
Improving procedural 2D map Generation based on multi-layered cellular
automata and Hilbert curves

Yuri P. A. Macedo∗ Luiz Chaimowicz†

Universidade Federal de Minas Gerais, Department of Computer Science, Brazil

Figure 1: Close-up of a procedural level generated through the methodology presented in this work.

ABSTRACT

Procedural Content Generation (PCG) for Games is a field that in
the past few years has seen both extensive academic study and prac-
tical use in the games industry. One of its common uses being the
generation of maps for levels within games that rely on replayabil-
ity. While Cellular Automata is a PCG technique widely used for
the creation of minor graphical systems, it has not yet seen much
practical use in the generation of levels, part due to its inherent
stochastic nature. With the purpose of presenting a malleable ap-
proach for improving levels created through Cellular Automata, this
work presents a methodology that guides the generation process
through the use of fractals, specifically Space-filling Curves. The
product Automata of this process are implemented and polished on
the Unity game engine, as to present their potential for generating
procedural levels. Results show that this methodology can be used
for the generation of organic, cohesive game levels.

Keywords: Procedural Content Generation, Evolutionary Algo-
rithms, Cellular Automata, Fractals, Space-filling Curves, Hilbert
Curves

1 INTRODUCTION

As the video game industry grows, creating sufficient content to
satisfy the customers’ demands proves itself to be a struggle that
for some companies might as well be impossible [6]. The cost of
manually generating better content outpaces sales and revenue, to
the point where some companies are unable to follow the race for

∗e-mail: ypamacedo@gmail.com
†e-mail: chaimo@dcc.ufmg.br

games of greater scale [30]. This struggle to create ever more ex-
pensive games has lead large companies to search alternatives for
generating content. On the other hand, Indie developers face their
own struggles with creating more for their games with fewer re-
sources. Although their conflict is not a predatory competition,
the similar lack of resources and small teams can be the catalyst
for the search for alternative methodologies for content creation.
One such method for effectively dealing with resource limitations is
the paradigm of creating content automatically through algorithmic
methods, generally called Procedural Content Generation (PCG).

One of the first documented cases of PCG for games (PCG-
G) [13] might as well have started by the end of the 70’s. When
the designers’ objective was not to thoroughly optimize monetary
expenses, but instead, overcoming storage limitations. Enter Telen-
grad [18], an Atari/DOS dungeon crawler with enemies, treasures,
and dungeons with millions of explorable rooms. This six-digit
amount of content was stored in just about 50 kb of memory (ear-
lier versions of the game required as little as 8 kb). Being able to
achieve having a game with this much content was unprecedented
at the time, and it still would be in this day for any type of hand-
crafted levels. Instead, to create more with less, Telengrad had its
dungeons generated during execution time algorithmically.

Despite remaining as a low-profile development methodology
and as a research topic for three decades, it was mostly within the
last fifteen years that developers, both large and Indie, have turned
to Procedural Content Generation (PCG) as a tool for supplying the
demand for diverse, scalable content. This rise in popularity can
be attributed to several reasons: A PCG algorithm holds promise
for being able to generate an endless amount of whatever content
it specializes in; It holds the possibility of greatly reducing devel-
opment costs [19]; Finally, having the game create unique content
each time it is played could potentially bring new, innovative expe-
riences every time.

After the success of games such as Diablo, Left 4 Dead,

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 494

Minecraft, Spelunky, and many others that implemented some form
or another of PCG, the topic rose in interest. Some game devel-
opers even stated their use of Procedural Content Generation as a
highlight for promoting game sales. Even so, Procedural Content
Generation is deceptively hard to do right [29]. Game systems that
rely on procedural content are often considered fail to deliver on
their promise by their target demographic. Describing procedural
games as ’boring’, ’repetitive’, or even ’disappointing’ became a
common opinion amongst gamers, as both them and developers re-
alized that Procedural Content may not bring all that is desired of
it if not properly done. So much so that a wave of hatred towards
procedural content surged within part of the game community.

For the game developers, a procedural content methodology has
proven not to be as much as a boon for reducing costs. Instead PCG
introduced several trade-offs: On one hand, procedural content can
reduce workload and consequently costs for generating content.
However, it can only do so if the amount of it supersedes the cost
of creating a highly specialized and robust generation framework;
Second, if the target game for the PCG algorithm will not make
full use of dozens, hundreds, or thousands of said content, then it
might be cheaper assigning resources towards having it handcrafted
instead. This almost always yields better results, as the procedural
constructs today are still not as expressive, detailed, or engaging as
that which was created by experienced developers. Therefore, even
if a generator is deemed ’good’, one must still ponder if the having
more of said content compensates for the loss of that human touch.

Having lightly gone over the dilemmas, advantages and disad-
vantages of Procedural Content, it is important to address the im-
portance of PCG. For some developers Procedural Content is a nec-
essary step to meet consumer demand, for others it is a potential
tool to lower costs or attain better scalability. PCG is a field with
potential that still has a long path to thread before it can safely meet
on its premise. As such, it is deserving of the attention it receives:
The amount of related academic works steadily grows, and so does
the development of games that utilize it, both for commercial and
experimental purposes.

One of the topics of PCG that has seen great application within
the industry [13] is the generation of Game Space: A category of
PCG-G that consists of crafting the environment in which the game
takes space. For most games that allow the player to influence a
character’s movement within in a intractable area, this Game Space
is the ’Map’ within a ’Level’ (the whole of all game elements within
that space). There are a plethora of academic works discussing
methodologies for Map Generation, yet we feel that many still re-
frain from discussing how playable, or ’game-like’ resulting maps
can be. Another topic that is rarely touched upon is how to adapt
the proposed methodology to distinct game genres and archetypes.

As an effort to grow upon the field of generating procedural maps
for game levels, we propose in this paper a combination two exist-
ing distinct procedural systems to generate maps for games. This
paper also proposes a methodology through which existing studies
for generating general purpose procedural maps can be expanded
upon to generate full game levels.

