation
time for the examples generation, the value function accuracy has
increased, leading to a better win rate. That increase in the accu-
racy has a certain tendency to happen in states with greater depth
in the tree. Nevertheless, the NeuralMinimax Othello:600 lost all
matches in the configuration with three levels since the generated
value function is not yet accurate, even with the improvement in
the win rate for the experiment configurations. The results show
that it is possible to improve the accuracy of the value function by
increasing the simulation time to generate examples for the neural
network.

Next, in the Tables 4 and 5 are listed the experiment configu-
rations for the game Nine Men’s Morris, between the agents Neu-
ralMinimax and the specific one called J.A.R.V.I.S, with the exper-
iment configurations indicating if the NeuralMinimax agent starts
the match and its max search height, as well as the results for the
NeuralMinimax agent of the number of wins, losses, draws and the
95% confidence interval for the win rate.

Starts the matches Height Wins Draws Losses IC 95% win rate
(%)

No 3 45 0 55 (35 , 55.3)
No 4 0 17 83 (0 , 3.6)
No 5 0 15 85 (0 , 3.6)
No 6 6 1 93 (2.2 , 12.6)
Yes 3 0 0 100 (0 , 3.6)
Yes 4 5 11 84 (1.6 , 11.3)
Yes 5 5 4 91 (1.6 , 11.3)
Yes 6 0 0 100 (0 , 3.6)

Table 4: Matches result for NeuralMinimax Mill:200 agent against
J.A.R.V.I.S.

It can also be observed that for the Nine Men’s Morris game
matches there is a tendency of better win rates with the increase in
the simulation time, although the win rate was much worse in com-
parison to the Othello game. The NeuralMinimax Mill:200 agent

Starts the matches Height Wins Draws Losses IC 95% win rate
(%)

No 3 100 0 0 (96.4 , 100)
No 4 0 4 96 (0 , 3.6)
No 5 65 35 0 (54.8 , 74.3)
No 6 0 3 97 (0 , 3.6)
Yes 3 0 0 100 (0 , 3.6)
Yes 4 0 4 96 (0 , 3.6)
Yes 5 0 1 99 (0 , 3.6)
Yes 6 1 9 90 (0 , 5.4)

Table 5: Matches result for NeuralMinimax Mill:600 agent against
J.A.R.V.I.S.

won 45% of the matches in its best configuration result and the Neu-
ralMinimax Mill:600 agent won 100% of the matches in the same
configuration, whose max search height was the same as that of the
opponent. In its second best configuration result, the NeuralMini-
max Mill:600 agent did not lose any match, but 35 draws occurred,
leading to a 65% win rate. Again, the game Nine Men’s Morris ap-
pears to be more difficult than the Othello game, as was observed
in the neural network training. Another observation is the greater
tendency to draws in the Nine Men’s Morris game. There was no
draw in the Othello game matches.

It is worth mentioning that the win rate is mostly 100% or 0%
due to the deterministic behavior of the Minimax algorithm. Ran-
domness only occurs when the evaluation function returns the same
value for more than one state and one is chosen uniformly at ran-
dom. Analyzing the Minimax execution, it is concluded that rarely
the evaluation function represented by the neural network returns
the same value for different states and the frequency of these re-
peated values increase for states near the end of the game.

With the results, it can be said that the obtained value functions
are not precise, in the sense of predicting the true outcome of a per-
fect policy, but they are by no means bad since the NeuralMinimax
agents were able to win all matches in some experiment configura-
tions and were generated without any domain-specific knowledge.
Observing in more detail the utility values attributed by the neu-
ral networks, it is noticed that many states during the matches have
very close utilities. It can be concluded that the value function ob-
tained does not indicate the best state to go, but rather it “indicates”
states likely to be good. It should be mentioned that the same hap-
pens with the neural network trained from professional Go players
moves in the AlphaGo algorithm [22].

The AlphaGo algorithm’s paper says that agents based on neu-
ral networks trained from moves made by professional Go play-
ers only reached a win rate of 11% against specific agents that use
domain-specific knowledge. One difference is that in the current
work about 150 thousand examples generated by MCTS-UCT sim-
ulations were used, while in AlphaGo about 30 million examples
generated by professional players were used. Another difference is
that the neural network used in AlphaGo is a Deep Convolutional
Neural Network, which has a great ability to detect features, while
in the current work CCNN were used, which depends on a good
manual feature engineering. From that point of view, the results
were satisfactory, given the possible limitations. Worth mention-
ing that in this work, the neural network was used as an evaluation
function in the Minimax with alpha-beta pruning algorithm, which
may have helped in the obtained results.

