
A fast approach for automatic generation of populated maps with seed
and difficulty control

Pedro Sampaio Augusto Baffa* Bruno Feijó Mauricio Lana

PUC-Rio, Departamento de Informática, ICAD/VisionLab, Brazil

ABSTRACT

Procedural Content Generation (PCG) is the programmatic genera-
tion of game content using a random or pseudo-random process that
produces an unpredictable stretch of gaming spaces. Many games
use this technique to increase the length of gaming, and some of
them rely greatly on the procedural content generation. This paper
aims to detail a fast and direct PCG approach capable of generat-
ing a diverse array of dungeon-like maps, developed to be used in
an experimental game created by undergraduate students, that has
shown very good results. The approach in question is capable of
generating numerous unique maps while maintaining control over
the generated levels through seeds. It also has the ability of desig-
nating different difficulties to the generated content, and uses this
very feature to increase the variety of the procedural generation by
taking advantage of the way seeds work.
Keywords: procedural generation for games, dungeon generation,
game content generation, generated content difficulty scaling.

1 INTRODUCTION

The level design is a core element of a game. Dedicated designers
are in charge of designing game levels through an extensive process
of creation that undergoes a number of stages (i.e art conception,
draft, rendering) and depends highly on the creativity of the design-
ers. This process can lead to unique high quality game level design
but in exchange it can borrow a lot of development time resources.
Procedural Content Generation (PCG) steers to the opposite direc-
tion. As expressed in [22], PCG can be defined as the algorithmic
creation of game content with limited or indirect user input. PCG
algorithms can create a vast quantity of levels with little effort if
compared to designing them manually one by one. This potentially
reduces production and development costs of a game.

Although it may seem that procedural content generation is a re-
cent trend in game development, Smith [19] affirms that the first
uses of the PCP concept for digital games is dated to 1980s, and it
has been used even before that if we consider analog games where,
instead of a computer, a person is the agent of the procedural gen-
eration. Rogue [23] is one the earliest notorious game with proce-
dural generation and there are numerous follow-ups of its style be-
ing published until the present day. Another example of game that
uses procedural content generation is No Man’s Sky [9], a game
that achieved a lot of attention solely on the fact that its procedural
generation algorithm was capable of creating eighteen quintillion
planets, each one with its own flora and fauna.

Procedural content generation has received increasing attention
in commercial games. Alongside with No Man’s Sky [9], numerous
other popular commercial games features procedural generation.
Diablo [7] is an action role-playing hack-and-slash digital game
featuring procedural generation for creating the maps and entities
of the game, and has a large fan base since the first installment of
the series released in 1996. Some other examples are Civilization

IV [8], a turn-based strategy game that allows unique game expe-
rience by generating maps, and Spore [13], that lets people design
their own creatures that are automatically animated using procedu-
ral animation techniques. As another example, Minecraft [14], one
of the most popular games currently, features extensive use of PCG
techniques to generate the game world and its content.

Procedural Dungeon Generation (hereafter PDG) is a type of
PCG that explores particular aspects of Roguelike games, which
are adventure or role-playing games (RPGs) characterized by a dun-
geon crawl in a labyrinthine environment, full of rooms, caves, and
corridors. Also, Roguelike games are characterized by procedurally
generated game levels, turn-based gameplay and tile-based graph-
ics. PDG algorithms generate a 2D map composed of rectangular
rooms connected by narrow corridors on a grid of vertices (x,y),
where x and y are integers. Nowadays, PDG algorithms should
generate more than maps of rooms and corridors they should
have control of the gameplay. However, few games have PDG
with gameplay-based control, where PDG parameters are related
to gameplay data [24]. A general description of PDG algorithms
can be found in [24] and [2].

In our work, we are interested in the simplest type of PDG al-
gorithm, named Random Room Placement, which is a brute force
room-generating algorithm [2]. The reason for our interest is be-
cause we claim that this is the most efficient way to have gameplay-
based control. In this paper, we present a method to generate
rooms, create corridors, populate the levels with actors (characters,
powerups, and tokens), recover any previous level map, and control
difficulty level based on two parameters only: the seed value and
the level number. The Random Room Placement algorithm and the
properties of the seed value (in pseudo-random processes) has been
extensively used by the industry [15], but as far as we are aware
no other work has the same level of control in real time as the one
provided by our method.