Our work furthers the discussion over the generation of proce-
dural game maps. As a theoretical framework, we build upon the
existing discussion of PCG through Cellular Automata (CA): A
discrete model that has seen uses in many areas, including vege-
tation [5], ecology [5, 14], and human population dynamics [21].
Our contribution is two-fold: 1. We present a methodology for
generating organic game maps, proposing improvements to exist-
ing methodologies; 2. We develop a methodology and proof-of-
concept example that is applicable to both to the procedural gen-
eration methods described in this work, as well as others based
of Cellular Automata. The proof-of-concept illustrates within the
Unity [2] Game Engine our methodology’s applications and intro-
duces the concept of multiple layers for 2d procedural generation

based of CA.
The remainder of this work is divided as follows: Section 2

briefly covers few of the studies that analyze PCG as a field of re-
search and as an industry tool. It also reviews some methods that
have been proposed or related to the generation of maps/levels; Sec-
tion 3 goes over the basic concepts of the research areas from which
our methodology draws from; Section 4 describes in full detail our
map generation process, the algorithms involved in it, it can be im-
proved. Section 5 briefly discusses the generated maps, providing
a plethora of examples for the reader to form his or her own opin-
ions. Section 6 proposes how to expand the proposed methodology
pertaining the creation of additional content upon the foundation of
the map. Section 7 presents our final thoughts and conclusions on
this work, discussing future improvements to both our methodology
and its experimental evaluation.

2 RELATED WORK

This section will provide a brief overview and provide references
for related works. First, refers to works that classify, survey and
otherwise offer a comprehensive entry point for understanding the
basics of Procedural Content Generation. Second, it goes over the
current state of academic research on procedural map generation as
presented by the works of the last fifteen years. Third, it acknowl-
edges the works of an industry game that in many ways inspired us
to tackle generating procedural maps as we did.

2.1 PCG as a field of research
The evolution of PCG has been documented, analyzed, and stream-
lined [29, 13, 33] for those interested in dabbling with its concepts,
and for veteran researchers alike. Togelius et al. [31] proposes three
types of PCG oriented design that are defined by how much proce-
dural content influences the game it was designed for. It also defines
nine challenges that range from the generation of resources for di-
verse themes, to the inherent flaws to procedural content generation,
such as the modularization of generator systems, the lack of integra-
tion, or the blandness of the content it can create. As an overview
in most types of Procedural Generation, the PCG Book [29] sum-
marizes various works within the area, comparing and contrasting
them. Hendrikx et al. [13] covers the practical uses of procedural
content generation, defining a six-layered taxonomy that intends to
cover all types of procedural content. It also analyzes commercial
games that use PCG, discerning the types of procedural generator
implemented by each game.

2.2 Procedural Map Generation
Fractals [10], such as the Space-filling Curves described further in
this work, are widely used as computationally efficient methods for
procedural generation, as well as impressive models for topology
and erosion simulations [25]. They however are not as effective for
parametrized generators such as what should be desired from a level
generator. This is mainly due to fractals requiring and accepting
only a random seed as parameter to generate their shapes, restricting
any alterations to be done exclusively after the generation process.

Search based procedural content generation is a methodology
that attempts to return the ’best’ combination of procedural ele-
ments, given a set of parameters. It does so by searching a subset
from all the possible combinations of elements that create a proce-
dural system. This approach is greatly adaptable to distinct types
of content, including map/level configurations [12] that supports
quests and narratives, and attempts to generate maps that fulfill mul-
tiple objectives [32] for strategy games.

In the context of integrating map and story generation, Matthews
and Malloy [22] present, design, and implement a technique that
utilizes flood-fill algorithms. A designer’s document of restrictions
is interpreted for generating over-world maps with cities, towns,
and other landmarks that define large scale maps in geographical

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 495

cohesion with a story. Another work in this context by Valls-Vargas
et al. [34] designs a story driven map generator focused on the rep-
resentation of Plot Points and their causal relationship with the map
in which they occur. It then generates, and evaluates configurations
of maps that support a given story through planning algorithms.

Many procedural maps face the problem of generating un-
traversable, unexplorable, and/or unreachable areas. This is usually
tackled during the generation process, with path-finding algorithms.
In 3D environments, the landscape has to be tweaked to avoid these
flaws, but could still be too bland for the player to navigate in. Biggs
et al.[7] presents a combination of architectural techniques for gen-
erating landmarks that guide the player, helping him or her identify
their location within a larger 3d map.

Generative Grammars have been applied to map generation by
representing a map’s structure as rules of a graph grammar [3]. Rep-
resenting maps this way, by itself, does not allow for changing spe-
cific characteristics of the terminals (rooms), but it does allow for
search algorithms to sort and determine maps appropriate for meet-
ing criteria such as ’global size’ and ’difficulty’. Shaker et al.[28]
suggests two families of map generation for rogue-like dungeon
maps and for platformers: One of which is based on recursively
partitioning maps into segments based of Quad-trees, connecting
the rooms created by the partitioned units in order; The second be-
ing an agent that ’digs out’ a dungeon by traversing a space while
creating rooms.

Johnson et al. [15] presents a computationally efficient approach
to utilizing Cellular Automata as a basis for infinite procedural
2D top-down perspective maps. The cave generation algorithm is
proven to execute in polynomial time, its complexity being defined
mostly by the map’s width and height. It is effective enough to
be run on-line (during the game’s execution). This work intends
to develop the discussion on cellular automata maps, although not
necessarily for the purposes of infinite ones.

2.3 Combining Cellular Automata and Space-filling
Curves

Although the methodology of combining Cellular Automata with
Space-filling curves has not seen documented use within academic
works, it has seen an effective implementation within the commer-
cial game Galak-Z [4], by the 17-bit Indie Studio, published by
Sony Interactive. It utilizes from the process of generating subsec-
tions or ’chunks’ of the level with Cellular Automata, while using
Hilbert curves to design the overall dungeon layout. This method-
ology, while interesting and effective for the game’s levels, does
not fully explore the flexibility of employing Cellular Automata
and Space Filling curves for procedural generation. Therefore, this
work also intends to expand upon the Procedural Generator imple-
mented on Galak-Z: We introduce the generation of the entire map
from a single automata, as well as polishing methods to increase
the diversity of space-filling curves.