It may be questioned that the specific agents chosen for the ex-
periments are not recognized as strong agents and cannot be used
to evaluate the strength of the generated agents by the UCT-CCNN
method. Although this statement is correct, the idea of these ex-
periments was to show the ability of the generated value functions
against evaluation functions implemented by people with domain
specific knowledge. In most of the related works, the generic agents
are compared against MCTS-UCT agents. A comparison of this
kind will be discussed in the next section.

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 535

4.2 Neural network as tree policy in the MCTS algorithm
Based on the AlphaGo algorithm [22], it was decided to apply the
obtained value function in the tree policy of the MCTS algorithm
in order to take advantage of the network characteristic that indi-
cate the probably better child states and thus redirecting the tree
growth toward these states. This strategy was implemented in an
agent called NeuralMCTS. In the standard UCT algorithm, states
are selected in the MCTS tree using a policy that takes into account
the statistical data obtained so far. In the NeuralMCTS the UCT
formula was slightly modified, as shown in the following formulas:

UCT = S(child)+B(child,parent,uct),

S =

{
Q(child)
V (child) , if V (child)> 0

1.0, otherwise
and

B =

{
(C(child)+1)

2 ·uct ·
√

2·(1+logV (parent))
V (child) , if V (child)> 0

(C(child)+1)
2 , otherwise

,

where S(child) represents the node child average utility and
B(child,parent,uct) represents an exploration bonus for the node
child. In the exploration bonus, C(child) is an expected outcome
value of the game state associated with the node child, within the
range [−1,1], and calculated by a neural network trained by the
learning method UCT-CCNN. The purpose of the first factor in the
exploration bonus formula is to reduce the exploration bonus to less
promising states and represents a previous probability for the state,
as with the strategy adopted in the MCTS tree policy used in the Al-
phaGo algorithm. Also, in the exploration bonus formula, the log-
arithm result is increased by one to prevent the exploration bonus
from being nil for parent states visited only once. Another impor-
tant difference from the default MCTS-UCT algorithm is that in
the NeuralMCTS, when a leaf node is selected by the tree policy,
all of its children are expanded. There was no change in the de-
fault policy, so action are performed uniformly at random during
the simulation phase of the MCTS algorithm.

Experiments were executed with matches between NeuralMCTS
agents and the default MCTS-UCT algorithm, with the number of
simulations limited up to 5000 for all agents. For the NeuralMCTS
agents, the neural networks Othello:600 and Mill:600 were used.
A total of 200 matches were executed for each experiment con-
figuration. In the Table 6 each experiment configuration is listed
indicating the game and if the NeuralMCTS agent starts the match,
as well as the results for the NeuralMCTS agent of the number of
wins, losses, draws and the 95% confidence interval for the win
rate.

Game Starts the matches Wins Draws Losses IC 95% win rate
(%)

Othello No 156 6 38 78
(71.6 , 83.5)

Othello Yes 154 3 43 77
(70.5 , 82.6)

Mill No 60 61 79 30
(23.7 , 36.9)

Mill Yes 31 50 119 15.5
(10.8 , 21.3)

Table 6: NeuralMCTS matches with the networks Othello:600 and
Mill:600.

The idea is that the value functions represented by the Oth-
ello:600 and Mill:600 networks indicate a spectrum of interest-
ing states to be investigated, and the NeuralMCTS agents use those
functions to redirect the tree growth towards these states. The Neu-
ralMCTS agent won an average of 78% matches against the default

MCTS-UCT for the Othello game, which makes the NeuralMCTS
a significantly better agent for the game Othello. However, for the
game Nine Men’s Morris the NeuralMCTS agent only won 30% of
the matches when it did not start the game and 15.5% of the matches
when it did start the game, which reinforces that Nine Men’s Morris
is a problematic game for the UCT-CCNN method.

Given the results, it can be concluded that the value function rep-
resented by the Othello:600 network has a satisfactory accuracy to
the point of increasing the win rate by redirecting the tree growth
towards the states indicated by the function. The examples used for
training the Mill:600 network seem to lack the accuracy needed to
obtain good results. One possible solution is to increase the simula-
tion time for the examples generation or to adjust the binary coding
for the game’s state in order to improve the features engineering.
This is only an initial observation since the strategy of redirecting
the tree growth towards interesting states as a consequence of the
tree policy modification may not work for any type of game.

Improving the tree policy is no guarantee of success for the
MCTS algorithm. The default policy plays the most important role
in the MCTS algorithm because it is used to control the simulations
that start from the expanded state and update the tree statistics with
the sampled outcome. The tree policy only indicates the node to
be expanded. After that, it is the default policy’s responsibility to
evaluate the state in the simulation phase, as explained in the Sec-
tion 2.1. The most common implementation for the default policy
is to uniformly at random select actions until a final state is reached.
Improvements in the default policy can help further improve the re-
sults, and this may be why the NeuralMCTS agent did not go well
in the Nine Men’s Morris game.