2 RELATED WORKS

In order to achieve a better understanding about procedural con-
tent generation and how it can be used in gaming, several papers
were consulted while we were designing our algorithm. Initially,
the very own concept of what is and what is not procedural con-
tent generation in games was studied. The authors of [22] indicate
the difficulties of coming up with a unique PCG definition that ev-
erybody agrees on, but it does a good job clarifying its concepts
through contrasting it to other forms of content generation in games
with which it could easily be mistaken. In [10], we are presented
with a taxonomy of game content and PCG techniques for games
that helps the comprehension of how PCG can be used in different
areas of game content. It also surveys the state-of-the-art in PCG
techniques for games and the use of these techniques in real games.

While resolving the type of game level to be generated by our
algorithm, we stumbled upon a paper that showcased a specific type
of game level as one of the most suited for an PCG approach. In
[24], dungeon level type is highlighted as being well capable of
demonstrating the benefits of PCG. Dungeons basically consist of
several rooms connected by corridors, but, in games, it may also
refer to caves, caverns, or human-made structures. The concept of

*e-mail: abaffa@inf.puc-rio.br

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 470



rooms connected by corridors matched our intentions for the map
design of our experimental game. In the same paper, a number
of dungeon generation methods is described while pros and cons
of each approach is discussed. In particular, the method that uses
cellular automata [11], a model studied by Stephen Wolfram since
the 1980s [25], stood out with results that were visually pleasant
and had a natural and chaotic feel to the generated map, but, as
stated in [24], there is a lack in the direct control of the generated
map. Additionally, connectivity between any two generated rooms
is not guaranteed by the method.

An in-depth analysis on dungeons and procedural generation is
done in [5], where patterns for procedurally generating dungeons
are presented, along with a classification for the different types of
dungeons encountered in released games.

An interesting approach to procedural content generation was
detailed in [17], where answer set programming (ASP), a form
of declarative programming oriented towards difficult search prob-
lems, explained in [12], was used for PCG in games. But, as stated
in the paper, a naive implementation of this approach can be very
costly in terms of time, specially when dealing with large problem
spaces.

A hybrid solution is proposed in [21], where a combination of
different PCG methods is presented. The paper goal is to study an
approach that retain the advantages and avoid the disadvantages of
the combined methods.

When it comes to the level population, where entities of the level
are the object of the PCG, The authors of [1] suggested the use of
evolutionary algorithms, described in [20], to be able to position
generated content on interesting locations based on the game uni-
verse, a trait that is indeed very important in game content genera-
tion, and necessary to match the design of our experimental game.
The method described in [1] gives a good control over its generated
content, but the positioning based on the fitness functions specified
in the paper could lead to poor results, as stated in the paper.

The writers of [6] suggest to consider content generation as a
duel process, separating it in a generation step to create variety and
a resolution step to make the output generated into a coherent and
useful configuration. It concludes that breaking down the content
generation algorithms into these steps facilitates the design of PCG
algorithms. Our approach has leaned to a similar division, where
game spaces are generated at first, and then the algorithm proceeds
to make it coherent to the experimental game universe.

A very interesting outlook on PCG future potential in gaming is
expressed in [18]. The paper proposes several new research direc-
tions for PCG that require both deep technical research and inno-
vative game design, exploring the future of PCG from five different
perspectives: data vs. process intensiveness, the interactive extent
of the content, who has control over the generator, how many play-
ers interact with it, and the aesthetic purpose for PCG being used in
the game. It inspires important reflections for future researches on
PCG uses on games.

Finally, Procedural Content Generation in Games: A Textbook
and an Overview of Current Research [16] brings a good overview
of PCG in games, and it is the first textbook about the subject, as
stated by the authors. It covers a big range of contents related to
PCG and is recommended for a in-depth study.

Having the PCG literature as background, we designed a direct
approach that generates a large variety of singular maps with con-
nectivity of rooms guaranteed, where we aimed to achieve similar
results of existent methods maintaining a fast and direct approach
to the generation. As opposed to the literature previous cited in
this section, our approach includes the use of seeds combined with
the play difficult of a level as a way of gaining control over the
generated content without being restricted by the seed numerical
limitation. This feature is better detailed later in this paper.

Figure 1: Experimental game to use our PCG implementation

3 PROPOSED MODEL

In this section, the modelling of our algorithm is detailed. In order
to better elucidate the modelling, the experimental game character-
istics that influenced the design of the algorithm are also specified,
as well as their impacts on it.