3 BACKGROUND

This section will briefly cover the basics of the theoretical funda-
mentals of our methodology. Our purpose is to present a basic
understanding of what goes behind Section 4. Each of the topics
described in the following subsections are fields of study on their
own, and we highly advise that, for the purposes of inquiring for
more detailed information, one would gain more from reading other
focused sources.

3.1 Cellular Automata
Cellular Automata is a discrete model with self-organizing proper-
ties that consists of grid, which can be finite or infinite in dimen-
sion, containing cells that can exist within a finite number of states.
These usually being a binary configuration such as ’On’ or ’Off’,
’True’ or ’False’, ’Alive’ or ’Dead’, etc. Periodically, each cell has

to update its own state based on the cells around it, which can be
done one cell at a time (Asynchronously) on a predetermined or-
der, or all cells at once (Synchronously). This constant shifting of
values generates distinctive results depending on the starting con-
figuration and the rules by which a cell evolves. The resulting grid
after a number of ’iterations’ or ’cycles’ can be a stable structure or
a constantly shifting landscape, occasionally looping into an evolu-
tionary cycle. Often, Cellular Automata generate interesting shapes
such as the ones presented in Figure 2.

Figure 2: The Cellular Automata generated by rule 30, 54, and 60 of
’The 256 Rules’ [20].

The automata’s universe starts at the ’configuration’ state: all
cells start with the same value, except by a finite predetermined
number of cells that begin at different states. These usually act
as the catalyst for change within the automata’s status quo. The
state of any single cell is determined periodically by the state of
it’s ’neighbors’ which itself is a concept that can be distinct for
each automata, such as the Von Neumann and Moore Neighborhood
concepts, presented in Figure 3.

Figure 3: Von Neumann and Moore neighborhoods for a single cell
(colored in black). The neighborhood’s size ’r’ can be increased to
consider the states of additional nearby cells.

Perhaps the most common examples of Cellular Automata are
Conway’s Game of Life [9], and Stephen Wolfram’s Elementary
Cellular Automaton [11]. The latter of which has been proven to be
Turing-Complete. Ever since its conception in the 1940’s, Cellu-
lar Automata have seen applications and studies in Biology, Com-
putability Theory, Computer Science, Mathematics, and Physics.

3.1.1 Multi-layered Cellular Automata

The concept of multi-layered cellular automata [24, 8] is one
that has not seen as much academic research as the general 2-
dimensional definition of the model. A multi-layered cellular au-
tomaton is a set of cellular automata where the rule-set for the cells
of each automata takes into account the state of the cells from other
automata. A representation of a multi-layered cellular automaton is
presented in Figure 4

The concept of multi-layered automata will be of relevance to
this work when introducing methods by which to improve the gen-
eration of maps in Section /refsec:proofOfConcept.

3.1.2 Synchronous vs. Asynchronous Updating

When updating Cellular Automata, one might update the state of
each cell immediately upon discovering its next state, or it might
update all cells at once after their following states are determined.
These are Asynchronous and Synchronous updating methodolo-
gies, respectively, and yield distinct results. Yet, Asynchronous
methods can have nuances of their own, specifying distinct update

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 496

Figure 4: A Multi-layered Cellular Automaton schematic drawing as
presented by [24].

orders which also yield different results. While the effects of Syn-
chronous and Asynchronous updating are clearly noticeable within
the rule-set of our Automata, the individuality of the shapes gener-
ated by each methodology become significantly less noticeable as
the constraints that will be presented further in this work are intro-
duced. Therefore, while examples of different iteration methodolo-
gies in this work’s automata are presented in Figure 6, all further au-
tomata shown follow a Synchronous updating order. Discussion on
the topic of Cellular Automata Updating methodologies will here-
after be left for related works [27, 8].

3.2 Space-filling Curves
Space-filling curves, or Peano Curves[26], are a concept in math-
ematical analysis first discovered by the end of the 19th century,
as a special case of fractal constructions. It pertains to curves
whose range contains all the available space within a discrete n-
dimensional space. That is, it maps a multi-dimensional space grid
(e.g. 2D) into one-dimensional space (1D), like a continuous thread
that visits every cell exactly once.

A useful property of these curves is that their tracing is gener-
ated through a function that maps information contained within one
dimension to another (e.g 1D to 2D) while preserving locality. This
property allows Space-filling curves to be applicable in Computer
Science applications such as clustering [23], and improving data
structures [17, 16].

Hilbert curves are specific cases of Space-filling Curves that
present interesting shapes when mapping 1D coordinates to 2D, as
shown in Figure 5.

Figure 5: Hilbert Curves mapped on a NxN grid for the values of
N = 1,2,4,8,16,32, respectively.

Although the process described in this work could be used for
any space-filling curve, our experiments shall be limited only to
Hilbert curves, as to further the discussion started by the Galak-Z
game. Exploring the diversity in the generated content by choosing
from a repertoire of distinct Space-filling Curves is something that
will be explored in future work.

4 METHODOLOGY

This section describes the implementation, parameters and design
decisions of the Cellular Automata and Space-filling Curves, as
well as the methodology for integrating both.

4.1 Cellular Automata
Our Cellular Automata follows the cave generation method that is
best introduced by Johnson et al. [15]. This procedural cave gen-
eration method is comprised of a 2-dimensional NxM grid, and a

rule-set with two types of cells, true and false. The behavior of any
one C cell is defined strictly by the state of it’s r = 1 Moore Neigh-
borhood (8 adjacent neighboring cells), from which T is the number
of true cells, and F is the number of false ones. For a cell that is on
the grid’s edge, positions outside of the grid count as True cells.
The Cellular Automata’s Grid is initialized with semi-random dis-
tribution of True and False cells which guarantees that a percentage
’Fill’ of cells are False.

