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Figure 1: The three ViZDoom’s scenarios played by the agent. Left: Basic. Center: Defend the Line. Right: Medikits and Poisons.

ABSTRACT

First-Person Shooter games have always been very popular. One of
the challenges in the development of First-Person Shooter games is
the use of game agents controlled by Artificial Intelligence because
they can learn how to handle very distinct situations presented to
them. In this work, we construct an autonomous agent to play dif-
ferent scenarios in a 3D First-Person Shooter game using a Deep
Neural Network model. The agent receives as input only the pix-
els of the screen and should learn how to interact with the envi-
ronments by itself. To achieve this goal, the agent is trained us-
ing a Deep Reinforcement Learning model through an adaptation
of the Q-Learning technique for Deep Networks. We evaluate our
agent in three distinct scenarios: a basic environment against one
static enemy, a more complex environment against multiple differ-
ent enemies and a custom medikit gathering scenario. We show that
the agent achieves good results and learns complex behaviors in all
tested environments. The results show that the presented model is
suitable for creating 3D First-Person Shooter autonomous agents
capable of playing different scenarios.

Keywords: 3D first-person shooter, autonomous agent, reinforce-
ment learning, deep neural networks.

1 INTRODUCTION

First-Person Shooter games have a big popular appeal. This sub-
genre of action games had a great impact on audience since the
first games of this type, like Wolfenstein3D (id Software, 1992) and
Doom (id Software, 1993), and keep impacting the players until to-
day with popular series, like Call of Duty (Activision), Battlefield
(Electronic Arts) and Counter-Strike (Valve). The development of
the game industry brought the need of better characters controlled
by Artificial Intelligence in these games. Although scripted players
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are becoming more easy to make, they still need to have all behav-
iors explicitly created by the programmers.

To solve this problem, the creation of an autonomous agent that
learns how to behave in different environments is a desired objec-
tive. However, creating an autonomous agent to play a complex
game like First-Person Shooters is very hard. Such agent must be
capable of taking a wide range of actions, like exploring your sur-
roundings, aiming and shooting enemies, picking up items and sur-
viving as long as possible. Ideally, the agent should be capable of
learning complex behaviors with the minimum number of informa-
tion given to him directly, i.e., scripted.

One desired characteristic is that the input received by the agent
is the current screen view. Using only the pixels of the screen guar-
antees input fairness, which means that the input is the same for
every player, even if he is a human player. However, the construc-
tion of an autonomous virtual player that receives as input only raw
pixels is a very difficult task. Deep Learning [11] is a technique
which can handle this type of problem. Since its development, [7]
it was extended to solve different tasks. Recently, it is also being
used to model autonomous game agents that receive as input only
the pixels of the screen [15]. Thus, the creation of an autonomous
game character that learns complex behaviors by himself begins to
become feasible.

The goal is to create an agent who learns adequate behaviors by
receiving a reward for every action taken in a given moment. Re-
inforcement Learning [22] is the appropriate learning paradigm to
solve this type of problem. The learning process moves towards a
solution that maximizes the numerical reward by choosing one of
the possible actions in that state. In other words, the agent must
learn the best action to take in every state. Combining Deep Learn-
ing and Reinforcement Learning, we have a strong technique to
handle such problem.

In this work, we develop a Deep Reinforcement Learning au-
tonomous agent to play three different scenarios in a 3D First-
Person Shooter game. We use the API developed by Kempka et
al. [8], ViZDoom, a research platform based on the game Doom
(Figure 1) intended for research in Machine Visual Learning and
Deep Reinforcement Learning. This tool gives a direct access to the
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game engine and allows the construction of a custom game agent
that sends commands to the engine and receives information about
the current state of the game.

