
Large Viscoelastic Fluid Simulation on GPU
Caio Brito1* André Luiz B. Vieira-e-Silva1 † Mozart William S. Almeida1 ‡ João Marcelo Teixeira2 §

Veronica Teichrieb1 ¶

1UFPE, Voxar Labs - CIn, Brazil
2UFPE, Departamento de Eletrônica e Sistemas, Brazil

ABSTRACT

Viscoelastic materials, such as gels, gelatin, and mucus, are in-
creasingly present in movies and games. One common method to
simulate this kind of fluid is the Smoothed Particle Hydrodynam-
ics (SPH) using a velocity correction which limits the fluid defor-
mation providing visually consistent results. However, it is very
time-consuming. This paper presents the acceleration of viscoelas-
tic SPH using graphics processing unit using CUDA being able to
simulate a large number of particles, up to 1 million. The method
was implemented as an extension of the DualSPHysics open source
project and the performance was compared to an OpenMP imple-
mentation, being able to achieve an average of 7.76 speedup.

Keywords: SPH, viscoelastic fluid, GPU computing , CUDA.

1 INTRODUCTION

Conventional methods, as the Finite Element Methods (FEM) [10],
Finite Difference Methods (FDM) [14] and other mesh-based meth-
ods [39], are considered well consolidated and highly accurate to
solve computational mechanics problems. Some of these problems,
such as solid modeling, casting and the simulation of manufactur-
ing processes, require dealing with large deformations [7]. When
simulating fluid flows these deformations become even larger and
the best approach for these mesh-based methods to deal with this
kind of problem is to reconstruct the mesh every iteration step of
the simulation [3], which is quite costly, computationally. It be-
comes clear that these methods favor entirely numerical precision
over performance.

Physics simulations in general are commonly utilized in games,
virtual reality (VR) and computer graphics (CG) applications [25]
[21] [20] [5] [4], which often need to reach interactive rates or even
real-time, thus, performance is an obvious key factor in these [22].

The meshless methods were proposed as an alternative to deal
with those large deformations (that cause performance degradation
in mesh-based methods). They use discrete elements, called parti-
cles, characterizing the system state and its evolution through time.
Each particle carries a set of physical quantities and constitutive
properties, such as mass, velocity, position and any other related
to the problem being simulated. One of the most known mesh-
less methods to simulate hydrodynamics problems nowadays is the
Smoothed Particle Hydrodynamics (SPH) [27] [16].

Silva et al. [13] developed a weakly compressible SPH (WC-
SPH) method that relies only on the XSPH formulation, proposed
by Schechter and Bridson [38], to simulate viscosity and to pre-
vent the particle penetration problem in boundary condition calcu-

*e-mail: cjsb@cin.ufpe.br
†e-mail: albvs@cin.ufpe.br
‡e-mail: mwsa@cin.ufpe.br
§e-mail: jmxnt@cin.ufpe.br
¶e-mail: vt@cin.ufpe.br

lation. This approach led to an SPH with less and smaller formula-
tions with a relatively high numerical precision, which can be used
for interactive applications due to its small number of calculations
compared to other methods such as Solenthaler and Pajarola [43]
and Ihmsen et al. [19].

With that in mind, viscoelastic materials are generally used to
represent common materials, for example, egg white, gels and
slime. They produce appealing visual effects, so the video games
and film industries quite often require an accurate simulation of
these viscoelastic properties. Exaggerated representations that real
world materials do not exhibit, like very large deformations, are fre-
quently required by such industries in order to make certain char-
acters or effects cause a greater impression in the audience.

The work of Takahashi et al. [47] proposes a particle-based hy-
brid method for simulating volume preserving viscoelastic fluids
with large deformations. It combines SPH and Position-based Dy-
namics (PBD), the later proposed by Mller et al. [34], to approxi-
mate the dynamics of viscoelastic fluids, where the idea of adapta-
tive connections between particles is used to correct particle veloc-
ities, which are carefully calculated to not negatively affect volume
preservation of materials. The authors claim that examples show
the proposed hybrid method can sufficiently preserve fluid volumes
and robustly generate a variety of viscoelastic behaviors, such as
splitting and merging, large deformations, and Barus effect. De-
spite the visual quality of Takahashi’s work, the method takes an
average of 10s/step in a simulation with 110.8k particles.

only This workś contribution lies in the extension of the weakly
compressible SPH method with less and smaller formulations pro-
posed by Silva et al. [13] where the viscoelastic properties formu-
lations proposed in the work of Takahashi et al. [47] are added to
the fluid. To achieve even higher rates, aiming real-time simulation,
NVidia’s CUDA was used to accelerate the simulation generation,
as well as OpenMP to explore the parallelism provided by multi-
ple CPU cores. A parallelized CPU version using OpenMP and a
parallelized GPU version using CUDA were developed so the sim-
ulation could achieve its maximum performance with a large num-
ber of particles, reaching interactive rates. Both versions developed
were compared regarding performance.