3.1 Experimental Game
Figure 1 shows the experimental game developed, a 2D tile-based
RPG game inspired in the popular MMORPG Tibia [4], and the
subject of the implementation of our algorithm. For starters, there
are some important points to cover about the game before we pro-
ceed to describe our map generation approach. Some key features
of the game were responsible for altering the modelling of our al-
gorithm, so it is important to clarify the mechanics of a level in our
game. A level in the experimental game begins with our main char-
acter, Fabian, being spawned at the start location of the map. The
map is populated by different entities ranging from collectibles to
enemies. Tokens are one of the collectible types and is presented in
three different grades: gold, silver and bronze. These grades rep-
resents the value and the difficult of obtaining the token, and there
are only one of each per level. Fabian must find at least one token
of any grade and take it to the level Totem, an entity that represents
the final location of the map. That’s all the information regarding
the game necessary to understand the procedural generation imple-
mented.

3.2 Our PCG Approach
Now it is possible to describe how the PCG for the experimental
game was modelled, taking into account the level mechanics de-
scribed above. To simplify the description, it is arranged into two
categories: Level Skeleton, associated with the physical structure
of the level, and Level Population, associated with the entity popu-
lation of the level. Also, the control of the generation through seeds
and the play difficulty is better detailed to clarify one of the key
mechanics of the algorithm.

3.2.1 Generation Control
Seeds are integer values that are attached as a parameter of the gen-
eration. For a specific algorithm configuration, a seed will guaran-
tee the same output for the generation always. With this feature,
we were able to control the level generation with the assurance that
a seed will give the same generated map in every execution of the
algorithm in a given configuration. Although using seeds enabled
the control of generated levels, it also limited the quantity of dis-
tinct levels generated by the algorithm. Since seeds are often stored
as integers and each level generated is attached to a seed, the in-
teger limitation becomes the limit of levels generated. To increase
this limit, we adopted a strategy that took advantage of the way that

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 471



seeds work. A seed will return the same output always only for a
particular configuration of the algorithm. If the configuration is to
be changed, the result of the generation will no longer be the same.
We combined that notion with the designation of play difficulty of
generated content. A factor that scales the difficulty of the gener-
ated level was used to scale the map size and other elements of the
experimental game universe i.e enemy strength, giving a particular
difficulty to each generated map. The trick is that, by altering this
factor, the algorithm configuration changes, and, consequently, the
generation output is not the same anymore. This means that a seed
does not need to be necessarily attached to only one generated map.
Instead, a seed now have different generations according to the dif-
ficulty factor, increasing vastly the number of possible levels to be
generated by the algorithm considering that even minor variation
on the difficult factor will result in a distinct generation.

3.2.2 Level Skeleton

A dungeon structure was preferred to be the model of the game’s
physical level structure, which consists of rooms interconnected
by corridors. The process of creating the level structure is fairly
simple: rooms are created with arbitrary sizes and are randomly
placed throughout the level space allowing superposition of differ-
ent rooms, and then randomly shaped corridors are generated to
connect random locations of two different rooms until all rooms are
connected. The corridors shape is created by randomly alternating
directions on the path to the location to be connected. It is impor-
tant to point out that the entrances are generated through the corri-
dors generation when a room boundary is reached. Superposition of
rooms has shown itself to be beneficial to the level singularity. By
enabling the superposition of rooms, different and singular room
shapes were allowed to be generated resulting in a larger array of
possibilities for our generation.

3.2.3 Level Population

After creating the level structure, it is necessary to populate the
level with all map entities according to the description of the game.
Fabian, enemies, the level Totem, tokens and other collectibles must
be placed in the generated level structure. To generate a playable
level that obeys to the game specifications, there are some partic-
ularities to pay attention. The major particularity to consider is
that tokens have different values and the difficult of obtaining them
varies. With that in mind, the positioning of tokens of different
grades must have at least a little reasoning. While others entities
would surely benefit from an intelligence placement on the level,
there is no game reason to do it, and with the goal of keeping it
simply, they are simply randomly placed along the free locations of
the level. With the same modus operandi, Fabian and the Totem are
also placed in the level. Tokens are then placed in the map accord-
ingly to the difficulty of getting them. The difficulty is measured
acknowledging the number and the types of entities around each
field candidate to contain a token as well as the distance of each
field between the starting and final location.