In a previous work [20], we used a Deep Neural Network ar-
chitecture intended for solving a Supervised Learning problem.
This network was validated in a classification problem and was ap-
plied in an autonomous agent for playing a 3D First-Person Shooter
Game. In that work, we discussed the possibility of creating a gen-
eral network capable of solving problems from different learning
paradigms. In the present work, we focus on the development of an
agent to play the game. A network architecture was created, it is
more suitable for game playing and behaves better on the proposed
environments.

This paper is organized as follows. In Section 2, we summarize
some works which use a Deep Neural Network model to play dig-
ital games. Section 3 brings a description of Q-Learning, the main
algorithm used in Reinforcement Learning problems. We describe
the scenarios played by the agent in Section 4. The description of
the performed experiments is shown in Section 5. In Section 6,
we show obtained results and discuss them. Lastly, some possible
future works are suggested in Section 7.

2 RELATED WORK

The first use of a Deep Learning model in Reinforcement Learning
was made by Mnih et al. [15]. They trained a Deep Neural Net-
work using a variant of the Q-Learning algorithm. Using as input
only raw pixels from the screen, this approach has been used suc-
cessfully to produce agents capable of playing digital games. In this
pioneering work, a Deep Q-Learning model learned to play seven
Atari 2600 games using as input a brute high-dimensional input,
only the raw pixel data. The authors also used an adaptation of
Q-Learning called Experience Replay [13], which improved the ef-
ficiency of data use, increased the learning speed and led to a better
choice of parameters to avoid local minima.

Mnih et al. [16] increased the size of their previous work.
The authors created a variant of the technique, called Actor-Critic
model. They tested this version in 49 games of Atari 2600, reaching
human-level performance in 29 of them.

These works inspired many others and games from Atari 2600
became vastly used as testbeds. New techniques for Deep Learning
based models arose. Hasselt et al. [6] created Double Q-Learning,
a variant of Q-Learning in which two simultaneous value func-
tions were learned. This approach resulted in two different sets
of weights, which improved the performance over the traditional
algorithm. They tested it in 57 Atari 2600 games, eight more than
in Mnih et al. [16].

Nair et al. [17] made another related advance. The authors pro-
posed a modification of the technique presented in the work of Mnih
et al. [15][16], by introducing a distributed system architecture. In
comparison with previous approaches, the parallelization proposed
improved the performance of the agent. The model was tested in
the same 49 Atari 2600 games and in 41 of them the technique out-
performed the non-distributed models.

A new approach was used by Wang et al. [24], dividing a net-
work to represent two separate estimators: one to be concerned with
the results yet to come and the other to be concerned with immedi-
ate actions. The first estimator was used for the state-value function
and the second was used for the state-dependent action advantage
function.

Parisotto et al. [19] proposed a new method of training a single
Deep Network of actions over a set of related tasks. The method
consists of expert teachers orienting the agent to make actions.
Thus, the agent learned his decision making through the received
orientation. This model was called Actor Mimic. The authors
showed that this technique played several Atari 2600 games simul-
taneously, at the same level as an expert.

Mnih et al. [14] proposed a new model using asynchronous gra-
dient descent for controller optimization. Four variations of Re-
inforcement Learning techniques were presented and the authors
showed that their method outperformed the state-of-the-art tech-
niques. Furthermore, the computation effort was greatly reduced.
The model was trained in a single multi-core processor in half the
time of conventional training.

Lample and Chaplot [10] used as testbed ViZDoom [8]. The au-
thors used an architecture of a Deep Recurrent Network connected
to a Long-Short Term Memory Neural Network. In training, the
agent explored information of game features, such as presence or
absence of an enemy and/or items, to simultaneously learning them
while minimizing the objective function. This variation improved
the performance of the agent and greatly reduced the training speed.

Another Deep Reinforcement Learning application in ViZDoom
was used by Kulkarni et al. [9]. The authors used a model called
Successor Representations, which decomposes the value function
into two components: a reward predictor and a successor map.
They trained an agent to solve two problems: finding the exit of
a maze in MazeBase and reaching a goal room in ViZDoom.

