
A new method for modeling clouds combining procedural and implicit
models

Anselmo Montenegro 1∗ Icaro Baptista 1 † Bruno Dembogurski 2 ‡ Esteban Clua 1 §

Universidade Federal Fluminense, Departamento de Ciência da Computaç ão, Brazil
1

Univesidade Federal Rural do Rio de Janeiro, Departamento de Ciência da Computaç ão, Brazil
2

Figure 1: Examples of clouds computed with the proposed method

ABSTRACT

Cloud models are important components in 3D open environment
games and virtual reality applications. In the literature, different ap-
proaches have been proposed to solve the problem of modeling the
complex geometry and texture of clouds including physical simula-
tion, photo-based modeling and a combination of implicit modeling
with procedural techniques. The latter is simple and produces sat-
isfactory results and can be also done in realtime. Nevertheless, it
is still difficult to produce the desired results by combining implicit
modeling with procedural techniques. The reasons for this limita-
tion are twofold. First, the parameters are not intuitive and intri-
cately coupled with each other. The second reason is that it is hard
to combine the overall shape defined by the implicit model with the
details generated by the procedural models in a smooth and local-
ized way. In this work, we propose a new way of modeling clouds
by combining volumetric implicit modeling with procedural noise
techniques. Differently from previous works, the details produced
by noise are attached to each implicit primitive independently, in
different scales, before they are smoothly blended. This provides
a greater level of control in the process of designing and modeling
the clouds. By implementing our technique in GPUs it is possible
to change the parameters and the blending of primitives in realtime
and observe immediately the produced results. This interactive be-
havior enables the modeler to more easily build and experiment dif-
ferent versions of his ideas. Although we applied this technique to
cloud modeling we show that the same approach can be useful for
modeling many natural objects as rocks, terrain and planet shapes,
among others.
Keywords: Modeling of Clouds, Procedural Modeling, Implicit
Modeling, GPU processing.

∗e-mail:anselmo@ic.uff.br
†e-mail:decarvalho.icaro@gmail.com
‡e-mail:taunos@gmail.com
§e-mail:esteban@ic.uff.br

1 INTRODUCTION

Modeling natural phenomena can be a very difficult task in Com-
puter Graphics because of the richness of details and complexity of
the inherent processes associated to their formation. Among differ-
ent natural objects, clouds are one of the most important for open
environment scenes. According to Harris [11], two of the most
common ways used to model clouds are planar-texture-based mod-
els and particle systems [19].

Voxelized models are also very common. In such representa-
tions, density values can be defined using implicit functions that
specify the fallout of the density values from certain primitives,
usually represented by a set of particles. Although flexible, pure
implicit models fail to produce the fine details and fuzzy aspect
usually present in clouds. On the other hand, procedural models [8]
are able to produce details generating shapes with fractal [18] and
fuzzy appearance. Despite being very powerful, procedural mod-
els depend on the choice of parameters that may be not so intuitive
and difficult to specify [7]. The control of the overall shape is also
limited.

One way to mitigate these drawbacks is to combine the best
properties of both models. The work by Lipus et al. [15] proposes
the combination of procedural modeling and implicit modeling us-
ing a blending scheme based on the Set Theory. In their solution,
implicit modeling is responsible for defining the overall appearance
of the shape and the procedural modeling specifies its micro-scale
details. Although it is possible to produce convincing cloud models
using a straightforward approach it is difficult to produce patterns
with local variation by just modulating the implicit shape with a
global procedural noise function. In real clouds it is possible to no-
tice smoother regions in central areas and more turbulent patterns
in the peripheral regions. These features are difficult to reproduce
using a global modulation approach.

In this work we propose an extension of the ideas proposed in
[15] which explores the blending function proposed by them in
a more powerful way. Instead of modulating the whole implicit
model via a procedural noise function, in our method, each implicit
primitive is modulated by an independent instance of the same noise
function with its own input arguments, before it is blended to pro-

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 513

duce the final model. We show that the blending functions work
quite well on implicit primitives modularized by the Perlin Noise
presenting smooth blending results. Besides, we explore the power
of GPUs in our implementation. Hence, a user can experiment dif-
ferent set-ups of parameters and primitives in realtime facilitating
the generation of a desired model.