The strategy implemented in the NeuralMCTS agent is partially
inspired by the strategy adopted by the AlphaGo algorithm. In both
games Go and Othello, the possible actions are only of the type of
piece placement, but the placement and capture rules and board size
are different. In the case of the Nine Men’s Morris game, in addition
to the piece placement, there are other action types like piece move-
ment and piece removal and also there are different game phases
that change the game’s rules. To identify game properties that work
well with specific MCTS improvements is a difficult task. In some
situations, selecting tree nodes, either in the tree policy or in the
default policy, using a uniform distribution may be better than ap-
plying domain-specific knowledge to redirect the selection [15].

5 CONCLUSION

This work proposed the UCT-CCNN method as a general game
playing strategy to obtain intelligent agents for two-player generic
board games capable of winning against specific agents that use
specif-domain knowledge.

To achieve this goal the UCT-CCNN method uses the Monte
Carlo Tree Search (MCTS) algorithm with the Upper Confidence
Bounds for Tree (UCT) tree policy to generate a database of state-
utility examples. From these examples, a Cascade Correlation Neu-
ral Network (CCNN) is trained as a value function to evaluate any
game state. The generated value function can be easily integrated
with any algorithm such as Minimax with Alpha-Beta Pruning and
the MCTS itself.

The examples database is generated from multiple matches ex-
ecuted between MCTS-UCT agents. The generated examples are
filtered to select only those generated from players who won the
match and the repeated examples are removed while keeping the
state with the higher number of visits during the MCTS simula-
tions.

The UCT exploration constant used for the examples generation
was obtained from a stochastic optimization method called Cross
Entropy Method (CEM). That optimization is necessary because the
optimal exploration constant for each game is different and there is
no obvious way to define that constant.

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 536

The CCNN represents a category of constructive neural network
architecture capable of adapting itself to the problem being applied.
The use of this type of neural network favors the GGP aspect of the
UCT-CCNN method, thus avoiding the need for parameters to spec-
ify the network architecture such as the number of hidden layers and
the number of neurons in each layer.

As shown in the Section 4.1, agents generated by the UCT-
CCNN method were able to win against specific agents in some
situations in both of Othello and Nine Men’s Morris games. The
accuracy of the obtained value functions is tied to the accuracy of
the estimated utilities for the examples used in the neural network
training. The higher the MCTS simulation time the better the ac-
curacy of the estimated utilities. Because of that, the UCT-CCNN
method provides the possibility of controling the strength of the
agent to be generated. In the experiments, the increase in the simu-
lation time from 200 to 600 seconds greatly improved the generated
agent strength for the Othello game. For the Nine Men’s Morris
game the improvement was also observed, but it was more subtle.

In addition, the experiments show that the value functions can
be used in a tree policy to guide the MCTS search because they in-
dicate a spectrum of probably better states, improving significantly
the performance compared to the standard UCT strategy, with the
same number of simulations, for the Othello game. In the case of
Nine Men’s Morris, the modified tree policy decreased the agent’s
performance, indicating that this strategy may not work for some
games, or that the strategy needs improvements such as parameter-
izing the influence of the neural network in the tree policy or even
modify the default policy to use the neural network. This behavior
of MCTS improvements is already observed in other related works,
where certain improvements work well in some games and others
do not.

It is worth noting that the value function used in the generated
agents benefits from a complete set of game features, which is not
possible in conventional MCTS improvements such as RAVE and
FAST [3]. Another UCT-CCNN feature is that the generated agent
benefits from the value function as soon as the match starts, which
is only possible due the off-line learning process. For GGP agents is
usually necessary to accumulate data through the match in order to
estimate utility values for features, often greatly simplified. What
the UCT-CCNN loses in comparison to these GGP agents is the
need to execute an off-line process to generate the agent’s value
function.

In addition, the UCT-CCNN has another important feature that is
the generation of a generic value function, represented by a neural
network that can be used in conjunction with any other algorithm.
In this work, the value function was used with the Minimax and the
MCTS algorithms.

The main feature of the UCT-CCNN method is undoubtedly its
general game playing capability, defining a method that is not re-
stricted to a particular game, through the use of powerful tools such
as MCTS-UCT and constructive neural networks such as CCNN.
The UCT-CCNN is an important step towards the generation of
strong intelligent agents, with a completely automated process, al-
lowing game creators to generate intelligent agents with variable
difficulty levels without the need for manually implement an AI
code, which is often a challenge.