In the next section, the state of art of SPH simulation is pre-
sented along with the related work of viscoelastic methods. Then,
our method is explained to deal with viscoelastic simulation. In
section 4, the DualSPHysics code is explained and what was modi-
fied in order to allow a GPU based viscoelastic SPH simulation. In
section 5 the test cases to validate the approaches proposed are pre-
sented, and then the visual and performance results are presented
in section 6. Finally, in section 7, the conclusions are discussed
together with future possibilities and enhancements.

2 STATE OF THE ART

As previously said, since the SPH’s creation, it has been vastly ex-
tended to simulate fluids and even solids due to its particle-based
characteristics over mesh-based methods. One of the most straight-
forward adaptations of the original SPH method is the application
for weakly compressible fluids, since the pressure can be calculated

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 462

by a simple equation of state, differently from the truly incompress-
ible formulation, in which a Poisson Pressure Equation (PPE) is
solved every iteration [1]. In some works, weakly compressible
and truly incompressible SPH implementations are explicitly com-
pared in relation to its precision and performance [46] [40] [26].
The main difference between the original method and the newer
ones is the inclusion of boundary conditions [45] [58].

Besides the compressibility factor present in the fluids, some
other elements can be introduced to the fluid behaviour, depending
on the kind of problem being studied, like the viscosity, presence
or absence of turbulence, type of smoothing function, among oth-
ers. Some works present results for adjustments in the viscosity
according to the problem being focused [36] [52] [37] [42] [56].
For turbulent flows, some papers try to adapt known methods into
the particles systems [15] [41].

Given the discrete characteristics of the simulation, parallel so-
lutions of the method become straightforward, using specific lan-
guages to extract the hardware’s parallelism (i.e. OpenMP), cluster
technology and general purpose programming for graphics proces-
sors (GPGPU) techniques, in order to divide the task between core
processors, thus, decreasing the time consumption of the simulation
computation [8] [18] [24].

As for the gaming industry, several works that use the SPH
method focus on simulating fluids for interactive applications and
for real-time ones, starting with the work of Mller et al. [33]. Other
works focus on simulating fluids with different properties and fea-
tures, so it is possible to represent most of the fluid types and behav-
iors. Performance needs to be the focus if the application will be
utilized for gaming purposes, so the aim should always be a simula-
tion running at least near to real-time, however, the fluid also needs
to preserve its physical properties and present them coherently, as
much as possible [21] [22].

2.1 Related Work

Works involving the SPH method augmented with viscoelastic for-
mulations are quite recent, still, lots of works are already benefiting
from each other. The visual appeal and the high range of applicabil-
ity of this type of simulation in fields such as medicine, biology and
the entertainment industry [55, 57] may be the reason of its instant
popularity. In this subsection, some similar works to this one are
presented, showing its importance to the community.

Clavet et al. [6] took advantage of the method proposed by Miller
and Pearce [29] and Terzopoulos et al. [49], which is a spring-
based method, and combined it with SPH to simulate materials with
elasticity, plasticity, and viscosity, adopting a prediction-relaxation
scheme. This spring-based model computes attraction and repul-
sion forces between particles to successfully simulate the viscoelas-
tic properties of certain materials. Another similar spring-based
method was also proposed by Takahashi et al. [48], who used PBD
to simulate fluids with viscosity and elasticity in a unified frame-
work.

Muller et al. [35] proposed the addition of an elasticity term to
formulations which uses Moving Least Square (MLS) to simulate
elastoplastic objects. Solenthaler et al. [44] adopted the formula-
tion of this elasticity term and computed it using SPH instead of
MLS to allow for robustly simulating fluid with various properties
under some conditions. The method Solenthaler et al. [44] pro-
posed was extended to handle rotational motions of elastic materi-
als [2]. Mao and Yang [28] introduced a viscoelastic force term into
the Navier-Stokes equations to simulate viscoelastic fluids.

Xu et al. [55] propose a viscoelastic SPH to be used in bio-
logical applications, more specifically a multiscale SPH method to
simulate transient viscoelastic flows by using a bead-spring chain
description of polymer molecule. To achieve the obtained results
the authors came up with a methodology that couples macroscopic
conservation equations for mass and momentum with a differential

equation for bead-spring chain dynamics, which, when solved, the
polymeric stress is obtained.

Xu et al. [54] proposed an improved weakly compressible SPH
method to simulate transient free surface flows of viscous and vis-
coelastic fluids. The improvement to the WCSPH formulations in-
clude a greater accuracy and stability due to a correction in the ker-
nel gradient calculation, and an enhanced computation of pressure
distribution in the dynamics of the fluid due to corrections in the
continuity equation. The effectiveness of the method is success-
fully proved through a series of test scenarios common in the liter-
ature, like the dam breaking flow, stretching of a water drop and a
viscoelastic fluid drop against a wall.

Heck et al. [17] also propose a viscoelastic SPH to biology pur-
poses, although this time to model extracellular matrix viscoelastic-
ity for an extracellular matrix in contact with a migrating cell. Also,
it improves contact mechanics by modeling it based on an existing
boundary method in SPH, which is extended to allow the model-
ing of moving boundaries in contact with a viscoelastic solid. This
result should enable the field researchers to model and understand
realistic cellmatrix interactions in the future.