This paper is organized as follows: in the next section we de-
scribe some of the works related to cloud modeling. In section 3,
we describe the basic model that combines implicit modeling and
procedural Perlin Noise. In section 4, we describe the proposed
method. We present and analyze our results in section 5. Finally,
in the last section we describe our conclusions and discuss possible
future works.

2 RELATED WORKS

Many works have investigated the problem of cloud modeling using
many different techniques: 2D texture-based models (impostors),
physically based models, and volumetric procedural models.

As far as we are concerned, noise functions were one of the first
techniques used by the Computer Graphics community for model-
ing clouds. One of the most known and commonly used techniques
is the Tuburbulence Function proposed by Ken Perlin [17].

Ebert and colleagues [7] have done an extensive research in mod-
eling different phenomena using procedural noise. They have pro-
posed new ways to model not only clouds but also steam, smoke
and other phenomena. His technique is the basis to the one used in
this work: generate a sketch shape using implicit functions which
are perturbed using noise. Differently though, we apply noise per
primitive, permitting a greater expressiveness.

Although powerful, using such techniques to model convincing
clouds require a great amount of parameter tweaking which can
be quite cumbersome. Hence, many researchers looked for differ-
ent ways to facilitate the shape control of cloud modeling by using
different techniques including cellular automata [5, 23], l-systems
[12], implicit modeling [8], radial basis functions [16], fluid dy-
namics [6] and even optimization-based photograph inspired mod-
eling [3].

As early as 2000, Dobashi et al. [5] proposed a method based
on cellular automata for animating clouds. In their work, transition
rules are responsible for describing the dynamics of the clouds al-
lowing the simulation of complex motion with low computational
cost. They used OpenGL to render their model using the graph-
ics hardware available at that time. Their visualization approach
incorporates cloud motion and casts shadows onto the ground.

The paper of Harris et al. [11], although focused in the rendering
aspects of the problem, is one of the landmarks in cloud modeling
and rendering. They proposed a high-quality, high-speed method
for rendering static clouds in games. In their approach, clouds are
modeled as impostors, a texture-based approach. They justify their
choice by arguing that games are too complex themselves so they
opted for a very fast method. Their paper is rich in details about
how to properly render clouds in games.

In 2003, Schpok et al. [20] developed a complete system for
realtime modeling and animation of clouds. Their system is based
on an extension of the previous ideas proposed by Ebert exploring
all the capabilities of the new graphics hardware.

Lipuš et al. [15] in 2005 proposed a new way to blend implicit
primitives based on the Set Theory. They detected that the simple
summation of implicit primitives does not work appropriately when
dealing with cloud densities because the density in the intersecting
regions can grow in abnormal ways producing undesirable artefacts.

Man et al. [16] presented a new method for generating and ren-
dering static volumetric clouds modeled by Perlin Noise. The au-
thors argue that a volumetric representation is not adequate for real-
time rendering. Hence, they proposed a different representation of
the cloud that approximates the original map of densities as a set of

Metaballs [22] whose position, radii and density are determined us-
ing a radial basis function neural network. They show results where
clouds are described by hundreds of metaballs.

In 2008, Dobashi [6] and colleagues proposed a way to control
the parameters in atmospheric fluid dynamics models for generating
cummuliform clouds. The method works in two steps: first, the
modeler defines the overall shape of the cloud and in the next step
the model adjusts the parameters to generate clouds that conform to
the predefined shape.

Jiangbin Xu et al. [23] proposed the use of probability fields for
controlling a cellular automata method. The probability fields are
created using a fractional Brownian motion function (fBm) which
describes the motion of particles generating the cloud features.

Dobashi et al in 2012 [4] proposed a work that approaches cloud
modeling as an inverse problem: Photographs of real clouds are
used to estimate the parameters of a non-uniform density model us-
ing an optimization method. The objective function is based on the
difference of the color histograms between the synthesized image
and the photograph. In order to use his model, multiple scattering is
considered inside the cloud for searching the ideal parameters. The
authors claim that they can precompute a cloud model in twenty
minutes. They enhanced their method in a work presented in 2014
[3].