Most Cellular Automata delegate to their own cells a timer with
which the cell updates itself based upon the state of its neighbors.
Should all cells operate on the same timer, as it is the case for our
Automata, then all cells are updated instead within universal steps,
which are hereafter refereed to as ‘Iterations’. One iteration of our
Cellular Automata updates each cell in accordance to the following
rules:

• T > 4⇒C = true

• T = 4⇒C =C

• T < 4⇒C = False

Our preliminary experiments suggest that an equal number of
True and False cells (Fill = 0.5) presented better results, as its rules
tend to converge to all cells becoming False for higher filling values
(Fill > 0.5), or all cells except some of those adjacent to the edges
of the automata being True for lower ones (Fill < 0.5). This rule-
set converges within a reasonable linear number generations as its
rules are simple enough not to fall into a looping sequence of states.
Examples of the resulting automata is presented in Figure 6

Figure 6: Three versions of the same Cellular Automaton generated
from different updating methods (from left to right): Synchronous;
Asynchronous, with cells updated in a random order; Asynchronous,
with cells updated sequentially ordered by their position in the grid.
Black cells are true, white cells are f alse.

Simple as it is, this methodology could already be converted to
a 2D game map with a top-down perspective. As with Johnson’s
’Cave Crawler’[15] which features an additional step for generating
continuous, infinite maps with adjacent grids. All it would take is
to map True cells to floor tiles such as grass, and False cells to
unwalkable tiles such as walls (or vice-versa). Yet, even should
another specialized algorithm place game elements within this map
such as items, coins, enemies, etc., its design is likely to still be
lacking: There are a great number of unaccessible areas, and the
geometry of the path hardly represents progression.

To better mold and orient the generative process, we propose
the introduction of space-filling curves, such as Hilbert Curves, as
a guide for the creation of paths within the map. This step is in-
troduced prior to iterating the automata, during the ’configuration’
step.

4.2 Space-filling Curves
The purpose of utilizing Space-filling curves is to create a guide-
line by which the automata updates its cells around it, while pre-
serving the curve’s shape. This guideline could represent the path
by which the player must explore the map, and the curve’s inherent
properties assist in creating areas to place content and to explore.

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 497

The methodology for generating a path out of the points of any
type of Space-filling Curve, as well as adapting it for usage with the
automata are summarized as the following steps:

1. Plot the curve within the Automata’s grid.

2. Scale the curve to increase distance between its points.

3. Shift the origin of the grid to randomize which of the curve’s
shapes remains in the grid.

4. Trace a path through the points within the grid’s limits.

5. Imprint the curve into the Grid

These steps are further explained within this subsection. Figure
7 illustrates the automata’s changes from step 1 to 4.

4.2.1 Plotting
To place the Space-filling Curve within the automata’s Grid, we
start by generating a Hilbert curve that fills all of the space of the
grid. Therefore, to also cover grids where M != N, the curve’s order
is defined by α = Max(M,N), generating a curve of length α2 into
a αxα grid. The path of the 1-dimensional representation of the
curve is stored into a list that is the basis for the tracing of the map’s
path.

4.2.2 Scaling
The Space-filling curve that occupies all of the grid’s space is then
rescaled by an integer amount 1 < S < α as to increase the distance
between the points of the curve (eg.: S = 2 would imply a distance
of 1 cell between points of the path).

4.2.3 Shifting
Although fractals have proven to be valuable tools for generating
procedural content, their inherent predictability can be a problem
for generating distinct content. For the purposes of utilizing fractal
curves as paths for game maps, some measures have to be taken to
attain the desired diversity of procedural content. The first of which
is to define a random sector from the entire curve from which to
create a path upon. This is done by dividing the (N ∗S)x(M∗S) grid
by the power of the Hilbert curve, resulting in a ((N ∗S)/α)x((M ∗
S)/α) grid from which a random offset is selected. The curve is
then Shifted to that position. Subsection 4.4 returns to the subject
of introducing random variations, once the integration between the
Automata and Space-filling Curve is complete.

4.2.4 Tracing a Path
The steps taken to alter the space-filling curve up to this point have
it not filling the entirety of the grid’s space, instead only a few of its
points remain within the grid’s bounds. The ordering of the curve’s
path remains within a list stored from the curve’s plotting, and now
a new path has to be traced from what points remain.

Let η be the set of k split segments from the space-filling curve
that remain within the grid. To create a traversable path for the
player, all k paths from η must be combined into a single path.
The position in the list i by which each point σ from the curve
is created ranges from 0 ≤ i < α2. In order to connect the split
segments ηa,ηb, at least two points σi ∈ ηa,σ j ∈ ηb must be con-
nected, where i < j < α2.

To define a criteria for connecting two points, a function
λ (σi,σ j) must be established. In our case, for preserving the non
existence of diagonal paths, our function for verifying if two points
are connectible checks whether they are on the same X or Y axis in
the grid. Formally:

λ (σi(xi,yi),σ j(x j,y j)) =

• True: (xi = x j)∨ (yi = y j)

• False: (xi 6= x j)∧ (yi 6= y j)

Given the function for connecting points from distinct paths, for
each path a and b = a+1, starting from a = 0: for each point σ j ∈
ηb and σi ∈ ηa, with 0 ≤ (i = length(σa)) < (j = length(σb)) <
α2, the function λ (σi,σ j) is checked. If it returns true, the points
become connected, which in turn connects both paths: ηb = ηa ∪
ηb. If it fails, then it attempts by brute force to connect to previous
points 0 ≤ g < i from σa. If no pair of points can be found, then
it attempts to connect other points i < h < j from σb to each point
of σa. This process of brute force in theory could bring a factorial
worst case complexity, based of the number of points within the
grid. However, due to the high number of points spread across the
grid, the and the regularity of the fractal’s shapes, the theoretical
worst case does not apply in practice. The algorithm ends when the
k number η paths equals 1, meaning all paths have been connected.