3 A VISCOELASTIC WEAKLY COMPRESSIBLE SPH
METHOD

In this section, the weakly compressible SPH method, based on the
work of Silva et al. [13], and its modifications to support viscoelas-
tic fluids, are explained.

3.1 SPH Formulation
The SPH is a Lagrangian method created originally to simulate as-
trophysics problems and lately has been used mainly to simulate
hydrodynamics problems solving the Navier-Stokes equation, de-
fined by Eq. (1).

du
dt

=− 1
ρ

∇P+
1
ρ

∇ · τττ +Fext (1)

The Navier-Stokes equation describes the fluid movement re-
garding three main components: pressure, viscosity and external
forces. The SPH solves the fluid movement by considering the fluid
as a weakly compressible system, which is based on the fact that ev-
ery incompressible fluid is a little compressible, and because of that,
the method simulates a quasi-incompressible equation to model the
simulation.

Silva et al. [13] propose a SPH formulation into a series of steps:
The first step is to calculate the particle density, which is calcu-

lated using the continuity equation as in Eq. (2).

dρi

dt
= ∑

j
m j(ui−u j)∇Wi j (2)

where m is the particle mass, ρ is the particle density, u is the
particle velocity and W is the kernel function.

After calculating the density of the particles in the system, the
next step is to solve their pressures, which are calculated by the
Tait’s equation (3), as shown in the work of Silva et al. [13]:

Pi = B((
ρi

ρ0
)γ −1) (3)

where B is the pressure constant, ρ0 is the rest density of the fluid
and γ is a constant that usually has a value of 7.

The pressure force is commonly calculated using Eq. (4). This
approach ensures a modular equality between two particles and
conserves linear and angular momentum, leading to a more stable
simulation, as shown in [32]:

1
ρi

∇Pi = ∑
j

m j(
Pi

ρ2
i
+

Pj

ρ2
j
)∇Wi j (4)

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 463

To simulate the viscosity and to prevent a particle penetration
problem, the XSPH method is used. This method forces particles
near each other to move with almost the same velocity. The method
is computationally cheaper than other methods and has only one
tunable parameter making it easy to change [38]. This parameter
controls the viscosity influence on the fluid; the higher the parame-
ter value, the greater the influence of the viscosity of the fluid.

To conserve linear and angular momentum, Eq. (5) was used
to calculate an intermediate velocity u∗ and Eq. (6) was used to
calculate the new velocity.

u∗i = ui +ai4t (5)

ui = u∗i + ε ∑
j

mb
u∗i −u∗j

ρ j
wi j (6)

where ai is the particles’ acceleration and ε is the tunable parameter
of the XSPH method.

Finally, the last term in the Navier-Stokes governing equation is
related to the external forces in the system which in most systems
is the gravity. The particles’ new positions are calculated using a
simple first order Euler time integration Eq. (7), as suggested in
[38]:

xt+1
i = xt

i +ut+1
i 4 t (7)

where ai is the particle’s i acceleration and 4t is the time step of
the simulation.

The fluid flow is simulated until reaching the stop criteria, which
in this work is the total time of simulation. The SPH method flow
can be found in Fig. 1.

Figure 1: SPH method algorithm flow.

3.2 Viscoelastic Scheme
To handle viscoelastic simulations, [47] proposes a velocity cor-
rection 4v that is based on a set of pairwise connections that is
created in the beginning of the simulation with distance ri j, which
is the initial particle distance. The velocity correction is calculated
as Eq. (8):

4u =− 1
4t

C f

∑
j

ci + c j

2
mi

mi +m j
Di j

xi j∥∥xi j
∥∥ (8)

where C f is the number of connected fluid particles to particle i, c
is the correction coefficient and D is a function defined as Di j =

max(
∥∥xi j

∥∥− ri j,0).
The function Di j expresses that the velocity correction is only

performed when the particle distance is larger than the initial parti-
cle distance ri j, which means that the fluid is in expansion and the
correction coefficient controls the stiffness of viscoelastic materi-
als.

3.2.1 One Way Solid-Fluid Coupling

In order to compute a one way solid-fluid coupling and create a
sticking behavior on the boundary, Eq. (8) must also be computed
using the boundary particles as described in Eq. (9), which assumes
mk = ∞ [47]:

4u =− 1
4t

C f

∑
j

ci + c j

2
mi

mi +m j
Di j

xi j∥∥xi j
∥∥ − 1
4t

Cb

∑
k

ci + ck

2
Dik

xik

‖xik‖
(9)

where Cb is the number of connected boundary particles to particle
i.

Using this coupling approach, when the fluid hits a boundary, it
should stick on the boundary instead of bouncing back into the air.

The viscoelastic SPH method flow can be found in Fig. 2.

Figure 2: Viscoelastic SPH method algorithm flow.

4 GPU IMPLEMENTATION

In this section, the parallel implementation is explained along with
its modifications to support viscoelastic fluid.

