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ABSTRACT 

The outcome of a game session is derived from a series of events, 
decisions, and interactions that are made during the game. Many 
processes and techniques have been developed by the game 
industry in order to understand this outcome. A successful method 
is game analytics, which aims at understanding the player behavior 
patterns to improve game quality and enhance the player 
experience. However, the current methods for analytics are not 
sufficient to capture the underlying cause-and-effect influences that 
shape the outcome of a game session. These relationships allow 
developers and designers to better identify possible mistakes in the 
gameplay design or to fine-tune their games. In a recent work, 
Kohwalter et al. introduced a conceptual framework based on 
provenance to capture these relationships and manually instantiated 
such framework in some games. In this paper, we propose a 
concrete component for capturing provenance data and the cause-
and-effect relationships among game objects, and for automatically 
building the correspondent provenance graph. This provenance 
data allows a more powerful support for the visual game analytics. 
We implemented our component in the Unity game engine and 
show two case studies over open-source games. 
Key-words: Game, Game Analytics, Tracked Game Data, 
Provenance Graph. 

1 INTRODUCTION 

The analysis of tracked game data have become an important stage 
of game design and production in the last few years [1]. It brings 
advantages, such as measuring the game stability [2], dynamic 
adjusting the difficulty of the game [3], performing behavioral 
analysis [4], balancing the game experience [5], understanding 
common behaviors [6], and even improving the monetization 
process [1]. Moreover, game telemetry allows game developers to 
collect player interactions in the game inconspicuously over 
extended time periods, during production and after deployment. 

However, tracking game data and making it understandable is 
challenging due to the complexity of the games, leading to huge 
amounts of information. Moreover, deciding which information 
should be tracked and recorded is another challenge. One of the 
most common types of telemetry data is though states changes [7], 
[8], [9]. Even though state data is easier to examine, they lack 
contextual information and provides only high-level view of what 
transpired in the game. In contrast, telemetry data that captures 
events [10], [11] can provide more low-level and fine-grained 
information, capturing and describing player activity and relating 
more closely to the game session. Furthermore, since the data is 
collected at fine-grain, developers can use aggregating techniques 
to summarize the data by giving an overview of the game sessions 
and only digging through the fine-grained data when necessary.   

However, no known approaches for game analytics take into 
consideration the cause-and-effect relationships between events 
during a game session, which may be an important factor for 
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1Provenance refers to the documented history of an object's life 

cycle and is generally used in the context of art, digital data, and 
science [13]. 

determining the reasons that led to a certain outcome. In a recent 
work, Kohwalter et al. [12] introduced the usage of digital 
provenance1 in games in order to detect these cause-and-effect 
relationships. The main goal of that work was to propose a 
conceptual framework, named Provenance in Games (PinG), 
which collects information during a game session and maps it to 
provenance terms, providing the means for a post-game analysis. 
This conceptual framework was applied over a game named SDM 
[14], which focuses on teaching Software Engineering concepts. 
The provenance support in SDM allowed for a broader range of 
analysis by using collected provenance information to generate a 
provenance graph [15]. In another work, Lidson et al. [16] extracted 
provenance information using a non-intrusive technique through 
image processing mechanisms. In a more recent work, Kohwalter 
et al. [17] also demonstrated the benefits of using the PinG 
approach during game analysis of serious games, helping students 
to understand the underlying reasons for an outcome. 

The main goal of this paper is to propose a component for 
capturing the provenance data and automatically generate the 
provenance graph for analysis. The generated provenance graph 
can be used for data mining, automatic analysis tools, or a 
visualization tool, such as Prov Viewer [18], a provenance graph 
visualization tool that supports multiple features for visual data 
analysis, including spatial-referencing the graph in the game level 
map. We implemented our provenance capture component in the 
Unity game engine, making simple the adoption of the PinG 
conceptual framework by existing games. We present our PinG 
component in action by applying it over two different games, 
showing that we are able to capture cause-and-effect relationships 
and visualize these relationships over the game map for proper 
visual analysis. 