4.2.5 Imprinting

The resulting curve from all previous steps is one that represents
a linear path that may have generated dead-ends and cycles, but
mostly follows a longer, main path, as the one presented in Figure
7. These possible dead-ends and cycles are not detrimental to the
map’s design, and in fact, they are useful as a basis to expand as
secret or optional areas to explore. One possibility of expanding the
concept of the curve map’s path could be to connect more segments,
as to create alternative ways to reach the same place or complete the
level’s map.

Figure 7: From left to right, the first four steps described in section
4.2 are represented.

To have the cellular automata’s topology integrated with the
curve, the configuration step (before any iterations) must be altered
to set all cells that are covered by the path to a value. Which in the
case of our rule-set is f alse. This however still presents a problem,
as the automata’s rules could cause part of the path to be erased
depending on the random configuration of the remaining cells.

To avoid this, there are two safety measures that will come in
handy for future improvements: 1. Introduce the concept of ’lock-
ing’ cells, so that their values are not changed during iterations, and
apply it to all cells within the path; 2. Redefine which cells belong
to the the curve’s path, introducing the concept of a path’s ’girth’.
Once all cells from the curve’s path are defined, each other cell
within a Moore distance of Pg of at least one cell within the path
are synchronously added to it. A value of Pg = 1 already guaran-
tees that the path will not be broken, as the cells from the original
path are all adjacent to f alse cells.

4.3 Securing Negative Space
While guaranteeing paths between two points is possible with the
tracing of paths through the Cellular Automata, there is nothing
stopping the automata into generating alternative, unintentional
paths which could effortlessly lead the player from the start to the
end of the map. While some games would not be bothered by this,
levels that present challenges to the player as he or she traverses
from the beginning to the end of the level’s map must restrict these
alternative paths from emerging. Therefore, a safety lock to avoid
unintentional paths is required.

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 498

By the same logic that we orient the automata into organize it-
self around the Space-filling Curve path, we generate a ‘Negative
Space’ path: a second curve that covers all the areas of the grid
that the Hilbert Curve does not. This area is then trimmed so that
it’s girth is no larger than a specified ’Negative Girth’ parameter
Ng. This negative curve should influence as little as the automata as
possible as to optimize the amount of random True and False cells
the automata can work with.

The algorithm for trimming negative space is a simple one: it
begins by splitting all the cells not covered by the curve path being
added to a subset of nodes γ , and all cells that do to another subset
δ . Then, for each cell c ∈ γ , if there is at least one cell d ∈ δ

within a Moore neighborhood of 1, then c is moved from subset
γ to δ . This algorithm updates synchronously each cell within γ

for (S
2 −Pg−Ng) iterations, where S is the Scaling of the Space-

filling curve. For the desired girth to be obtained, S must be an
even number, as the Negative-path is trimmed from both it’s sides
at the same time. Finally, the resulting automata setup shown in
Figure 8 contains paths for the player to follow that are guaranteed
not to be broken by the automata’s own rules.

Figure 8: To the left, the Cellular Automata marked with the Space-
filling Curve’s path (green), as well as the negative-path curve (yel-
low). To the Right, the resulting automata after a number of itera-
tions until it stabilizes. The yellow dot represents the beginning of the
path, the red one represents the end. Colors in between mark the
path. Parameters for this Automata are as follows: N = 100, M = 100,
Fill = 0.5, S = 22, Pg = 1, Ng = 1

4.4 Polishing
Although we have achieved being able to generate the automata
whilst maintaining the cohesiveness of the player’s path, as shown
in Figure 8, the resulting automata can still look stiff. The number
of unreachable areas has been minimized, but the path still looks
artificial: the points from the curve are scattered in the x and y axis
in regular intervals, there are too many straight segments, and parts
of the automata’s topology are ’scarred’ by the path curves.

During the configuration of the automata, two additional steps
are introduced before the first iteration, in an effort to minimize the
interference of the curves where it is not intended: The first is to
’rotate’ the grid, as to break the monotony of completely straight
paths; The second, is to shift each point on the path by a reasonable
amount, and then retrace the path through the connected points.
This visually distorts the recognizable fractal shapes of the Space-
filling curves, as well as changing the physical distance between
points in the map.

4.4.1 Rotating
Rotating the map’s grid presents a dilemma that requires design
concessions. As the automata still requires a MxN grid, having it
rotate means that one of two alternatives has to be taken to maintain
it a square 2-dimensional grid: 1) After rotating the grid, scale it
down to fit the original MxN dimensions; 2) Redefine the expected
grid’s length in each axis, depending on the rotation angle. Re-
gardless of the alternative, rotating the grid is likely to cause some
information loss during floating point to integer conversions.

The first alternative introduces a myriad of problems. As a ro-
tated version the original grid is rescaled to fit it’s original propor-
tions, the number of random cells it has available to generate the
automata could be greatly reduced. The same is true for the propor-
tions of the curve-path and the negative-path: as both of them are
reduced to fit the grid, it is not guaranteed that their girths will re-
main near their specified values. Assuming the worst case M = N,
and a rotation of nπ

2 + π

4 radians (45◦, 135◦, 225◦, 315◦, etc. de-
grees), the length in the x and y axis of the grid would becomeN

√
2,

meaning a 29% reduction of the available map space. Having less
cells to work with causes makes it harder for the automata to cre-
ate balanced, organic shapes, with reinforces the ’scarring’ effect
caused by the path curves.

The second alternative is much more appealing in comparison.
Instead of reducing the grid, a new larger grid is generated to fit the
rotated one. Even if this means that the generated map is likely to
exceed the expected bounds, it will never do so by a larger amount
than the worst case of N

√
2 (41%) which is acceptable.