4.1 DualSPHysics

DualSPHysics is an open-source project created with the purpose of
encouraging other researchers to study SPH and it has GNU Gen-
eral Public License as published by the Free Software Foundation
[9]. The code is available for CPU and GPU SPH simulation being
able to compute the fluid behavior with numerical stability, accu-
racy and it has been used for many applications [30] [50] [31]. The
code is written in C++ using OpenMP for the parallel CPU imple-
mentation and uses CUDA for the GPU implementation.

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 464

The SPH code implemented on the DualSPHysics can be divided
into 3 main phases [9]: (1) Neighborhood organization, (2) particles
interaction and (3) time integration.

In phase 1, the particles neighborhood is computed using a cell-
linked list (CLL) approach [11]. In the CLL, the domain is divided
into square cells (2D) or cube cells (3D) with twice the influence
radius (h) and the particles are stored into a list depending on the
cell they belong to.

So, in order to create the neighborhood of a particle, only par-
ticles of adjacent cells are considered potential neighbors. It is
worth noticing that a neighbor list is not created but a list of par-
ticles is reordered depending on the cell they belong to. This ap-
proach is faster and consumes less memory than creating a real list
of neighbor particles [11]. To conclude the first step, every array is
reordered using the list of particles.

The second phase calculates the interaction between neighbor
particles by solving the momentum and continuity equation. The
interaction between two particles occurs if the distance is less than
2h.

Using the results from the second phase, the time integration is
calculated, such as verlet and symplectic. In this phase, the new par-
ticles density, velocity and position are calculated, a new timestep
can be computed, particle information is stored in the hard drive
and the arrays are ordered so that particles inside the same cell can
be close to each other.

4.2 DualSPHysics Modifications
Three parts of the DualSPHysics code were modified: (1) Euler
integration, (2) XSPH calculation and (3) velocity correction for
viscoelastic behavior.

4.2.1 Euler Integration
The Euler integration is used to calculate the new position of a fluid
particle as shown in Eq. (7). The particles’ position and velocity
are stored in Posxyg, Poszg and Velrhopg arrays for the GPU
solution, which are already used on the original DualSPHysics im-
plementation.

4.2.2 XSPH Calculation
To calculate the XSPH, the summation from Eq. (6) is computed
using a CUDA kernel which interacts through the particles neigh-
borhood and is stored into a float3. In sequence, another CUDA
kernel computes the final velocity as Eq. (6) and stores the result
into the velocity array as shown in Listing 1. Line 4 calculates the
particle index using the CUDA kernel information and, if it is a fluid
particle, the velocity velrhopnew is updated using the XSPH re-
sult.

Listing 1: XSPH GPU Code.

1 template<bool floating, bool shift> __global__ void
KerComputeStepVelocity

2 (unsigned n, unsigned npb, const float4 *velrhop1, const
float3 *xsph, double dt, word *code, float4 *
velrhopnew, double eps)

3 {
4 unsigned p = blockIdx.y*gridDim.x*blockDim.x + blockIdx.x

*blockDim.x + threadIdx.x;
5 if (p<n){
6 if (p<npb){// -Boundary particle
7 velrhopnew[p] = make_float4(0, 0, 0, velrhop1

[p].w);
8 }
9 else{ // -Fluid particle

10
11 float4 rvelrhop = velrhop1[p];
12 float3 xsphp = xsph[p];
13
14 //velocity update using the xsph

15 rvelrhop.x = float(double(rvelrhop.x) -
double(xsphp.x)*eps);

16 rvelrhop.y = float(double(rvelrhop.y) -
double(xsphp.y)*eps);

17 rvelrhop.z = float(double(rvelrhop.z) -
double(xsphp.z)*eps);

18 velrhopnew[p] = rvelrhop;
19
20 }
21 }
22 }

4.2.3 Velocity Correction for Viscoelastic Behavior
In order to simulate the fluid viscoelastic behavior, first it is neces-
sary to create the connections from the fluid particles, so the initial
fluid position is kept into a f loat4 array which is used for creat-
ing the connections using a CLL. To calculate the one way solid-
fluid coupling, the connections are updated to the point where the
fluid has the highest number of boundary neighbor particles. In
sequence, two CUDA kernel are created. The first one interacts
through the particles connections and calculates the velocity correc-
tion as Eq. (8). Then, the second kernel uses the velocity correction
and updates the fluid velocity as shown in Listing 2, which updates
the the fluid velocity velrhopnew using the velocity correction
result.

Listing 2: Velocity Correction GPU Code.