Recently in 2016, Elhaddad et al. [9] proposed an new method
for dealing with the complexity of modeling large scale clouds in
realtime as a N-body problem. They proposed the use of Leonard-
Jones potential to simplify and simulate the cloud generation pro-
cess. They used a scheme to minimize the interaction among par-
ticles by subdividing the environment space into cells and define
cutoff distances to perform calculation between neighboring parti-
cles.

3 BASIC CONCEPTS

In this section we review the basic concepts related to cloud model-
ing using implicit and procedural techniques. It follows closely the
work in [15] and is added here for comprehensiveness.

A cloud can be defined as a volumetric shape V ∈ R3 where a
density value is defined by a function ρ(p) for each p ∈ V . The
function ρ(p) is typically defined in such a way that the modeler
can manipulate the shape to be constructed with a certain level of
control. This can be done in two steps. The first one defines the
overall shape of the model using implicit modeling and the second
adds details using procedural noise functions.

Implicit models are constructed by combining primitive implicit
functions which can be of two kinds: point primitives and skeleton
primitives. In this work, as in [15] we define the density field as a
combination of field functions g(xi) where xi is a normalized dis-
tance. Each field function g(xi) is defined by a implicit primitive
b(xi) and a weight value wi. In our implementation, b(xi) is the
Wyvill-1 function [21]:

bi(xi) =−
4
9

x6
i +

17
9

x4
i −

22
9

x2
i +1,0≤ xi ≤ 1 (1)

The normalized distance is computed as xi = di/li where di is the
distance of a given point p ∈ R3 to the primitive and li is the size
of the region of influence (see Figure 2). Inside the skeleton, the
value of the field function is equal to wi. In other words, the value
of b(xi) is considered equal to one. Out of the skeleton and inside
the region of influence the value of the density decays according to
b(xi) until it reaches zero in the region out of the influence region.

The final density field is defined as a summation of n field func-
tions g(xi) as defined below:

ρn(p) =
n

∑
i=1

gi(xi) =
n

∑
i=1

wibi(xi) (2)

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 514

Figure 2: Field function. Picture drawn based on [15].

Lipuš et al. in [15] showed that the summation of field functions
does not produce adequate blending results for volumetric data de-
scribing density values. Abnormalities appear in the region of in-
tersection of different field functions (see Figure 12 a,b in [15]).

To cope with such problem, they came up with a way to com-
bine implicit density field functions based on the Set T heory. The
new blending strategy is defined by a recursive function given by
equation 3.

ρ1(p) = g1(xi)

ρi(p) = ρi−1(p)+gi(xi)−
1
w

ρi−1(p)gi(xi),

i = 2, . . . ,n,
w = w1 = w2 = · · ·= wn

(3)

Intuitively, the formulation given by equation 3 avoids the cre-
ation of abnormal density values in the density field by recursively
subtracting the spurious duplicated contributions of density in the
intersecting regions.

Noise functions are used to introduce fractal behavior into the
pure implicit blending model. One of the most used noise func-
tions, and the one also used in this work, is the Turbulence Function
proposed by Ken Perlin. The turbulence noise function, presented
in Equation 4, is a weighted sum of band pass noises. It can be
controlled via four parameters: amplitude (a), frequency (f r), gain
(ga) and lacunarity (lc). Lacunarity and gain define, respectively,
the rate of change of the frequency and amplitude of the noise per
octave, regulating the fractal behavior of the noise.

N(p) = ∑
i

a
∣∣∣∣ (lci)∗ f r ∗ p

gai ∗a

∣∣∣∣ (4)

The basic cloud modeling algorithm is a straightforward combi-
nation of the implicity density ρ(p) - computed using the Lipuš’
blending equation- with the Turbulence Noise N(p) modulated by
ρ(p). This can be resumed by equation 5 where np is the percent-
age of turbulence noise to be applied to the intermediary implicit
model.