4.4.2 Shifting
Rotating the Grid breaks some of the ’sameness’ of the curve-path
shapes, but the characteristic fractal appearance remains noticeable.
As a second polishing step, each point within the curve-path is
shifted randomly by an amount ε = S

2 −Pg−Ng. This value is the
same as the number of iterations needed to trim the negative space,
and represents the closest distance between the curve-path and the
negative-path. For each point σ(x,y) in the curve, it new position
is determined as σ(x+Rand(−ε,ε),y+Rand(−ε,ε)). The final
result of both polishing steps is presented in Figure 9.

Figure 9: The same automata presented in Figure 8 after rotation
and shifting operations are introduced.

As all points were shifted, the fifth step described on subsection
4 would have to be repeated in order to imprint onto the automata
the shifted path. The original tracing of the unshifted path is still
required for the tracing of the negative-path. Therefore, the order
of the steps cannot simply be rearranged, and a second iteration of
method 4.2.5 is required.

To help understand the process up to the final automata, we be-
lieve its best to help understand why each step was necessary before
introducing others. Therefore, now that all steps have been pro-
posed, an overview diagram summarizing all of the methodology is
displayed in Figure 10.

Both polishing operations complete their tasks within polyno-
mial time. In conjunction with the other methods described in this
work, the process for generating maps is still accomplished within
acceptable complexity to be executable online.

5 EXPERIMENTS

Experiments were implemented in C# within the Unity Game En-
gine, and performed on a 3.20 GHz 64 bits AMD FX-8320E Eight-
Core Processor with 8 GB RAM, and a Nvidia GeForce GTX 1060
6G graphics card. For the purposes of testing the process adaptabil-
ity to be executed during a game’s runtime, each iteration of any
cellular automata, as well as other minor tasks, are evenly divided
across distinct game frames, through the use of Unity’s ’Corou-
tines’. This means that, while it takes longer to be completed, the

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 499

Figure 10: The complete sequence of steps for the generation of the
procedural map automata. The images for the ’Space-filling’ curve
section are merely illustrative and do not represent the same curve-
path displayed in all other images.

methodology can be executed in the game’s background. While a
considerable slowdown is still present, we firmly believe it could be
improved through a more effort on optimizing the division of tasks
across game frames.

For analyzing our results, our baseline for comparison are the
Automata before the introduction of the curve-path and the polish-
ing methods. A purely quantitative statistical data-driven analysis
for the results would yield no significant comparison over the base-
line as to measure an abstract concept as the ’quality’, or ’fun’ of
a level. A qualitative or hybrid analysis however with playable in-
terface and a test however would benefit our analysis greatly. Un-
fortunately, the framework required for such tests requires a great
amount of preparation, as does the process of acquiring potential
candidates and creating qualitative/hybrid evaluation methods, such
as questionnaire’s and interview scripts. Yet, this is definitely a goal
we intend to pursue for future works that further the discussion of
this methodology.

As it is often the case with results that are hard to evaluate quan-
titatively, it comes down to displaying examples while attempting
to minimize the authors’ opinion. To counterbalance this, we have
selected a large set of maps presented in Figure 16 generated with
random seeds, but the same parameters presented in Figure 8, to
help the reader to formulate his or her own opinion on the patterns
of generated Automata.

One repercussion of adding the curve-path that we did not ini-
tially account for was how some maps would become more claus-
trophobic with few open areas. This occurs mainly due to there
being less cells and space to generate topology. To compensate for
this, we have performed tests varying the number of cells that are
generated as True during the configuration step, as shown in Figure
11. Each configuration of cellular automata was generated at an
average of 0.8 seconds.

While it is undeniable that some of the charm of pure cellular
automata is lost, we believe is one that has to be coped with. Pure
procedural systems might generate beautiful results, but the unpre-
dictability of those systems hamper the possibility of utilizing them
in commercial games. In no way we intent do critique or demoti-
vate the development of other methods that accept the randomness
of pure automata or other procedural systems. On the contrary, we
are eager to see alternatives to our methodology. But we do ac-

Figure 11: Experiments with the Fill parameter for different values
as to find a compensation for the reduction in random cells by the
imprinting of paths.

knowledge that our intent is to better harness procedural systems,
and that some of it’s natural beauty may be lost for it.

The general image of the Space-filling Curve, the Hilbert Curve,
is still identifiable in some of the shapes. It is a sign that more con-
trolled random factors need to be introduced within the curve-path
algorithm, as an attempt to introduce new, alternative paths. Yet,
the generated map shapes follow a visible progression and allow
for use as a base for a completely procedural level design. While
improving upon this system is also task for future work, still within
this one we introduce the concepts on how to build content upon
the basis of generated maps.

6 FROM MAPS TO LEVELS

The proposed methodology allows the generation of an organic ge-
ometrical configuration adapted to a player’s path through a level’s
map. However, as each game has its own features, a general pur-
pose generator can only get so far: a decent, complete, game level
requires many other resources such as enemies, items, power-ups,
and other intractable elements. It would also require other topo-
logical and environmental elements to bring an interesting, visually
appealing game. All of these domains of content being specific to
the archetype of game in question. Furthermore, introducing addi-
tional elements to the map would require a flexible framework with
which existing constructions could be interpreted, as for determin-
ing where to create additional content.

As a theoretical background for expanding upon the concept of
cellular automata as a basis for map generation, this work draws
from the definition of multi-layered cellular automata mentioned
within the subsection 3.1. We propose the concept of having
additional layers of content being created by semi-independent
’Automata-layers’ that include within their rule-sets specifications
for interacting with ’Mask-layers’: grid layers whose purpose is
not to act as automata, but to instead parse information between
automata.

As a proof of concept for both Automata-layers and Mask-layers,
we implement and present an example of each to generate moun-
tainous topological markings and vegetation behavior within the

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 500

context of a hypothetical 2D top-down perspective game. The proof
of concept presented within this section was implemented in the
professional game engine Unity 2D [2], version 5.6.1f1 (64 bit),
Personal edition.