1 template<bool floating, bool shift> __global__ void
KerComputeStepVelocityCorr

2 (unsigned n, unsigned npb, const float4 *velrhop1, const
float3 *velcorr, double dt, word *code, float4 *
velrhopnew)

3 {
4 unsigned p = blockIdx.y*gridDim.x*blockDim.x +

blockIdx.x*blockDim.x + threadIdx.x;
5 if (p<n){
6 if (p<npb){ //-Boundary particle
7 velrhopnew[p] = make_float4(0, 0, 0,

velrhop1[p].w);
8 }
9 else{ // -Fluid particle

10
11 float4 rvelrhop = velrhop1[p];
12 float3 velcorrp = velcorr[p];
13 /* Velocity update using the
14 viscoelastic correction */
15 rvelrhop.x = float(double(rvelrhop.x) -

double(velcorrp.x)*(1 / dt));
16 rvelrhop.y = float(double(rvelrhop.y) -

double(velcorrp.y)*(1 / dt));
17 rvelrhop.z = float(double(rvelrhop.z) -

double(velcorrp.z)*(1 / dt));
18 velrhopnew[p] = rvelrhop;
19
20 }
21 }
22 }

5 TEST CASES

To validate the visual results from the SPH method, three different
objects were released with no initial velocity towards the ground: a
sphere, a cube and a triangular base pyramid.

The sphere is centered in the point (0.3,0.3,0.3) with a 0.2m
radius. The cube is centered in the point (0.45,0.45,0.45) with
lateral size equal to 0.3m. Both sphere and cube have initial particle
spacing of 0.01m and composed by 40k particles. The pyramid is
composed by the points (1,1,2), (4,1,2), (1,5,2) and (2,2,4) and
has initial particle spacing of 0.05 resulting in 60k particles.

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 465

The sphere test case is also repeated using three correction coef-
ficients: 0.01, 0.001 and 0.0005 to understand the influence of the
parameters on the fluid behavior. This case is also used to compare
the performance of the GPU solution with the OpenMP implemen-
tation, by using 100k, 300k, 500k, 750k and 1M fluid particles with
0.01 correction coefficient value.

To validate the one way solid-fluid coupling, the sphere test and
the pyramid test are used with the same aforementioned parameter
but the pyramid has a initial velocity v0 = (10,0,0) which makes
the object to be thrown against the wall on x = 5.

6 RESULTS

Firstly, a visual analysis of the methods will be made using differ-
ent shapes and correction coefficient values. Then, a performance
analysis will be done comparing the computational time of the GPU
and CPU implementations.

A technique based on the work of van der Laan [51] was used
to render the simulation results. The approach can be summarized
into three steps: using the fluid particle’s position, the surface depth
and thickness are computed into different buffers. Then, the surface
depth is smoothed using a bilateral filter and a final pass is done to
combine depth, thickness and the scene behind the fluid into the fi-
nal image. The fluid color can be calculated as by Eq. (10), where
F is the Fresnel function, a is the refracted fluid color, b is the re-
flected scene color, ks and α are constants for the specular highlight,
n is the surface normal and h is the half-angle between the camera
and the light, and v is the camera vector.

Cout = a(1−F(n·v))+bF(n·v)+ ks(n·h)α (10)

The CPU used to run the test cases was an Intel Core i7-4790L
CPU @ 4.00 GHz with 32 GB of installed RAM and a Windows
10 64-bit operating system (x64). The GPU used was a NVIDIA
GeForce 960 with 4 GB of RAM.

6.1 Visual Analysis
As previously described, the different shapes were released towards
the ground: a sphere, a cube and a pyramid. By the fact that vis-
coelastic fluids are being simulated, it is expected the fluid to have
a tendency of returning to its initial shape and the fluid should not
spread on the floor like a regular fluid, but instead it should show a
elastic deformation.

The expected result is achieved with the three objects as shown
in Fig. 3, Fig. 4 and Fig. 5, as the fluid tends to keep its original
shape and has a gelatinous appearance. Also, the fluid bounces back
to the air because the solid-fluid coupling is not being considered.

When the one way solid-fluid coupling is computed the fluid
does not bounce back and sticks on the boundary. This behavior
is shown in Fig. 6 and in Fig. 7 in which the fluid particles stick on
the boundary but still surfer the influence of the gravitational force.
This behavior can be seen in the point of the pyramid which tends
to bend in the gravity direction.

Also, the influence of the correction coefficient (c)was analyzed
and as the coefficient value decreases, less elastic the fluid becomes
and spreads on the floor losing its original shape. This result can be
seen in Fig. 8, which shows the three different fluids, with the same
original shape but different correction coefficients, after hitting the
floor.

The achieved results are visually coherent and resemble a
gelatin, being visually similar to the one found in the work of Taka-
hashi et al. [47]. In addition, it is possible to handle large deforma-
tions, different from the work of Mao and Yang [28].

6.2 Performance Analysis
Table 1 shows the simulation times of the parallel CPU implemen-
tation using OpenMP and the parallel GPU implementation using
CUDA for 5 different numbers of particles. The time on the table

Table 1: CPU and GPU computation times and their respective
speedups for each test case.

Particles CPU (ms) GPU (ms) Speedup
100k 461 64 7.2
300k 1544 196 7.8
500k 2579 325 7.9
750k 3956 495 7.9
1M 5368 670 8.0

represents the computation time of calculating the particles interac-
tions, the new particle positions and ordering the arrays according
to their cell.

From the aforementioned results, it is possible to notice that the
GPU version provides an average of 7.76 speedup in comparison to
the parallel CPU implementation.