ρ̄(p) = (1−np) ·ρ(p)+(np) ·ρ(p) ·N(p) (5)

Algorithm 3 shows a pseudocode of the ideas previously dis-
cussed. Algorithms 1 and 2 describe, respectively, the implementa-
tion details of the implicit blending equation and the noise addition

function. Observe that the recursive function in 3 is implemented
iteratively in Algorithm 3, as it is a tail recursion.

Besides, in Algorithm 2, the noise function is defined as the ab-
solute value of N(p) = f Bm3D(x,y,z,n, f r,a, lc,g), where x,y,z are
the coordinates of a given point primitive p, n is the number of oc-
taves and f r, a, la and ga are the turbulence parameters. Taking
the modulus of fBm3D is appropriate for generating cummuliform
clouds [20].

Data: i, j, k, ρ - intial density value, p - primitive position
Result: ρ

′
- new density

dist← distance(i, j,k, p.x, p.y, p.z)
if dist < p.radius then

ρ
′ ← 1

else if dist < p.in f luence+ p.radius then
dist← (dist− p.radius)/p.in f luence
g←Wyvill(dist)
ρ
′ ← ρ +g− (1/p.weight)(ρ)g

end if
Algorithm 1: ComputeImplicitDensity

Data: ρ , p
lc - lacunarity, fr - frequency, a - amplitude, ga - gain, s - scale,
n - numOctaves, np - noise percentage
Result: ρ̄

N(p)← max(| f Bm3D(p.x, p.y, p.z,n, f r,a, la,ga)|,1)
ρ̄ ← (1−np)ρ +ρ(N(p))(np)

Algorithm 2: AddNoise

Data: P - set of primitives
la - lacunarity, fr - frequency, a - amplitude, g - gain, s - scale,
n - numOctaves, p - noise percentage
width, height, depth - dimensions of the volume array
Result: Density volume V

for Vi jk ∈V do
Vi jk← 0
ρ ← 0
x,y,z← i+ rand()∗ s, j+ rand()∗ s,k+ rand()∗ s

for h = 0 to |P| do
ρ ← ρ +ComputeImplicitDensity(i, j,k,ρ,Ph)

end for

Vi, j,k← max(AddNoise(ρ,Ph,n, f r,a, la,g),1)
end for

Algorithm 3: CloudGenerator

4 PROPOSED METHOD

The basic algorithm presented in the previous section produces sat-
isfactory results but has one limitation. The procedural noise mod-
ulation is applied onto the implicit shape defined by the blending of
the g(xi) implicit primitives. As it works applying a global modu-
lation to the blended implicit primitives, it is not possible to define
different levels of noise for different parts of the model. See for
instance a real cloud picture (Figure 3), where noise lacunarity and
frequency vary from region to region. Consequently, it demands a
lot of parameter tweaking to define a cloud with varying levels of
detail along the whole shape.

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 515

Figure 3: A picture of a real cloud.

Instead of applying noise onto the initial implicit shape, given
by blending the fields d efined th e Wy vill fu nction, we pr opose a
different scheme where noise with different characteristics is added
to each primitive independently. This results in a more effective
way to model general procedural shapes because we can control
the local noise at each primitive separately and then combine them
to obtain the final result. Then, by setting g′i(xi) = Ni(g(xi)), where
Ni(...) is the i-th instance of the noise function, we extend Equation
3 as follows:

g′(xi) = N(g(xi))

ρ1(p) = g′1(xi)

ρi(p) = ρi−1(p)+g′i(xi)−
1
w

ρi−1(p)g′i(xi),

i = 2, . . . ,n,
w = w1 = w2 = · · ·= wn

(6)

This allows the creation of details in different scales, amplitudes
and frequencies at each local part of the model under the influence
of a given primitive.