Dosovitskiy and Koltun [3] combine a high-dimensional sen-
sory stream and a lower-dimensional measurement stream to cre-
ate a model that provides a rich supervisory signal. The agent was
trained to play four scenarios of ViZDoom using Supervised Learn-
ing techniques. The agent trained won the Full Deathmatch track
of the 2016 Visual Doom AI Competition.

Bhatti et al. [2] augmented the raw input image of the Deep
Neural Network by adding information of localization of the player
and details of objects and structural elements encountered. They
use ViZDoom to evaluate the efficacy of this approach. They show
that the proposed augmented framework consistently learns effec-
tive policies.

A Neuroevolution approach was used by Alvernaz and Togelius
[1]. The authors trained an autoencoder network to create a low-
dimensional representation of the environment observation and then
used it as an input of a CMA-ES to train the controllers. They tested
the model on the health gathering scenario of ViZDoom, where the
player loses health over time and needs to pick up health packs to
survive longer.

In a previous work [20], we presented a network architecture to
solve a Supervised Learning problem, the classification of a hand-
written dataset, and a Reinforcement Learning problem, a 3D First-
Person Shooter game. We used a Deep Neural Network model to
solve both problems. In both cases, the input was only the pixels
of an image. ViZDoom’s environment was also used as the testing
environment for Deep Reinforcement Learning. We showed that a
single network architecture was suitable for the classification task
and was capable of playing the game.

3 BACKGROUND

In this section, we present a short summary of the Deep Q-Network
model used to train an autonomous agent in a Reinforcement Learn-
ing problem [10][15].

3.1 Deep Q-Network

Reinforcement Learning tasks are sequential decision problems in
which the objective is to find the best policy in order to maximize
the sum of received rewards. A policy is a set of actions that should
be taken by the agent for every possible state. The agent analyzes
the current state s, and decides what action, a, to take according to
the policy, π . The goal of the agent is then to find the best policy in
which the expected sum of discounted rewards, Rt , is maximum

Rt =
T

∑
i=t

γ
i−tri (1)
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where T is the last iteration, t is the current iteration and γ is the
discount factor, which varies in the interval [0,1]. The discount fac-
tor trades-off the importance of future rewards, so that immediate
rewards are more important than later ones.

The value of an action a in a state s under a given policy π , the
Q-function, is defined as the expected return

Qπ (s,a) = E[Rt |st = s,at = a] (2)

The optimal value of Qπ (s,a), Q∗, is defined as the highest ex-
pected return by following any strategy

Q∗(s,a) = maxπ Qπ (s,a) (3)

An optimal policy is then derived from the optimal values by
choosing actions with the highest value in each state. Instead of
trying to learn all action values, it is easier to learn a parameterized
value function Qθ , in which Qπ is close to the optimal Q-function
Q∗. Therefore, the algorithm tries to find a θ such that Qθ (s,a) ≈
Q∗(s,a).

The optimal Q-function verifies the Bellman optimality equation

Q∗(s,a) = E[r+ γ maxa′Q
∗(s′,a′)|s,a] (4)

where s′ is the reached state and a′ represents the following set
of actions. Therefore, if Qθ (s,a) ≈ Q∗(s,a), it is natural to think
that Qθ should be close to verify the Bellman optimality equation,
which will lead to the loss function

Lt(θt) = E[(yt −Qθt (s,a))
2|s,a,r,s′] (5)

where s is the current state, a is the action taken, r is the reward
received, s′ is the state reached and

yt = r+ γ maxa′Q
∗(s′,a′) (6)

Thus,

Lt(θt) = E[(r+ γmaxa′Qθt−1(s
′,a′)−Qθt (s,a))

2|s,a,r,s′] (7)

The value of y is fixed for the previous iteration, which leads to
the following gradient by differentiating the loss with respect to the
weights

∇θt Lt(θt) = E[(yt −Qθt (s,a))∇θt Qθt (s,a)|s,a,r,s
′] (8)

Instead of using an accurate estimate of the above gradient, we
compute it using the approximation

∇θt Lt(θt)≈ (yt −Qθt (s,a))∇θt Qθt (s,a) (9)

The Q-learning updates, using the loss function estimations of
(5), are stable and perform well in practice [16].