Two main calculations occur in a timestep: solving the new par-
ticle position and reordering the arrays using the particle cell po-
sition. In both the GPU and CPU implementations, the reordering
calculation takes less than 1% of the computation time. But, in
the GPU version the computation time increases from 1ms to 3ms,
while in the CPU version increases from 3ms to 46ms when com-
pared using 100k and 1M particles, respectively.

The work of Takahashi et al. [47] is able to solve the viscoelastic
SPH in 10s/step in a simulation with 110.8k particles. The pro-
posed solution in this work presents a faster simulation being able
to solve a simulation with 100k particles in 64ms (15fps) and also
to simulate 1M particles in 670ms which is better performance than
the work of Takahashi. But, unlike the work of Takahashi et al., our
work is not able to deal with connection control and a full solid-
fluid coupling.

7 CONCLUSION

This work had a twofold contribution: to extend the work of Silva
et al. [13] to be able to simulate a viscoelastic fluid using a
SPH method and a parallel implementation using the DualSPHysics
open-source code. A parallelized CPU version using OpenMP and
a parallelized GPU version using CUDA were developed and can
simulate up to millions of particles in interactive rates. The GPU
implementation was able to achieve a maximum of 15 fps with 100k
particles and an average speedup of 7.76 in comparison to the par-
allel CPU implementation.

7.1 Future Works
This work can be improved in many ways. First, the SPH model
can be improved to deal with connection control being able to sim-
ulate interaction between two different fluids and splitting behav-
ior [47]. Another possibility is to compared the numerical solution
with other works, such as [47] and [28].

Also, different particle based methods can be implemented using
the viscoelastic approach and the GPU code, such as, ISPH [53] and
MPS [23] [12].

REFERENCES

[1] M. Asai, A. M. Aly, Y. Sonoda, and Y. Sakai. A stabilized incompress-
ible sph method by relaxing the density invariance condition. Journal
of Applied Mathematics, 2012, 2012.

[2] M. Becker, M. Ihmsen, and M. Teschner. Corotated sph for de-
formable solids. In NPH, pages 27–34, 2009.

[3] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl.
Meshless methods: an overview and recent developments. Computer
methods in applied mechanics and engineering, 139(1):3–47, 1996.

[4] R. Bridson. Fluid simulation for computer graphics. CRC Press, 2015.
[5] C. Chae and K. Ko. Introduction of physics simulation in augmented

reality. In Ubiquitous Virtual Reality, 2008. ISUVR 2008. Interna-
tional Symposium on, pages 37–40. IEEE, 2008.

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 466

Figure 3: Sphere Test Case Results.

Figure 4: Square test case results.

[6] S. Clavet, P. Beaudoin, and P. Poulin. Particle-based viscoelastic fluid
simulation. In Proceedings of the 2005 ACM SIGGRAPH/Eurograph-
ics symposium on Computer animation, pages 219–228. ACM, 2005.

[7] P. Cleary, M. Prakash, and J. Ha. Novel applications of smoothed
particle hydrodynamics (sph) in metal forming. Journal of materials
processing technology, 177(1):41–48, 2006.

[8] A. Crespo, J. M. Dominguez, A. Barreiro, M. Gómez-Gesteira, and
B. D. Rogers. Gpus, a new tool of acceleration in cfd: efficiency and
reliability on smoothed particle hydrodynamics methods. PLoS One,
6(6):e20685, 2011.

[9] A. Crespo, J. Domnguez, B. Rogers, M. Gmez-Gesteira, S. Long-
shaw, R. Canelas, R. Vacondio, A. Barreiro, and O. Garca-Feal. Du-
alsphysics: Open-source parallel {CFD} solver based on smoothed
particle hydrodynamics (sph). Computer Physics Communications,
187:204 – 216, 2015.

[10] G. Dhatt, G. Touzot, et al. Finite element method. John Wiley & Sons,
2012.

[11] J. M. Domı́nguez, A. J. Crespo, M. Gómez-Gesteira, and J. C.
Marongiu. Neighbour lists in smoothed particle hydrodynamics. In-
ternational Journal for Numerical Methods in Fluids, 67(12):2026–
2042, 2011.

[12] G. Duan, B. Chen, X. Zhang, and Y. Wang. A multiphase mps solver
for modeling multi-fluid interaction with free surface and its applica-
tion in oil spill. Computer Methods in Applied Mechanics and Engi-
neering, 320:133 – 161, 2017.

[13] A. L. V. e Silva, M. W. Almeida, C. J. Brito, V. Teichrieb, J. M. Bar-
bosa, and C. Salhua. A qualitative analysis of fluid simulation using
a sph variation. In Congresso de Mtodos Numricos em Engenharia,
2015.

[14] E. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-Yusof. Combined
immersed-boundary finite-difference methods for three-dimensional
complex flow simulations. Journal of computational physics,
161(1):35–60, 2000.

[15] M. Ferrand, D. Laurence, B. D. Rogers, D. Violeau, and C. Kassiotis.

Unified semi-analytical wall boundary conditions for inviscid, laminar
or turbulent flows in the meshless sph method. International Journal
for Numerical Methods in Fluids, 71(4):446–472, 2013.