4.0.1 Differentiability
One important aspect to be considered is the differential properties
of the shape produced by blending different noise functions using
equation 6. The experiments show that the detail patterns produced
by the blending of different compositions of Perlin Noise with the
Wyvill implicit primitives, using equation 6, produce details that
seem to blend continuously and smoothly through generated shape.
To completely explain the behavior of the modified blending func-
tion we must analyze the result of the composition of the Perlin
Noise which is based on a fifth-degree interpolator - that has con-
tinuous second-order derivative - with the Wyvill blending function
that has G1 geometric continuity in the seams of overlapping re-
gions. We intend to analyze this in a future work.

Algorithm 4 presents the proposed method in pseudocode.

4.1 Parallelization
The computation of the combined procedural and implicit model-
ing is rather computationally intensive. However, it is not difficult
to leverage the massive parallel computational power of GPUs to
compute such models as the density value ρ(p) can be computed
independently for each voxel v with coordinates given by p.

We implemented a straight forward CUDA kernel that imple-
ments the model defined by Equation 6. Our kernel function re-
ceives as input parameters the positions of the skeleton primitives,
their weights, the associated noise function parameters and com-
putes an array of density valeus in global memory. The Turbu-
lence Function is computed in a CUDA device function called by
the main kernel. Our implementation of the parallel Perlin Noise

Data: Set of primitives P
la - lacunarity, fr - frequency, a - amplitude, g - gain, s - scale,
n - numOctaves, p - noise percentage
width, height, depth - dimensions of the volume array
Result: Density volume V

for Vi jk ∈V do

Vi jk← 0
ρ ← 0
x,y,z← i+ rand()∗ s, j+ rand()∗ s,k+ rand()∗ s

for h = 0 to |P| do
dist← distance(i, j,k,Ph.x,Ph.y,Ph.z)
if dist < Ph.radius+Ph.in f luence then

ρ ′←ComputeImplicitDensity(i, j,k,ρ,Ph)
g′← (AddNoise(ρ ′,Ph,
Ph.n,Ph. f r,Ph.a,Ph.la,Ph.ga)
ρ ← ρ +g′−1/(Ph.weight)(ρ)g′

end if
end for

Vi, j,k← max(ρ,1)
end for

Algorithm 4: CloudGeneratorModified

was based on the implementation of Ron Farber [10] which uses
shared memory. A sketch of the implemented kernel is show in
pseudocode in Algorithm 5.

The resulting model stays in GPU memory at all times and is
bound to a 3D texture used in the volumetric rendering step which
is performed using a modified Ray Casting algorithm explained in
the next section.

5 VISUALIZATION

Cloud visualization is a very important issue as the final appearance
of the cloud model directly depends on how light interacts with its
particles and how it is transmitted and scattered back to the viewer.
There are several works in the literature devoted to cloud rendering
which propose sophisticated models. One example of a method
that produces impressive results is [1]. Basically, rendering a cloud
requires two steps: a first one that computes the total incident light
at each particle (Light Scattering) and a second step that computes
tha light that reaches the observer (Eye Scattering). The first step
requires solving the multiple scattering equation described in [11].

I(p,ω) = I0(ω)ė−
∫ Dp

0 τ(t)dt +
∫ Dp

0
g(s,ω)e−

∫ Dp
s τ(t)dtds (7a)

g(x,ω) =
∫

4π

r(x,ω,ω ′)I(x,ω ′)dω
′ (7b)

In equation 7a, I0(ω) is the intensity of all direct light from direc-
tion ω . I(p,ω) measures the of intensity of all light from direction
ω incident to particle p. τ(t) is the extinction coefficient of the
cloud at depth t and Dp is the depth of a particle p in the path in
which the light traverses the cloud.

The first term in 7a describes the intensity of light I0(ω) that
is not absorbed by intervening particles. The second term com-
putes the intensity of light scattered towards p from other parti-
cles. Equation 7b defines the intensity of light from all directions
ω ′ scattered in the direction of ω at point x. The term r(x,ω,ω ′) is
the Bidirectional Scattering Distribution Function and expands to
r(x,ω,ω ′) = α(x)τ(x)φ(ω,ω ′). The factor α(p) is the albedo and
describes the ratio between the scattering and absorption of light,