4 PROPOSED SOLUTION

This section will explain the practical implementation of the model
proposed and detail its steps to shed a light on the operations and
procedures that were taken to obtain the results exposed in this pa-
per.

4.1 Pseudocode

The psesudocode 1 presents the algorithm structure and course ex-
posing each procedure executed to generate the map in the order
that they are conducted. Furthermore, each component of the pseu-
docode 1 is detailed to facilitate the understanding of the algorithm
implemented.

Algorithm 1 A fast approach for automatic generation of populated
maps with seed and difficulty control
Require: float : difficulty
Require: integer : seed
Ensure: generated map (grid)

1: SetGenerationSeed(seed)
2: SetGenerationDifficulty(difficulty)
3: grid← GridGenerator()
4: roomVector← RoomVectorGenerator(grid)
5: RoomPlacer(grid, roomVector)
6: MakeAllRoomAvaliable(grid, roomVector)
7: grounds← RetrieveGrounds(grid)
8: WallGenerator(grid, grounds)
9: MapPopulator(grid, grounds)

10: SpawnPointGenerator(roomVector, grid)
11: tokenGrounds← CalcGroundCost(grid, grounds, squareSize)
12: TokenPopulator(grid, tokenGrounds)

13: return grid

The following definitions aim to detail the map generation
through each step that was taken. All functions, structures and data
are detailed one by one in spite of better explaining how the gener-
ation works.

4.1.1 Seed

Seed is an integer value that generates a unique map. This value
represents the initial state of all instances of Random method calls
in the generation. Once defined, a seed generates the same map
always, and different seeds generates different maps.

4.1.2 Difficulty

Difficulty is a float value that defines the difficulty factor for the
map generation. All further steps of the generation acknowledge
this value as the current map generation difficulty and uses it as a
scale factor for the content generated when necessary.

4.1.3 Room

Room is a structure that represents a room in the generated map. It
contains the x and y coordinates, and also the height and width of
the room. It also contains a flag that informs the accessibility of the
room generated.

4.1.4 SetGenerationSeed(seed)

SetGenerationSeed is a function that sets seed for the map genera-
tion by attaching it to the Random method initialization. It is impor-
tant to point out that the current implementation uses C# Random
methods that offers seed support.

4.1.5 SetGenerationDifficulty(difficulty)

SetGenerationDifficulty is a function that sets the difficulty factor
for the map generation, altering all necessary parameters that are
affected by the difficulty factor, including grid maximum and min-
imum size, rooms quantity and dimensions, enemy quantity and
strength, and other entities quantities.

4.1.6 GetRandomNumber(min, max)

GetRandomNumber is a function that returns a pseudo aleatory in-
teger between min (inclusive) and max (exclusive), based on the
seed that was previously set. All values to be randomized will be
randomized by this function.

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 472



4.1.7 GridGenerator()
GridGenerator is a function that returns a grid (bi-dimensional ar-
ray) populated with blank values (non-defined fields), of random
size that is influenced by the current difficulty factor. This grid rep-
resents the data structure of the world, and all generated map will
be embodied in this grid.

4.1.8 RoomVectorGenerator(grid)
RoomVectorGenerator is a function that returns an array containing
all the rooms (as defined by the structure Room) to be generated
in the map. The number of rooms and each room’s attributes (x,
y, width, height) are random defined through the function GetRan-
domNumber(min, max), where the random generated room must
be within the grid (parameter of this function) boundaries. The
intersection of rooms is appropriate, since it gives the generated
map more uniqueness. In the current state, all generated rooms are
square shaped. As stated before, parameters of this generation are
influenced by the difficulty factor.

4.1.9 RoomPlacer(grid, roomVector)
RoomPlacer is a function that populates the grid with the generated
rooms. As of now, all room fields are considered grounds, so the
function should fill the grid with a symbol that represents ground
fields. Walls are going to be generated later. This function simply
iterates through the array of rooms and fills the grid with grounds
in the area that represents each room. Room intersections may gen-
erate different shapes other than simple square, increasing the map
distinctiveness.