[16] R. A. Gingold and J. J. Monaghan. Smoothed particle hydrodynamics:
theory and application to non-spherical stars. Monthly notices of the
royal astronomical society, 181(3):375–389, 1977.

[17] T. Heck, B. Smeets, S. Vanmaercke, P. Bhattacharya, T. Odenthal,
H. Ramon, H. V. Oosterwyck, and P. V. Liedekerke. Modeling extra-
cellular matrix viscoelasticity using smoothed particle hydrodynam-
ics with improved boundary treatment. Computer Methods in Applied
Mechanics and Engineering, 322:515 – 540, 2017.

[18] C. Hori, H. Gotoh, H. Ikari, and A. Khayyer. Gpu-acceleration
for moving particle semi-implicit method. Computers & Fluids,
51(1):174–183, 2011.

[19] M. Ihmsen, J. Cornelis, B. Solenthaler, C. Horvath, and M. Teschner.
Implicit incompressible sph. IEEE Transactions on Visualization and
Computer Graphics, 20(3):426–435, 2014.

[20] M. Joselli, M. Zamith, E. W. G. Clua, A. Montenegro, R. C. P. Leal-
Toledo, L. Valente, and B. Feijó. An architecture with automatic load
balancing and distribution for digital games. In Games and Digital
Entertainment (SBGAMES), 2010 Brazilian Symposium on, pages 59–
70. IEEE, 2010.

[21] J. R. d. S. Junior, E. W. Clua, A. Montenegro, and P. A. Pagliosa.
Fluid simulation with two-way interaction rigid body using a het-
erogeneous gpu and cpu environment. In Games and Digital Enter-
tainment (SBGAMES), 2010 Brazilian Symposium on, pages 156–164.
IEEE, 2010.

[22] J. R. d. S. Junior, M. Joselli, M. Zamith, M. Lage, E. Clua, E. Soluri,
and N. Tecnologia. An architecture for real time fluid simulation using
multiple gpus. XI SBGames, Brası́lia, page 8, 2012.

[23] S. Koshizuka and Y. Oka. Moving-particle semi-implicit method for
fragmentation of incompressible fluid. Nuclear science and engineer-
ing, 123(3):421–434, 1996.

[24] Ø. E. Krog and A. C. Elster. Fast gpu-based fluid simulations using

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 467

Figure 5: Pyramid test case results.

Figure 6: Sphere test case with one way solid-fluid coupling.

sph. In International Workshop on Applied Parallel Computing, pages
98–109. Springer, 2010.

[25] O. Lamotte, S. Galland, J.-M. Contet, and F. Gechter. Submicroscopic
and physics simulation of autonomous and intelligent vehicles in vir-
tual reality. In Advances in System Simulation (SIMUL), 2010 Second
International Conference on, pages 28–33. IEEE, 2010.

[26] E.-S. Lee, C. Moulinec, R. Xu, D. Violeau, D. Laurence, and
P. Stansby. Comparisons of weakly compressible and truly incom-
pressible algorithms for the sph mesh free particle method. Journal of
computational physics, 227(18):8417–8436, 2008.

[27] L. B. Lucy. A numerical approach to the testing of the fission hypoth-
esis. The astronomical journal, 82:1013–1024, 1977.

[28] H. Mao and Y.-H. Yang. Particle-based non-newtonian fluid animation
with heating effects. University of Alberta, Tech. Rep, 2006.

[29] G. Miller and A. Pearce. Globular dynamics: A connected parti-
cle system for animating viscous fluids. Computers & Graphics,
13(3):305–309, 1989.

[30] A. Mokos, B. D. Rogers, and P. K. Stansby. A multi-phase particle
shifting algorithm for sph simulations of violent hydrodynamics with a
large number of particles. Journal of Hydraulic Research, 55(2):143–
162, 2017.

[31] A. Mokos, B. D. Rogers, P. K. Stansby, and J. M. Domı́nguez. Multi-
phase sph modelling of violent hydrodynamics on gpus. Computer
Physics Communications, 196:304–316, 2015.

[32] J. J. Monaghan. Smoothed particle hydrodynamics. Reports on
progress in physics, 68(8):1703, 2005.

[33] M. Müller, D. Charypar, and M. Gross. Particle-based fluid simu-
lation for interactive applications. In Proceedings of the 2003 ACM
SIGGRAPH/Eurographics symposium on Computer animation, pages
154–159. Eurographics Association, 2003.

[34] M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliff. Position based
dynamics. Journal of Visual Communication and Image Representa-
tion, 18(2):109–118, 2007.

[35] M. Müller, R. Keiser, A. Nealen, M. Pauly, M. Gross, and M. Alexa.
Point based animation of elastic, plastic and melting objects. In
Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium
on Computer animation, pages 141–151. Eurographics Association,

2004.
[36] J. Pozorski and A. Wawreńczuk. Sph computation of incompress-

ible viscous flows. Journal of Theoretical and Applied Mechanics,
40(4):917–937, 2002.