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 516

Data: Set of primitives P
la - lacunarity, fr - frequency ,a - amplitude, g - gain, s - scale,
n - numOctaves, p - noise percentage
width, height, depth - dimensions of the volume array
Result: Density volume V

i, j,k← getCoordinatesFromT hread()
if i < width and j < height and k < depth then

Vi jk← 0
ρ ← 0
x,y,z← i+ rand()∗ s, j+ rand()∗ s,k+ rand()∗ s

for h = 0 to |P| do
dist← distance(i, j,k,Ph.x,Ph.y,Ph.z)
if dist < Ph.radius+Ph.in f luence then

ρ ′←ComputeImplicitDensity(i, j,k,ρ,P[h])
g′← AddNoise(ρ,Ph,
Ph.n,Ph. f r,Ph.a,Ph.la,Ph.ga))
rho← ρ +g′−1/(Ph.weight)(ρ)g′

end if
end for

Vi, j,k← max(ρ,1)
end if

Algorithm 5: CloudGeneratorModifiedKernel

τ(p) is the extinction factor and φ is the phase function describing
how light is scattered.

The Eye Scattering is modeled by 8 which describes the intensity
of light arriving to the eye from direction ~r where θ is the angle
between the viewer direction~r and the direct light direction ω:

I(p,~r) =
∫ Dp

0
(e−

∫ Dp
t τ(s)ds)(I(t)τ(t)φ(θ)dt (8)

5.1 Our simplified shading model
Our work does not focus in the rendering of clouds but rather in the
modeling process. Thus, we did not implement the multiple or a
single scattering algorithm for the Light Scattering step, but a sim-
plified illumination algorithm based on a ray casting strategy. We
consider that the intensity of direct incident light in each particle
is constant which means that incident light is not attenuated by in-
tervening particles. We only modeled the Eye Scattering which is
the part of the illumination algorithm that computes the amount of
light incident at each particle that is scattered and attenuated as it
traverses the volume in its path towards the viewer.

For the sake of simplicity, assume that direct light is given by
only one source in the direction given by l. Then, in our model, the
incident light intensity at each voxel v whose center is at position p
is given by a constant I(p) = c. The light Is(p,~r) that is scattered
from a voxel v at p towards the viewer in direction ~r is given by:
Is(p,~r) = I(p)α(p)τ(p)φ(θ) where the extinction factor is approx-
imated by τ(p) = 1−ρ(v) and the phase function φ(θ) is given by
the Rayleigh’s phase function φ(θ) = 3/4(1+ cos2(θ)), where θ

is the angle between the viewer direction~r and the light direction l.
For each pixel in the image we cast a ray ~R in direction −~r and

march from the first intersected voxel v0 at p0 towards the interior
of the volume in a front to back approach. The marching process
is divided in discrete steps k, 1 < k < N where N is the number of
discrete steps in the path. At each step k we accumulate the total
intensity Ik = Is(pk)+ Ik−1τ(pk), where pk is the position of voxel
vk by summing the scattered intensity Is(pk) at step k and the inci-
dent intensity it does not absorb Ik−1τ(pk) (see equation 5 in [11]).
The former process is a discrete approximation to the Eye Scatter-

ing equation in 8. All the images presented in the next section were
produced using our simplified illumination method except figures
7e and 7f which used Levoy’s volumetric shading [14].

6 RESULTS

The experiments were performed in a PC desktop with an Intel i7
CPU with 16GB memory and a GeForce 750 graphics board. The
volumetric models were defined on a 256x256x256 grid and the
viewport has 512x512 pixels. With such configuration, we achieved
a rendering throughput of above 30 frames per second using a basic
non-optimized ray casting renderer. During model modification, we
achieve a frame rate of about 20 frames per second which enables us
to model our clouds in interactive times. In a more powerful GPU,
we believe we can work with larger models and, by using more
optimized algorithms, it is possible to produce smooth animations
in realtime.

Experiments were made to compare the parallel versions of the
basic algorithm and the modified one, with different parameter set-
tings; those are described next.