4 ENVIRONMENTS

The agent was trained using a Deep Neural Network model with Q-
Learning [25] as the learning algorithm. Using as input only visual
information from screen buffer, he was trained to play the three
different scenarios below.

4.1 Basic
This is the simpler scenario present in ViZDoom. Its purpose is to
evaluate if the model is capable of training and learning in a 3D
First-Person shooter environment.

In this scenario (Figure 1left), the agent faces only one enemy
(Figure 2a). They are positioned in opposite sides of a rectangular
room. The agent always starts in the center of his side and the
monster starts in a random position along its side. The player can
make one of three actions: move left, move right or shoot. The
monster is static, does not move and do not make any action and
one shot is enough to kill it.

(a) Static enemy. (b) Worm enemy. (c) Snake enemy.

Figure 2: Enemies. (a): enemy present in Basic scenario. (b) and
(c): enemies present in Defend the Line scenario.

4.2 Defend The Line

A much more complex scenario, here, the goal is to verify if the
agent can learn to kill different monsters with very little informa-
tion. In this scenario, very common actions in First-Person Shooter
games are possible, like aiming at an enemy and killing different
types of enemies.

The player faces multiple enemies at the same time in a rectan-
gular map (Figure 1center). There are two different types of ene-
mies: a red worm who moves towards the player (Figure 2b) and a
brown snake who cannot move but is capable of shooting fire balls
(Figure 2c).

At the start of an episode, the agent and the team of enemies are
spawned in opposing sides. The player is spawned in the center
of his side. Six monsters, three of each type, are spawned on the
opposing side. Initially, the monsters die with only one shot. How-
ever, a killed enemy will respawn after some time and will become
stronger, needing more shoots to be killed.

Every time the player is touched by the red worm or hit by a fire
ball, he will lose some health. The score of this environment is the
number of enemies killed. Therefore, the goal of the player is to
maximize the number of enemies killed.

4.3 Medikits and Poisons

We constructed this custom scenario to observe the learning and
behavior of the character in an environment that can be explored
by the agent. Picking up certain items and avoiding others is very
common in First-Person Shooter games. No enemy is present and
the goal of the agent is to explore the scenario picking up medikits
and avoiding poisons.

A medikit (Figure 3a) is a gray box with a white cross on a green
background. This item increases some health of the player. A poi-
son (Figure 3b) is represented by a blue and gray capsule with a
small red cross on its top. This item decreases some health of the
player.

The environment is a big rectangular room with a red lava floor,
grayish walls and a dark sky. The lava floor hurts the player period-
ically, decreasing his health.

Initially, there some medikits and poisons spread uniformly over
the map. From time to time, one medikit drops from the sky in a
random position. Similarly, after some time one poison drops from
the sky in a random position. These positions are not fixed and may
even be behind the player.

The agent has three possible actions: turn left, turn right and
move forward. These actions grant a freedom of movement to the
player, allowing him a free exploration of the environment.

(a) Medikit. (b) Poison.

Figure 3: Items found on Medikits and Poisons environment.

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 479



5 EXPERIMENT

5.1 Hyperparameters
All the following parameters were chosen arbitrarily. The Q-
learning discount factor, γ , was set to 0.99 and the learning rate
was equal to 0.0001. The network weights were all initialized with
random values using Xavier’s Initialization [4] and all bias were
initialized with a value of 0.1.

The RMSProp algorithm was used to train the network, using
mini-batches of size 64. The RMSProp is an adaptation of Mini-
Batch Gradient Descent which divides the gradient by a running
average of its recent magnitude [23].