4.1.10 RoadGenerator(initialPoint, finalPoint, grid)
RoadGenerator is a function that makes a road between two points
(x,y) in the grid. This function connects two points in the grid by
making random grounds between the two points received in the pa-
rameter. In each step, this function randomly chooses a coordinate
(x or y) to increase or decrease its value (depending on the direc-
tion between initial and final point). When a coordinate reaches its
final value, only the other coordinate is considered, tracing now a
straight line to the final point. Thus, the road always reaches the
final point, but it still makes each generated map more unique when
used to connect rooms, despite being of very naive implementation.

4.1.11 MakeAllRoomsAvailable(grid, roomVector)
MakeAllRoomsAvailable is a function that makes all rooms in the
roomVector array accessible. It prioritizes the singularity of the
map by randomly choosing the rooms to make accessible. The way
it works is that one room is randomly defined as the first acces-
sible room, and another room (inaccessible) is chosen to be con-
nected to the first accessible room, making both rooms connected
and accessible. After that, it randomly gets one accessible room to
connect with the next inaccessible room, and it repeats this proce-
dure until there are no more inaccessible rooms in the roomVector.
The connection between two rooms is made by using the function
RoadGenerator(initialPoint, finalPoint, grid), and the points (x,y)
are chosen randomly in both rooms.

4.1.12 RetrieveGrounds(grid)
RetrieveGrounds is a function that returns a collection of all
ground-type fields in the grid, with the goal of reducing future al-
gorithm costs.

4.1.13 WallGenerator(grid, grounds)
WallGenerator is a function that generates walls around grounds
existent in the grid. The WallGenerator function does its job by
iterating through each ground to find suitable walls for the map. A
suitable wall is a non-defined field that is adjacent to a ground field.

4.1.14 MapPopulator(grid, grounds)
MapPopulator is a function that populates the map with entities.
The map is randomly populated by enemies, boxes and spikes. En-
emies disturbs the player from progressing in the level. Spikes
simply hurt the main character when they get stepped on. Boxes
can contain a series of different items inside, from ammunition to
power-ups, so they can be seem as a beneficial entity, as opposed to
the others. The notion of beneficial and harmful entities is going to
be important when it comes to the point of populating the map with
tokens. The distribution of the entities is affected by the difficulty
scale factor, likewise the strength of the enemies is also affected.

4.1.15 SpawnPointGenerator(roomVector, grid)
SpawnPointGenerator is a function that defines two specific loca-
tions: the start location for the main character, and the final loca-
tion, representing the final goal of the generated map. The final goal
is the place where the main character must bring the token. Fixing
these points beforehand will help the population of tokens in the
map.

4.1.16 GroundCostCalculator(grid, grounds, squareSize)
GroundCostCalculator is a function that calculates the cost of all the
remaining non-populated grounds, candidates of being locations for
tokens. The purpose of these costs is to give a metric to the diffi-
culty of visiting each ground. Each ground cost is calculated taking
into consideration the following information: the entities around
the ground and the distances from the ground to the start and final
location of the map. To define the area size to be taken into account,
the function receives, as a parameter, a value that defines a square
area around each ground. Given that value, the function scans for
entities in the square area around each ground, increasing or de-
creasing each ground cost depending on the types of entities found
in the elected area. Naturally, different entities should weight dif-
ferently on a ground cost i.e enemies have a greater impact on the
main character if compared to spikes, so they should have a big-
ger weight on the ground cost. After all non-populated grounds are
associated with costs regarding the entities within the square area
around them, it is also important to add a cost that represents the
distances to the start and final locations of the map. The distance is
calculated using Manhattan Distance [3].

4.1.17 TokenPopulator(grid, tokenGrounds)
TokenPopulator is a function that populates the map with tokens.
Tokens are the collectible objects that the main character needs to
achieve his objective. There are three different types of tokens:
gold, silver and bronze. The gold token is the most valuable one,
while the bronze is the least. The main character must find one of
the tokens and proceed to the final location of the map to complete
it. It is desirable that the tokens are positioned into challenging
locations. Also, the hierarchy of token’s value should mirror the
difficulty of retrieving them. This function receives the collection
of grounds that are candidates to be locations of tokens. Within
each ground of the collection, there is an appended cost of visiting
it. With that in mind, the only thing this function needs to do is
to choose one ground for each token based on the ground’s cost.
This is done by sorting the collection and, having defined indexes
for each type of token, associating the token to a ground. These
indexes are related to the difficulty of visiting the grounds. Having
sorted the collection in ascending order of cost, the last index is
the hardest location to visit and possibly the best to position a gold
token within the given options, for instance.