[37] A. Rafiee, M. Manzari, and M. Hosseini. An incompressible sph
method for simulation of unsteady viscoelastic free-surface flows.
International Journal of Non-Linear Mechanics, 42(10):1210–1223,
2007.

[38] H. Schechter and R. Bridson. Ghost sph for animating water. ACM
Transactions on Graphics (TOG), 31(4):61, 2012.

[39] J. A. Sethian. Level set methods and fast marching methods: evolv-
ing interfaces in computational geometry, fluid mechanics, computer
vision, and materials science, volume 3. Cambridge university press,
1999.

[40] M. S. Shadloo, A. Zainali, M. Yildiz, and A. Suleman. A robust
weakly compressible sph method and its comparison with an incom-
pressible sph. International Journal for Numerical Methods in Engi-
neering, 89(8):939–956, 2012.

[41] J. Shao, H. Li, G. Liu, and M. Liu. An improved sph method for
modeling liquid sloshing dynamics. Computers & Structures, 100:18–
26, 2012.

[42] L. D. G. Sigalotti, J. Klapp, E. Sira, Y. Meleán, and A. Hasmy. Sph
simulations of time-dependent poiseuille flow at low reynolds num-
bers. Journal of computational physics, 191(2):622–638, 2003.

[43] B. Solenthaler and R. Pajarola. Predictive-corrective incompressible
sph. In ACM transactions on graphics (TOG), volume 28, page 40.
ACM, 2009.

[44] B. Solenthaler, J. Schläfli, and R. Pajarola. A unified particle model
for fluid–solid interactions. Computer Animation and Virtual Worlds,
18(1):69–82, 2007.

[45] B. Song and L. Dong. A new boundary treatment method for sph
and application in fluid simulation. In Information and Computing
(ICIC), 2010 Third International Conference on, volume 4, pages 82–
85. IEEE, 2010.

[46] K. Szewc, J. Pozorski, and J.-P. Minier. Analysis of the in-
compressibility constraint in the smoothed particle hydrodynamics
method. International Journal for Numerical Methods in Engineer-

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 468

Figure 7: Pyramid test case with one way solid-fluid coupling and v0 = (10,0,0).

Figure 8: Sphere Test Case Results. Left: c = 0.01. Middle: c = 0.001. Right: c = 0.0005.

ing, 92(4):343–369, 2012.
[47] T. Takahashi, Y. Dobashi, I. Fujishiro, and T. Nishita. Volume preserv-

ing viscoelastic fluids with large deformations using position-based
velocity corrections. The Visual Computer, 32(1):57–66, 2016.

[48] K. Takamatsu and T. Kanai. A fast and practical method for animat-
ing particle-based viscoelastic fluids. International Journal of Virtual
Reality, 10(1):29 – 35, 2011.

[49] D. Terzopoulos, J. Platt, and K. Fleischer. Heating and melting de-
formable models. Computer Animation and Virtual Worlds, 2(2):68–
73, 1991.

[50] R. Vacondio, B. Rogers, P. Stansby, and P. Mignosa. Variable res-
olution for sph in three dimensions: Towards optimal splitting and
coalescing for dynamic adaptivity. Computer Methods in Applied Me-
chanics and Engineering, 300:442–460, 2016.

[51] W. J. van der Laan, S. Green, and M. Sainz. Screen space fluid ren-
dering with curvature flow. In Proceedings of the 2009 symposium on
Interactive 3D graphics and games, pages 91–98. ACM, 2009.

[52] S. Watkins, A. Bhattal, N. Francis, J. Turner, and A. P. Whitworth.
A new prescription for viscosity in smoothed particle hydrodynam-
ics. Astronomy and Astrophysics Supplement Series, 119(1):177–187,
1996.

[53] R. Xu, P. Stansby, and D. Laurence. Accuracy and stability in in-
compressible sph (isph) based on the projection method and a new ap-
proach. Journal of Computational Physics, 228(18):6703–6725, 2009.

[54] X. Xu and X.-L. Deng. An improved weakly compressible sph method
for simulating free surface flows of viscous and viscoelastic fluids.
Computer Physics Communications, 201:43 – 62, 2016.

[55] X. Xu and P. Yu. A multiscale sph method for simulating transient
viscoelastic flows using bead-spring chain model. Journal of Non-
Newtonian Fluid Mechanics, 229:27 – 42, 2016.

[56] X. Yang, M. Liu, and S. Peng. Smoothed particle hydrodynamics
modeling of viscous liquid drop without tensile instability. Computers
& Fluids, 92:199–208, 2014.

[57] T. Y. Yeh, P. Faloutsos, and G. Reinman. Enabling real-time physics
simulation in future interactive entertainment. In Proceedings of the
2006 ACM SIGGRAPH Symposium on Videogames, Sandbox ’06,
pages 71–81, New York, NY, USA, 2006. ACM.

[58] M. Yildiz, R. Rook, and A. Suleman. Sph with the multiple bound-
ary tangent method. International journal for numerical methods in

engineering, 77(10):1416–1438, 2009.

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 469

	175135