We used Experience Replay [13] to reduce correlation between
consecutive frames. A replay memory keeps track of the latest ten
thousand frames and a randomly chosen sample is passed to the
network at every update. To reduce overfitting, we used the Dropout
technique [21] during training with a probability of 0.7.

An ε-greedy policy [25], with linear decay from 1.0 to 0.1, was
used to balance the trade-off between exploration and exploitation.
That is, the agent has a probability of ε of choosing a random action
to make rather than the current best action.

If the agent performs one action per frame, the difference be-
tween the previous states and the current one is so subtle that learn-
ing will become hard. To solve this problem we used a frame repeat
value of eight frames. This means that an action is chosen, repeated
through eight frames and only then another action is chosen.

5.2 Network Architecture
Figure 4 summarizes the network architecture presented below. A
matrix of floating point numbers, representing a 64 by 48 grayscale
image is the input of the network. The inputs are then passed to a
convolutional layer. A convolutional layer, developed by LeCun et
al. [12], has the characteristic of detecting specific features accord-
ing to the spatial position of the input. That is, it has the ability to
filter some aspects of the input.

This first convolutional layer has a kernel width and height of
size four, and a stride with width and height of size two. This con-
volution setting halves the size of the inputs. We use ReLU [18][5]
as the activation function. In this layer, 64 features are computed.

Then, the outputs are passed to another convolutional layer. This
layer also has a kernel size of 4 by 4 and a stride of 2 by 2, halving

the size of its inputs. ReLU is also used as the activation function.
This layer computes 128 features.

After that, the 128 images of size 16 by 12 are flattened and
are then fully connected to a layer of 512 neurons. This layer has
the objective of putting together all the previous features found. A
dropout is applied before the output layer and the results are passed
into the readout layer, which has three neurons, one for each possi-
ble action.

5.2.1 Input and Output

The raw colored 640 by 480 pixels image of the screen is reduced
into a 64 by 48 pixels gray scale image, which is the input of the
network (Figure 5). Thus, the input is a layer of 64 by 48 neurons
with values varying from 0.0 to 1.0.

Every action has its own q-value, therefore every action implies
in one output neuron. The output layer has three neurons because
all scenarios have three possible actions, namely:

Basic: move left, move right and shoot;
Defend the Line: turn left, turn right and shoot;
Medikits and Poisons: turn left, turn right and move forward.

5.3 Training and Testing Regime

In all environments, the agent was trained for 50 lifespans of 10000
learning steps each. Every learning step is an update of the network
using Q-Learning with mini-batches of size 64, thus is in this mo-
ment that the learning actually happened. After every lifespan, the
agent was tested for 50 episodes.

5.4 Evaluation Metrics

Every scenario has a different score metric:

5.4.1 Basic

The agent loses 1 point for every step he remains alive, i.e. gains
a -1 reward, and he loses 5 points for shooting. A score of 101 is
rewarded if he kills the enemy. Therefore, the best possible score
is 95. An episode finishes when the monster is killed or after 300
steps have passed.

Figure 4: A representation of the Network Architecture. Input: a matrix of floating point numbers representing a grayscale image. Network: the
input image passes through two convolutional layers and the output is flattened and fed into a fully connected output layer. Output: the three
neurons give the q-value of each action.
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(a) Basic. (b) Defend the Line. (c) Medikits and Poisons.

Figure 5: Vision of the agent in every environment. These frames are the same of Figure 1.

5.4.2 Defend The Line
The only reward awarded to the player is one point after killing an
enemy. He is hurt if touched by the worm enemy (Figure 2b) or hit
by a fire ball. However, the agent does not receive this information
as a numerical feedback, only on screen. An episode ends when the
player is killed.

5.4.3 Medikits and Poisons
For every step the agent stays alive, he gains 1 point. Picking up a
medikit grants him a health increase, while picking up a poison de-
crease his health. If he picks up a medikit he receives 10 points and
loses 10 points for picking up a poison. If the player gathers three
poisons in sequence, he dies. The lava floor of the environment
decreases the health of the agent periodically, but this information
is not given directly to him, only on screen. The player loses 100
points for dying. An episode ends when the player dies or after
3000 steps have passed.