4.2 Token Population Analysis
Lets analyze the non-trivial part of the algorithm. It is desirable
that the tokens are positioned into challenging locations. Also, the
hierarchy of token’s value should mirror the difficulty of retrieving

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 473



them. To be able to achieve those requirements, a metric must be
associated to the hardship of visiting a location. After having cal-
culated all costs to the tokens possible locations, designation of the
tokens locations is trivial.

The algorithm was designed aiming to obtain a solution ade-
quately close to an optimal solution in a reasonable time. Putting
into context, a level generated with challenging token locations
where the most valuable is seemingly at one of the hardest locations
to visit while the least valuable is at a less challenging location com-
pared to the others but still challenging to get would be a suitable
level for the experimental game. The strategy adopted to calculate
the costs of each possible ground for a token is quite simple and is
done by the function GroundCostCalculator(grid, grounds, square-
Size). Basically, each ground cost is calculated taking into consid-
eration the following information: the entities around the ground
and the distances from the ground to the start and final location
of the map. To define the area size to be taken into account, the
GroundCostCalculator function receives, as a parameter, a value
that defines a square area around each ground. Given that value, the
function scans for entities in the square area around each ground,
increasing or decreasing each ground cost depending on the types
of entities found in the elected area. Naturally, different entities
should weight differently on a ground cost.

Now let’s analyze the effort generated by function GroundCost-
Calculator(grid, grounds, squareSize): let n be the number of
grounds in the map and let mxm be the size of the square area
defined by squareSize parameter. Also, let the grid structure be of
size SxS. Consider n <= S ∗ S, since S ∗ S represents all game
space including other types of fields that aren’t grounds. For each
ground the algorithm scans mxm other grounds, which indicates
that for all the procedure there would be n ∗m ∗m operations. At
first sight it seems to be of high effort, but let’s take a better look
at it. Asymptotically, the time complexity seems to be O{n ∗m2},
but consider that the growth of m follows very lightly the growth of
n, which is a fair assumption because the scan area mxm does not
need to be increased by a large margin when the map gets bigger,
since the weight of the distance from the ground and the initial and
final locations is also taken into consideration.

Testing the generation with a map of size 100x100 with a scan
area of 5x5 results in a suitable map for the experimental game and
if evaluated, n <= 10000 while m = 5. In this case, a maxi-
mum of 250000 operations were performed or 25 ∗ n operations,
which seems pretty acceptable, having only a small impact in the
overall performance of the algorithm. In fact, generated maps are
satisfactory even with proportionally bigger differences between n
and m. With all costs calculated, all that remains to be done is to
choose a ground for each token and that is the job of the function
TokenPopulator(grid, tokenGrounds).

Sorting the collection of grounds by cost is, inevitably, of O{n ∗
logn} complexity, while choosing the grounds from the sorted list
is of O{1}. That is exactly what TokenPopulator function does.
The grounds in the sorted list are directly related to its difficulty by
the list indexes, transforming the levelling of token positioning in a
mere task of accommodating the right index for the desired token.
For instance, the last index of the list would attach a convenient
ground to place the most valuable token, if the list is sorted in an
ascending way.

5 EVALUATION

The results achieved by our PCG approach were rather satisfactory.
It produced a vast range of singular environments improving the
quality of our game experimentation and enabled the reallocation
of development resources to other branches without downgrading
the level design to a degree that falls below expectations. The use
of seeds gave the desired control over the content generated allow-
ing us to manage the levels in our experimental game in a controlled

Figure 2: Map generated by our algorithm

manner. The use of the difficult factor in combination with seeds in-
creased the capacity of the generation, and gave a new possible trait
to the experimental game: levels that are generated from the same
seed have a similar structure in comparison to levels generated from
other seeds, meaning that, with minor changes in the difficult factor,
we can create groups of similar maps that can represent sections of
the game. This feature gives a new layer of control to the generated
content, as we can easily populate a section by preserving the seed
on multiple generations, and create new ones by altering the seed
of the generation. To illustrate this behaviour, in Figure 2, Figure 3
and Figure 4 we expose our results in a graphic grid made of char-
acters that represents maps generated by the algorithm proposed

5.1 Proof of Concepts

From Figure 2, it is possible to observe how room superposition
gave more singularity to the generated map. As of now, rooms are
square shaped only, but different shapes can be easily be added and
would certainly improve the map eccentricity. It is also possible to
perceive how the tokens are positioned accordingly to their value
- characters ”G”, ”S” and ”B” represents gold, silver and bronze
tokens respectively. Other entities displayed in Figure 2 refers to
enemies, boxes and spikes. A generated map of the same seed with
a different difficulty factor is shown in Figure 3. For a better visu-
alization it is recommended to zoom in the figures.