6.1 Mask-layers
While the resulting Automata conveys information by itself, it
could be useful to draw specific types of information from it. While
an algorithm that requires a specific type of information from a
layer could implement a method to do so by itself, it would be far
more organized to have this information stored within an accessible
structure, assuming it is relevant for a number of other algorithms.

As an example of this, if the designer were to determine the posi-
tions within the grid where True cells change into False cells (bor-
ders), as to generate cliffs on the intersections of cell types, having a
representation of the grid that contains only that information would
be very helpful. In this example, a ’topological mask’ could check
these intersections and store it in a separate grid (or, for the sake
of efficiency, store distinct classes of values within each cell). This
type of mask is exemplified in Figure 12. And its implementation is
as simple as determining which True (black) cells on the automata
contain at least one False cell within a Moore Neighborhood of 1.

Figure 12: A base automata, a topology layer-mask generated from
automata, and a mapped version of the topology automata to 2d
sprites.

This topological mask by itself is already enough to generate
cliffs from 2d tiles through a simple grammar-based approach [28],
as exemplified in Figure 13.

Figure 13: From the base layer, to the topology layer-mask, 2d tiles
are generated depending on their position in the topology mask, cre-
ating the aspect of a continuous ’natural cliff’ structure. The visual
quality of the resulting tiles map (right image) is the result of editing
and experimenting with or selected free visual assets[1]. As of now,
we cannot present a theoretical basis as how to optimize the visual
quality of matching 2d tiles.

6.2 Automata-layers
Automata-layers are the main concept by which we propose im-
proving the systems proposed so far. Their functioning is as sim-
ple as having additional cellular automata generating other features
of the level such as vegetation, objects, roads, among other struc-
tures that could be modeled. These structures then use information
from the Mask-layers, as well as some information from the orig-
inal Base automata (although these should be separated into their
own Mask-layers themselves).

The benefit of having a multi-layered architecture is integrating
the results of one automata with another. In this case, the tree-
generating automata is integrated to the topology layer-mask and
the base layer, in the sense that it does not update cells that are

part of the space-filling curve path, or aree marked as ’cliffs’ in the
topology layer. Creating additional automata that consider restric-
tions from other layers ensures the product of one does not interfere
with the others.

6.3 Proof of Concept
A ’Tree Generating Automata’ is proposed as an example of this.
This layer’s automata is somewhat more complex than the base au-
tomata presented so far, but it represents vegetation dynamics [5]
fairly well, and it fulfills its purpose as a demonstration of the ca-
pabilities of the methodology presented in this work. Its purpose
is to simulate the growth of trees within the map, while taking into
account the player’s path and topology.

The automata of this layer has cells whose integer values range
from 0 to 255: cells with a value of 0 do not have a tree created at
their position; Cells with values between 1 and 4 are spaces that are
’growing’; Cells with values of 5 and higher have grown into a tree.
Each cell with a non-zero value increases its own value by 1 at each
iteration, making so that the value of the cell represents the ’age’ of
the tree.

The updating method for each cell c that does not already contain
a tree takes into account the age of each cell d nearby that has a tree,
which is represented by νd = valued −4. When updating a c cell it
has a 1− (0.95νd) probability of having its value change from 0 to
1, for each other within a Moore Neighborhood of 2 with νd > 0.
This automata presents no conditions for eliminating trees, as most
automata that model organic behaviors [9]. Therefore, if left to
update during a sufficiently high number of iterations, the Automata
would converge and stabilize once all positions on the grid are filled
with trees. As it is defined, the designer would have to determine a
number of iterations for the expected amount of vegetation desired,
as shown in Figure 14.

Figure 14: Evolution of the ’tree-generating automata’ without the
introduction of space-filling curves (Parameters: N = 100, M = 100,
Fill = 0.01). The greener the cell, the older it is compared to the
other trees. As trees need to be ’5 iterations old’ for them to start
spawning other trees, the automata changes the most every 5 itera-
tions. This age restriction also prevents trees from spreading wildly,
instead forming small forests.

As with the layer-mask, we have set sprites for each tree: the
older the tree, the bigger it’s sprite becomes, trees younger than
5 iterations have alternative, smaller sprites. Examples of this are
shown in 1 and 15. With as little as 2 layers of content, the result-
ing map already shows promise. Many more layers can be added to
extend one’s desired concept of the generated level, and those pre-
sented here are merely examples and suggestions. Other types of

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 501

environments such as caves, islands, mountains, and other organic
environments can be designed from this methodology, as long as
their characteristics can be reasonably modeled by the principles
of Cellular Automata, which have proven in this and many other
works to be extremely flexible. The entire process from the gen-
eration of the space-filling curve, to the end of the tree-generating
automata takes an average of 8.6 seconds.

Figure 15: Examples of finalized maps.

7 CONCLUSION

This work proposes and implements a methodology that improves
upon the generation of procedural maps through cellular automata
by benefiting of the properties of Space-filling Curve Fractals. The
methodology does not deviate from the low computational com-
plexity of the existing methodologies and therefore remains viable
as a robust Procedural Content Generation tool executable at run-
time. This work also contributes as to offer guidelines and examples
for improving maps generated through cellular automata.

A field as young as procedural generation still has a path to travel
before it can safely become an industry standard for commercial
games, without falling into the traps and commitments of gener-
ating procedural systems. Yet examples of games that thrive with
innovative procedural experiences, and academic works that doc-
ument, study, and improve upon them means we are getting ever
closer to that point.

As for the methodology presented on this work, it still has areas
to improve upon. A qualitative analysis of the generated content
would aid greatly in finding repeating or ’boring’ patterns, as with
many implementations of PCG maps. This requires a framework
for ’playing’ the levels as well. And although building a framework
and undergoing the necessary steps for a robust qualitative evalua-
tion is time-consuming challenge, it is one that we are keen on the
idea of tackling. On doing so, we plan to extend upon the concept of
additional generic layers, including ones that are oriented towards
game-play and intractable elements.

ACKNOWLEDGEMENTS

The authors would like to thank CAPES, CNPq and Fapemig for
their financial support.