6 RESULTS AND DISCUSSION

To see examples of the results described below, please refer to the
accompanying video.

6.1 Basic
An optimal behavior for the player is moving until being in front
of the enemy and quickly kill it with a single shot. If the monster
is spawned right in front of the agent, an instant shot will grant a
score of 95. If the enemy is spawned as far left or right as possible,
moving towards the monster and killing it in the first shot will grant
a score of about 63. Thus, a mean expected reward for an optimal
behavior is about 78.

We can see in Figure 6 that the player achieves the optimal ex-
pected mean score since the first lifespan. Because of the simplic-
ity of the environment, one lifespan of 10000 network updates is
enough to teach the agent how to behave correctly.

While in testing the actions taken are always the ones that have
the best value, the actions taken in training on the first lifespans
are mostly random, which leads to very bad scores. Over time the
randomness in training is reduced, which increases the mean score.
The growth of the curve in training shows us that the learning is
also happening during training.

6.2 Defend The Line
This scenario is much more complex than the previous one. Be-
cause the agent receives feedback only when he kills an enemy, he
should learn how to aim and shoot different targets by himself. In
this environment, there is no optimal behavior. However, we expect
that the agent turns towards an enemy and shoot it quickly.

Figure 7 shows that the first lifespan of training is enough to
teach the player a behavior that grants him a score of about 14. By

Figure 6: Mean score of Basic scenario. The higher the score, the
faster the enemy was killed. The dashed line shows the evolution
during training and the continuous line shows the during testing.

the growth of the training curve, we observe that the agent is clearly
learning. Not only that but also his performance is improving over
time. On final lifespans, the training results stabilized. At this mo-
ment, the agent could kill about 24 monsters, seven more than in
our previous work [20].

This score shows that the agent is capable of learning how to be-
have in a complex environment without having direct information.
The player was capable of aiming and shooting moving targets. He
learned not only to kill monsters but the importance of killing them
to stay alive as long as possible.

Figure 7: Mean score of Defend the Line scenario. The score rep-
resents the number of enemies killed. The dashed line shows the
evolution during training and the continuous line shows the evolution
in testing.
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6.3 Medikits and Poisons
Another complex scenario, now the player should learn to identify
medikits and poisons, perceive that picking up a medikit is good
and picking up a poison is bad. Furthermore, the agent should ex-
plore the environment to look for medikits. An expected behavior
is seeing the player gathering only medikits and avoiding picking
up poisons.

We see from Figure 8a that after the first lifespan of the train-
ing the agent has a very bad mean score of 518.47. If the agent
acts lifeless, taking very small steps and not picking anything, he
finishes the episode with a score of 508. Thus, we see that the aver-
age behavior after the first lifespan is not gathering any medikit or
poison.

However, the training mean score grows over time and the per-
formance of the agent grows together. Thus, we can see that the
agent is becoming better in exploring the scenario and picking up
medikits. After the final lifespan, the performance of the agent is
much better and he is able of living for about 1900 timesteps.

At this time, the agent is capable of looking around for a medikit
and moving towards it when he finds it. This behavior can be
seen on the screenshots from Figure 9. The player cannot see any
medikit and he starts to turn right looking for one. When he finds
it, he starts to move forwards to gather it.

Some undesired behaviors were also encountered. For example,
when a poison is too close of a medikit, the agent cannot see it and
pick up both medikit and poison. Another problem is concerned
with the vision of the player: if the medikits are too far, the agent
cannot see them and keep searching. Even with these situations, the
agent is capable of living as long as possible.

6.3.1 Number of medikits picked up
Another useful way to observe the success of the learned behavior
is to evaluate the number of medikits picked up per lifespan (Fig-
ure 8b). We observe that the player learns to pick up more medikits
over time. This shows us that he becomes better at exploring the
environment and gathering more medikits, which is in accordance
with the expected behavior and allows him to live longer.