Note that the structure of the generated map shown in Figure 3 is
very similar to the map shown in Figure 2, and that is because they
have the same seed, but different difficult factors. The difference
in the difficulties is of a tenth, thus they are very similar. Finally, a
new seed is used to generate the next displayed map in Figure 4.

Clearly the map generated shown in Figure 4 differs a lot in the
structure if compared to the ones generated in Figure 2 and Figure
3, and that is the result of using a different seed.

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 474



Figure 3: Map generated using the same seed as Figure 2 generation
with a difference of 0.1 in the difficult factor

Figure 4: Map generated with a different seed

5.2 Performance Evaluation

With a direct implementation of the suggested PCG approach, we
obtained a decent performance from the algorithm, even with a
single-threaded approach and no clipping optimization, meaning
that the whole map is generated on a execution of the algorithm.

Performance tests were performed in a machine with the fol-
lowing specifications: Windows 10 Enterprise 64-bit, Intel(R)
Core(TM) i7-6700 CPU @ 3.40GHz, 16384MB RAM, NVIDIA
GeForce GTX 950.

The table 1 shows test results for different levels in the experi-
mental game:

Level Time Grid Size Entities Memory Usage
1 1ms 1764 72 32768B
100 4ms 5476 103 125848B
500 19ms 29584 158 657632B
1000 28ms 62001 192 1459872B
5000 343ms 1590121 348 41988864B
10000 1310ms 6446521 411 122681112B
20000 5070ms 18267076 489 447736560B
30000 15842ms 45873529 557 1104960320B
50000 56210ms 156975841 635 3421365800B
100000 194069ms 454968900 723 9544367168B

Table 1: Performance and memory usage tests (ms for milliseconds
and B for Bytes)

The loading time of a level was very satisfactory, specially con-
sidering that the whole map structure and population is generated
in real-time. As seen in the table above, extremely high levels that
probably would not be achieved by a normal player were loaded
in a very adequate time. The same statement can be made about
memory usage, as it was fairly acceptable for normally unreachable
levels as well.

If we were to compare results with the answer set programming
approach, [17] gives us a time of several seconds on much smaller
game spaces only in the first phase of the generation, reinforcing
that [17] approach can be very costly in terms of time.

6 FINAL CONCLUSIONS

This paper presents a fast and direct PCG approach for generating
complete and singular levels for dungeon-like game maps, using
seeds as a way of controlling the generation, and applying a dif-
ficulty factor to the generation in a way that expands the possible
outcomes of the generation.

We were able to control the level generation knowing that a seed
gives the same generated map in every execution of the algorithm
in a given configuration. That trait combined with the use of a dif-
ficulty factor helped in designing the play difficulty curve of the
experimental game, and widened the possible outcomes for the gen-
eration.

Square-shaped structures were used in the map generation, al-
lowing superposition of structures to increase the singularity of the
generated level. A logical next step would be the use of different
shapes in the generation to improve the map uniqueness.

The strategy adopted to surpass the numerical limit acquired with
the use of seeds produced interesting results. By using different dif-
ficulty factors to expand the possible generations of a single seed,
numerical limitation of possible generations using seeds was in-
deed surpassed, but it created a side effect. Levels generated within
the same seed are very similar in its structure. In our experimental
game, that trait was appreciated as it did not hurt our intentions for
the game design, but it might be not desired for all. An investi-
gation on how to increase distinctness of levels from the same seed

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 475



should be headed in the future, for cases that similarity on generated
content from the same seed is not desired.

Although obtaining reasonable results in terms of algorithm ef-
fort, diverse techniques can be used to ease the generation loading
time. An obvious one is to generate the level content whilst the
player is still playing on a previous level. Another method is to
procedurally generate smaller sections of the level, which should be
quicker to produce, and piece them together as the player enters that
part of the level. A more interesting approach, albeit a bit trickier,
is to generate level content accordingly to the precise exploration
of the level, where content is only generated in the imminence of
entering player’s area of visualization, reducing the generation to
a much smaller section in each iteration. A further option is to in-
crease the algorithm performance by adapting it to a multi-thread
approach, which can be done in several ways, such as dividing the
map in smaller sections and designating each section to a worker
thread.