In figure 4a the user starts with a very coarse model which is then
turned into a cloud by modifying the noise parameteres (Figure4b).
In the experiments we discovered that adjusting the frequency f r
and the noise percentage np is usually sufficient to achieve satisfac-
tory results. One must be aware that we also use a scaling parameter
that divides the x, y and z coordinates of the voxels. This is related
to frequency but has more drastic results. The larger the scale, the
more violent the variation. In our experiments we kept the scale
fixed at 0.02 and just modified the frequency values and noise per-
centage.

A comparison between the original model and the one proposed
in this work is presented in figure group 5. The figures in the left
show models computed using the basic algorithm that adds the same
noise to the blending of Wyvill functions using equation 3. In the
right, we can see the versions produced by changing noise per prim-
itive and finally blending them, using equation 6.

We can see that the proposed method can produce more local
variation that the basic one, permitting a greater level of expres-
siveness in the cloud design. In Figures 7a, 7b, 7c and 7d we show
different examples of clouds produced by our modified method. In
figure 6 we present an enlarged image showing one of our results
rendered without using a scattering illumination model.

6.1 More than clouds
Finally, it is possible to use our system to produce other natural
objects like rocks and planets as it can be seen in pictures 7e and 7f.
In this examples, the power of blending primitives with procedural
details in different scales come into evidence.

6.2 Final remarks
In our GPU cloud generation method it is possible to produce some
convincing clouds using only a few primitives. In fact, all examples
were built using less than 10 primitives. We have noticed that Perlin
Noise seems to produce patterns in large scales that are not exactly
similar to the patterns we find in clouds. But with practice and
experimentation it is possible to produce nice effects. It is possible
to try many configurations without overhead and choose the one
that is most appropriate because the system responds in realtime to
any modification in the parameters. This is one of the advantages
of having a modeling tool in almost realtime.

Our visualization method is still not adequate as it does not con-
template multi-scattering. For this, it is possible to see in the pic-
tures that the darker regions are in the inner parts of the model. We
believe that by implementing multi-scattering these artifacts would
disappear and the final appearance would be more consistent with
the direction of illumination. All clouds in the examples were illu-
minated from the top position.

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 517

(a) Blending of Wyvill functions

(b) Cloud generated using the modified algorithm

Figure 4: Making a basic density field into a cloud

7 CONCLUSION

We proposed a GPU method for modeling volumetric clouds for
games and virtual reality scenarios in realtime. It combines implicit
with procedural modeling being able to easily define t he overall
shape of a cloud and its texture model. The main difference of our
method is that it permits the modeler to perturb the implicit prim-
itives independently before the blending step that builds the final
shape. As our approach is completely implemented in GPU it is
possible for a modeler to experiment many different configurations
of clouds by changing the model parameters and observe the result-
ing appearance in almost realtime in a below entry level GPU. In
the future we intend to investigate the combination of spring-mass
models attached to the implicit primitives for animation purposes as
in the system proposed by [20]. The use of other noise functions as
Gabor Noise [13] and Wavelet Noises [2] in the modeling process is
also a topic to be investigated. Finally, we would like to investigate
ways to accelerate the computation of the density fields as i t was
done in [9].

8 ACKNOWLEDGEMENTS

The authors would like to thank CAPES and FAPERJ.

(a) Cloud modeled by the original algorithm

(b) Cloud generated using the modified algorithm.

Figure 5: Original (up) and the modified algorithm (bottom).

REFERENCES

[1] A. Bouthors, F. Neyret, N. Max, E. Bruneton, and C. Crassin. Inter-
active multiple anisotropic scattering in clouds. In Proceedings of the
2008 Symposium on Interactive 3D Graphics and Games, I3D ’08,
pages 173–182, New York, NY, USA, 2008. ACM.

[2] R. L. Cook and T. DeRose. Wavelet noise. ACM Trans. Graph.,
24(3):803–811, July 2005.

[3] Y. Dobashi. Inverse approach for visual simulation of clouds. In
Mathematical Progress in Expressive Image Synthesis I, pages 85–91.
Springer, 2014.

[4] Y. Dobashi, W. Iwasaki, A. Ono, T. Yamamoto, Y. Yue, and T. Nishita.
An inverse problem approach for automatically adjusting the param-
eters for rendering clouds using photographs. ACM Trans. Graph.,
31(6):145, 2012.