REFERENCES

[1] "opengameart". www.opengameart.org/, 2017. Accessed: 2017-08-7.
[2] "unity 3d/2d game development platform”. www.unity3d.com/, 2017.

Accessed: 2017-08-7.
[3] D. Adams et al. Automatic generation of dungeons for computer

games, 2002.
[4] Z. Aikman. "unite 2014 - generating procedural dungeons in galak z".

https://www.youtube.com/watch?v=ySTpjT6JYFU, 2014. Accessed:
2017-08-7.

[5] H. Balzter, P. W. Braun, and W. Köhler. Cellular automata models for
vegetation dynamics. Ecological modelling, 107(2):113–125, 1998.

[6] J. Benson. World of warcraft team: “procedural content is totally
something we’ve talked abfout”. www.pcgamesn.com/wow/world-
warcraft-team-procedural-content-totally-something-we-ve-talked-
about, November 2013.

[7] M. Biggs, U. Fischer, and M. Nitsche. Supporting wayfinding through
patterns within procedurally generated virtual environments. In Pro-
ceedings of the 2008 ACM SIGGRAPH symposium on Video games,
pages 123–128. ACM, 2008.

[8] A. Bonomi. Dissipative multilayered cellular automata facing adap-
tive lighting. 2009.

[9] J. Conway. The game of life. Scientific American, 223(4):4, 1970.
[10] D. S. Ebert. Texturing & modeling: a procedural approach. Morgan

Kaufmann, 2003.
[11] P. Grassberger. Long-range effects in an elementary cellular automa-

ton. Journal of Statistical Physics, 45(1):27–39, 1986.
[12] K. Hartsook, A. Zook, S. Das, and M. O. Riedl. Toward supporting

stories with procedurally generated game worlds. In Computational
Intelligence and Games (CIG), 2011 IEEE Conference on, pages 297–
304. IEEE, 2011.

[13] M. Hendrikx, S. Meijer, J. Van Der Velden, and A. Iosup. Proce-
dural content generation for games: A survey. ACM Transactions on
Multimedia Computing, Communications, and Applications (TOMM),
9(1):1, 2013.

[14] P. Hogeweg. Cellular automata as a paradigm for ecological modeling.
Applied mathematics and computation, 27(1):81–100, 1988.

[15] L. Johnson, G. N. Yannakakis, and J. Togelius. Cellular automata for
real-time generation of infinite cave levels. In Proceedings of the 2010
Workshop on Procedural Content Generation in Games, page 10.
ACM, 2010.

[16] I. Kamel and C. Faloutsos. Hilbert r-tree: An improved r-tree using
fractals. Technical report, 1993.

[17] I. Kamel and C. Faloutsos. On packing r-trees. In Proceedings of
the second international conference on Information and knowledge
management, pages 490–499. ACM, 1993.

[18] D. Lawrence. Telengrad. www.aquest.com/telen.htm, 1976.
[19] J. Lee. "how procedural generation took over the gaming indus-

try”. www.makeuseof.com/tag/procedural-generation-took-gaming-
industry/, 2014. Accessed: 2017-08-7.

[20] W. Li and N. Packard. The structure of the elementary cellular au-
tomata rule space. Complex Systems, 4(3):281–297, 1990.

[21] H. Liang and Z. Wang. Optimized distribution of beijing population
based on ca-mas. Discrete Dynamics in Nature and Society, 2017,
2017.

[22] E. A. Matthews and B. A. Malloy. Procedural generation of story-
driven maps. In Computer Games (CGAMES), 2011 16th Interna-
tional Conference on, pages 107–112. IEEE, 2011.

[23] B. Moon, H. V. Jagadish, C. Faloutsos, and J. H. Saltz. Analysis of the
clustering properties of the hilbert space-filling curve. IEEE Transac-
tions on knowledge and data engineering, 13(1):124–141, 2001.

[24] A. Nakayama, T. Yamamoto, Y. Morita, and E. Nakamachi. Develop-
ment of multi-layered cellular automata model to predict nerve axonal
extension process. In VI International Conference on Computational
Bioengineering, 2015.

[25] J. Olsen. Realtime procedural terrain generation, 2004.
[26] H. Sagan. Space-filling curves. Springer Science & Business Media,

2012.
[27] B. Schonfisch. Synchronous and asynchronous updating in cellular

automata. 1999.
[28] N. Shaker, A. Liapis, J. Togelius, R. Lopes, and R. Bidarra. Con-

structive generation methods for dungeons and levels. In Procedural
Content Generation in Games, pages 31–55. Springer, 2016.

[29] N. Shaker, J. Togelius, and M. J. Nelson. Procedural Content Gener-
ation in Games. Springer, 2016.

[30] Takatsuki. Cost headache for game developers.
www.news.bbc.co.uk/1/hi/business/7151961.stm, December 2007.

[31] J. Togelius, A. J. Champandard, P. L. Lanzi, M. Mateas, A. Paiva,
M. Preuss, and K. O. Stanley. Procedural content generation: Goals,
challenges and actionable steps. In Dagstuhl Follow-Ups, volume 6.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2013.

[32] J. Togelius, M. Preuss, and G. N. Yannakakis. Towards multiobjective

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 502

procedural map generation. In Proceedings of the 2010 workshop on
procedural content generation in games, page 3. ACM, 2010.

[33] J. Togelius, G. N. Yannakakis, K. O. Stanley, and C. Browne.
Search-based procedural content generation: A taxonomy and survey.
IEEE Transactions on Computational Intelligence and AI in Games,
3(3):172–186, 2011.

[34] J. Valls-Vargas, S. Ontanón, and J. Zhu. Towards story-based content
generation: From plot-points to maps. In Computational Intelligence
in Games (CIG), 2013 IEEE Conference on, pages 1–8. IEEE, 2013.

Figure 16: Different versions of the parameters used for the automata
in Figure 8, executed with different random seeds.

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 503

	175350