In conclusion, the effort into applying our procedural content
generation method in our experimental game was worth it and ful-
filled our expectations, as it expanded the possible environments
in the game universe to an unreachable degree if we were to de-
sign them manually one by one, while maintaining the level design
value and a good control over the level planning and difficulty curve
balance.

ACKNOWLEDGEMENTS

This work was partially supported by CNPq (National Council for
Scientific and Technological Development, linked to the Ministry
of Science, Technology, and Innovation), CAPES (Coordination
for the Improvement of Higher Education Personnel, linked to the
Ministry of Education), FINEP (Brazilian Innovation Agency), and
ICAD/VisionLab (PUC-Rio).

REFERENCES

[1] D. Ashlock and C. McGuinness. Automatic generation of fantasy role-
playing modules. In Computational Intelligence and Games (CIG),
2014 IEEE Conference on, pages 1–8. IEEE, 2014.

[2] J. R. Baron. Procedural dungeon generation analysis and adaptation.
In Proceedings of the SouthEast Conference, ACM SE ’17, pages
168–171, New York, NY, USA, 2017. ACM.

[3] P. E. Black. Manhattan distance. Dictionary of Algorithms and Data
Structures, 18:2012, 2006.

[4] CipSoft. Tibia (digital game), 1997.
[5] S. Dahlskog, S. Björk, and J. Togelius. Patterns, dungeons and gener-

ators. 2015.
[6] J. Dormans and S. Leijnen. Combinatorial and exploratory creativity

in procedural content generation. 2013.
[7] B. Entertainment. Diablo (Digital Game). Blizzard Entertainment,

1996.
[8] F. Games. Civilization iv (digital game), 2k games & aspyr. 2005.
[9] H. Games. No mans sky (digital game), 2016.

[10] M. Hendrikx, S. Meijer, J. Van Der Velden, and A. Iosup. Proce-
dural content generation for games: A survey. ACM Transactions on
Multimedia Computing, Communications, and Applications (TOMM),
9(1):1, 2013.

[11] L. Johnson, G. N. Yannakakis, and J. Togelius. Cellular automata for
real-time generation of infinite cave levels. In Proceedings of the 2010
Workshop on Procedural Content Generation in Games, page 10.
ACM, 2010.

[12] V. Lifschitz. What is answer set programming?. In AAAI, volume 8,
pages 1594–1597, 2008.

[13] Maxis. Spore (digital game), electronic arts, 2008.
[14] Mojang. Minecraft (digital game), microsoft studios, 2011.
[15] RIXGAMES. Dungeon grind procedural dungeon generation tutorial,

2013.
[16] N. Shaker, J. Togelius, and M. J. Nelson. Procedural Content Gener-

ation in Games. Springer, 2016.

[17] A. J. Smith and J. J. Bryson. A logical approach to building dun-
geons: Answer set programming for hierarchical procedural content
generation in roguelike games. In Proceedings of the 50th Anniver-
sary Convention of the AISB, 2014.

[18] G. Smith. The future of procedural content generation in games. In
Proceedings of the Experimental AI in Games Workshop, 2014.

[19] G. Smith. An analog history of procedural content generation. In
FDG, 2015.

[20] F. Streichert. Introduction to evolutionary algorithms. paper to be
presented Apr, 4, 2002.

[21] J. Togelius, T. Justinussen, and A. Hartzen. Compositional procedural
content generation. In PCG@ FDG, pages 16–1, 2012.

[22] J. Togelius, E. Kastbjerg, D. Schedl, and G. N. Yannakakis. What
is procedural content generation?: Mario on the borderline. In Pro-
ceedings of the 2nd International Workshop on Procedural Content
Generation in Games, page 3. ACM, 2011.

[23] M. Toy, G. Wichman, K. Arnold, and J. Lane. Rogue (digital game).
1980.

[24] R. van der Linden, R. Lopes, and R. Bidarra. Procedural generation
of dungeons. IEEE Transactions on Computational Intelligence and
AI in Games, 6(1):78–89, 2014.

[25] S. Wolfram. Computation theory of cellular automata. Communica-
tions in mathematical physics, 96(1):15–57, 1984.

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 476


	175200