[5] Y. Dobashi, K. Kaneda, H. Yamashita, T. Okita, and T. Nishita. A
simple, efficient method for realistic animation of clouds. In Proceed-
ings of the 27th annual conference on Computer graphics and interac-
tive techniques, pages 19–28. ACM Press/Addison-Wesley Publishing
Co., 2000.

[6] Y. Dobashi, K. Kusumoto, T. Nishita, and T. Yamamoto. Feedback
control of cumuliform cloud formation based on computational fluid
dynamics. ACM Transactions on Graphics (Proceedings of SIG-
GRAPH 2008), 27(3), 2008.

[7] D. S. Ebert. Texturing & modeling: a procedural approach. Morgan

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 518

Figure 6: Model created without scattering lighting effect

Kaufmann, 2003.
[8] D. S. Ebert and E. Bedwell. Implicit modeling with procedural tech-

niques. Proceedings Impliict Surfaces, 98, 1998.
[9] A. Elhaddad, F. Elhaddad, B. Sheng, S. Zhang, H. Sun, and E. Wu.

Real-time cloud simulation using lennard-jones approximation. In
Proceedings of the 29th International Conference on Computer An-
imation and Social Agents, CASA ’16, pages 131–137, New York,
NY, USA, 2016. ACM.

[10] R. Farber. CUDA application design and development. Elsevier, 2011.
[11] M. J. Harris and A. Lastra. Real-time cloud rendering for games. In

Proceedings of Game Developers Conference, pages 21–29, 2002.
[12] S. Kang, K. C. Park, and K.-I. Kim. Real-time cloud modeling and

rendering approach based on l-system for flight simulation. simula-
tion, 10(6), 2015.

[13] A. Lagae, S. Lefebvre, G. Drettakis, and P. Dutré. Procedural noise us-
ing sparse gabor convolution. ACM Trans. Graph., 28(3):54:1–54:10,
July 2009.

[14] M. Levoy. Display of surfaces from volume data. IEEE Comput.
Graph. Appl., 8(3):29–37, May 1988.

[15] B. Lipuš and N. Guid. A new implicit blending technique for volu-
metric modelling. The Visual Computer, 21(1-2):83–91, 2005.

[16] P. Man. Generating and real-time rendering of clouds. In Central
European seminar on computer graphics, pages 1–9. Citeseer, 2006.

[17] K. Perlin. An image synthesizer. ACM Siggraph Computer Graphics,
19(3):287–296, 1985.

[18] P. Prusinkiewicz and A. Lindenmayer. The algorithmic beauty of
plants. Springer Science & Business Media, 2012.

[19] W. T. Reeves. Particle systems—a technique for modeling a
class of fuzzy objects. ACM Trans. Graph., 2(2):91–108, Apr. 1983.

[20] J. Schpok, J. Simons, D. S. Ebert, and C. Hansen. A real-time cloud
modeling, rendering, and animation system. In Proceedings of the
2003 ACM SIGGRAPH/Eurographics symposium on Computer ani-
mation, pages 160–166. Eurographics Association, 2003.

[21] B. Wyvill and G. Wyvill. Field functions for implicit surfaces. In New

Trends in Computer Graphics, pages 328–338. Springer, 1988.
[22] G. Wyvill, C. McPheeters, and B. Wyvill. Data structure for soft ob-

jects. The visual computer, 2(4):227–234, 1986.
[23] J. Xu, C. Yang, J. Zhao, and L. Wu. Fast modeling of realistic

clouds. In Computer Network and Multimedia Technology, 2009.
CNMT 2009. International Symposium on, pages 1–4. IEEE, 2009.

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 519

(a) Another cloud generated using the modified
algorithm.

(b) Modification of the model on the left
by scaling the density field.

(c) Thin cloud (d) The same cloud in the left from
another point of view.

(e) Mini planet with orbiting asteroid. (f) Arrow point like object. Details in the
top are finer than the rest.

Figure 7: More results

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 520

	175382