ACKNOWLEDGEMENTS

The authors would like to thank CAPES, CNPq and Fapemig for
their financial support.

REFERENCES

[1] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of
the multiarmed bandit problem. Machine learning, 47(2-3):235–256,
2002.

[2] G. Balázs. Cascade-correlation neural networks: A survey. De-
partment of Computing Science, University of Alberta, Edmonton,
Canada, pages 1–6, 2009.

[3] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. Cowling,
P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, S. Colton, et al.
A survey of Monte-Carlo tree search methods. Computational Intelli-
gence and AI in Games, IEEE Transactions on, 4(1):1–43, 2012.

[4] G. Chaslot, M. Winands, J. Uiterwijk, H. Van Den Herik, and
B. Bouzy. Progressive strategies for Monte-Carlo tree search. In Pro-
ceedings of the 10th Joint Conference on Information Sciences (JCIS
2007), pages 655–661, 2007.

[5] G. Chaslot, M. H. M. Winands, I. Szita, and H. J. van den Herik.
Cross-entropy for Monte-Carlo tree search. ICGA Journal, 31(3):145–
156, 2008.

[6] T. H. de Mello and R. Y. Rubinstein. Estimation of rare event proba-
bilities using cross-entropy. In Proceedings of the Winter Simulation
Conference, volume 1, pages 310–319 vol.1, Dec 2002.

[7] S. E. Fahlman. Faster-learning variations on back-propagation: An
empirical study. In D. S. Touretzky, G. E. Hinton, and T. J. Se-
jnowski, editors, Proceedings of the 1988 Connectionist Models Sum-
mer School, pages 38–51. San Francisco, CA: Morgan Kaufmann,
1989.

[8] S. E. Fahlman and C. Lebiere. Advances in neural information pro-
cessing systems 2. chapter The Cascade-correlation Learning Archi-
tecture, pages 524–532. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 1990.

[9] H. Finnsson. Simulation-Based General Game Playing. PhD thesis,
Reykjavik University, 2012.

[10] R. Gasser. Solving nine men’s morris. Computational Intelligence,
12(1):24–41, 1996.

[11] S. Gelly and D. Silver. Combining online and offline knowledge in
UCT. In Proceedings of the 24th international conference on Machine
learning, pages 273–280. ACM, 2007.

[12] S. Gelly and Y. Wang. Exploration exploitation in Go: UCT for
Monte-Carlo Go. In NIPS: Neural Information Processing Systems
Conference On-line trading of Exploration and Exploitation Work-
shop, Canada, 2006.

[13] M. Genesereth, N. Love, and B. Pell. General game playing:
Overview of the AAAI competition. AI magazine, 26(2):62, 2005.

[14] C. Igel and M. Hüsken. Improving the Rprop learning algorithm. In
Proceedings of the second international ICSC symposium on neural
computation (NC 2000), volume 2000, pages 115–121. Citeseer, 2000.

[15] S. James, G. Konidaris, and B. Rosman. An analysis of Monte-Carlo
tree search. AAAI Conference on Artificial Intelligence, 2017.

[16] L. Kocsis and C. Szepesvári. Bandit based Monte-Carlo planning. In
European conference on machine learning, pages 282–293. Springer,
2006.

[17] L. Kocsis, C. Szepesvári, and J. Willemson. Improved Monte-Carlo
search. Univ. Tartu, Estonia, Tech. Rep, 1, 2006.

[18] N. Love, T. Hinrichs, D. Haley, E. Schkufza, and M. Genesereth. Gen-
eral game playing: Game description language specification, 2008.

[19] S. Nissen. Large scale reinforcement learning using Q-Sarsa(λ) and
cascading neural networks. Master’s thesis, Department of Computer
Science, University of Copenhagen, October 2007.

[20] M. Riedmiller and H. Braun. A direct adaptive method for faster
backpropagation learning: The Rprop algorithm. In Neural Net-
works, 1993., IEEE International Conference on, pages 586–591.
IEEE, 1993.

[21] R. Y. Rubinstein and D. P. Kroese. The cross-entropy method: a uni-
fied approach to combinatorial optimization, Monte-Carlo simulation
and machine learning. Springer Science & Business Media, 2013.

[22] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, et al. Mastering the game of Go with deep neural net-
works and tree search. Nature, 529(7587):484–489, 2016.

[23] G. Yannakakis and J. Togelius. A panorama of artificial and compu-
tational intelligence in games. Computational Intelligence and AI in
Games, IEEE Transactions on, 7(4):317–335, Dec 2015.

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 537

	175442