(a) Score per epoch. (b) Medikits picked up per epoch.

Figure 8: Results of Medikits and Poisons scenario. The dashed line
shows the evolution during training and the continuous line shows
the evolution in testing. (a) mean score of the agent per epoch. The
greater the score, the longer the agent remained alive. (b) mean
number of fruits eaten per epoch. The more fruits are eaten, the
longer the agent can survive.

7 FUTURE WORKS

7.1 Changing Neural Network Settings

Increasing the size of the network can lead to better results because
more features can be learned and passed throughout the layers. Fur-
thermore, a bigger network may have more information to work
with. However, increasing size also increases complexity, which
will decrease the learning speed. A bigger network will be much
harder to train and can have difficulties to achieve good behaviors.

Making adaptations on the network, as seen in [10] and [2], is
also a good option that can improve the performance of the agent.
The scenarios may be easily adapted to give additional information.
However, giving more information to the player must be done care-
fully. It is interesting that the agent figures out some characteristics
and learns how to handle some situations on his own.

7.2 Using Other Agents

In this work, we created an agent based on Deep Reinforcement
Learning. Other agents can be tested in the same environments.
These agents do not need to use necessarily Neural Networks.
On the contrary, the comparison between different learning algo-
rithms may raise interesting questions. Although these different
approaches may need some adaptation, we think that inputs and out-
puts should be the same as those presented in this work. That is, the
agent should make one action out of the three possible in each sce-
nario and the input should be a representation of the screen. These
points will ensure fairness in comparisons with the agent presented
here.

7.3 Testing Different Environments

Three scenarios were discussed in this paper, but the ViZDoom
environment offers even more. Moreover, custom scenarios, like
Medikits and Poisons presented here, can be easily made with dif-
ferent characteristics and purposes. The more scenarios are tested,
the more accurately it is to evaluate the versatility of the player.

However, it is necessary to evaluate carefully the behavior of the
agent. Some environments will be very easy, which will lead the
agent to achieve good scores and others can be very hard, which will
lead to very bad scores. This raises the question that discovering
what is the best setting for every scenario is not easy. A change that
leads to an improvement of behavior in one scenario may imply in
a decrease of score in others. Creating an agent which could deal
with any scenario is a very challenging task.

7.4 Playing Other Games

A further step which makes use of the general input characteristic
of the agent presented here is to test him in other games. The agent
receives as input only an image and then makes one possible action.
This input-output dynamic is very general and allows us to treat the
internal processes of the network as a black box. Thus, a great va-
riety of games can be used as the environment for the agent. Some
games, like the ones presented in section 2, are common testbeds
for Deep Reinforcement Learning.

Figure 9: From left to right, 1st frame: the agent cannot see any medikit. 2nd frame: he turns right looking for a medikit. 3rd frame: he finds
one. 4th frame: he aligns himself with the medikit. 5th and 6th frames: he moves forward to pick it up.
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8 CONCLUSION

We showed that a Deep Reinforcement Learning game agent was
capable of learning how to play well different environments in a 3D
First-Person Shooter game. An optimal behavior was easily learned
in the simpler scenario, namely Basic. The next two environments
were much more complex. In Defend the Line the agent learned
to turn towards an enemy and kill it. Moreover, he learned how to
survive long enough to kill several of them. The agent also showed
that he is able to succeed in a scenario designed for exploration. He
learned to search items that would increase his life and avoid items
that could kill him.

All examples show that the Deep Reinforcement Learning agent
proposed in this work was capable of learning complex behaviors
in all environments receiving as input an image. The agent is pre-
pared to be trained in several different environments without further
configuration. This gives us a starting point in constructing an au-
tonomous 3D First-Person Shooter game character which can be
able to handle very distinct situations using only an image as input.
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