The remaining of the paper is organized as follows: The second 
section presents related work and the third section provides 
background information in the form of an overview of the PinG 
conceptual framework. The fourth section presents our proposed 
PinG component. The fifth section shows two case studies over 
different games and the last section concludes this work, pointing 
out future works. 

2 RELATED WORK 

The literature adopts different terms for tracked game data, such 
as gameplay data, logged data, play traces, and telemetry data. 
Moreover, the process of analyzing such data, referenced here as 
game analytics, is also named in different ways, such as gameplay 
visualization, visual data mining, and game session analysis. In this 
section, we kept the original terms of each work, as they are usually 
reflected in the approaches’ names. 

Joslin [10] proposed the Gameplay Visualization Manifesto 
(GVM), which is a framework for gameplay data logging that 
uncovers gameplay events by attaching logging methods in game 
objects responsible for generating relevant events during the game. 
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The event model is the basis for the game data logging framework. 
It encapsulates the information that is desired by users and 
classifies the events in three groups: immersion, quest, and social. 
The immersion group represents events related to increasing the 
player’s sensation of being involved in the game flux. The quest 
group represents events related to quest creation, execution, and 
analysis. Lastly, the social group represents events related to social 
factors in the game, such as group meeting or interaction with other 
characters.  

The main application of GVM is for collecting game metrics, 
such as player deaths, position, time spent in available features 
(e.g., crafting and fighting), item usage (e.g., equipment), actions 
performed, and player enjoyment. Therefore, GVM does not track 
cause-and-effect relationships, only the executed actions along with 
their timestamp and location, in addition to character attributes and 
equipment. 

 Kim et al. [11] proposed the Tracking Real-Time User 
Experience (TRUE) approach that combines human-computer 
interaction (HCI) instrumentation, which collects user initiated 
events (UIEs), and log file analysis techniques in order to 
automatically record user interactions with games. Thus, TRUE can 
capture behavioral data and the attitudinal information behind the 
decisions made by the player in order to obtain better understanding 
of the context of each captured behavior.  

Nevertheless, the designer still needs to infer the reasons behind 
the elements that led to an outcome. This occurs because the 
contextual information are only extra attributes that were tracked 
during the execution of the action and not actual relationships 
between events and thus it does not capture cause-and-effect 
relationships and must be inferred by the designer when analyzing 
the logged data. Moreover, TRUE was designed for the industry 
and is not easily available for indie companies. Even though we did 
not explore attitudinal data with PinG, it can be trivially 
incorporated in our approach as attributes for the player’s actions 
or by creating specific activity vertices only for the attitudinal data 
when they are captured. 

Playtracer [8], which is a visual tool designed to illustrate how 
groups of players move through the game space, aids the designer 
by tracking game states and showing common pathways and 
alternatives that players used to succeed or fail in their tasks, 
identifying pitfalls and anomalies in the scene. Nonetheless, 
Playtracer does not consider temporal information and does not 
preserve the order of the states visited by players when he/she 
revisits the same state. Moreover, incorporating Playtracer in the 
game design is challenging because it requires designers to define 
a state distance metric and identify relevant states.  

Play-Graph [7] captures and illustrates the sequence of states and 
the actions that caused the state change from the players over the 
course of the game. In the Play-Graph context, a game state 
describes a certain configuration of the game or an entity, while 
actions consist on player interactions within the game, such as 
shooting, jumping, or using an object. In this concept, a game is 
viewed as a finite state machine with a finite number of states and 
transitions between them. The states are composed of a set of 
attributes from the game and players trigger actions at some 
specific points in the game. However, due to the nature of how the 
data is structured in Play-Graph, the understanding of player 
behavior is guided by the player progression in the game (e.g., 
killed a boss), and not by how he/she interacted with the world (e.g., 
combat rounds from the battle against the boss). From the available 
documentation, there is no way to determine interactions or 
influences. Only the changes from one state to another, caused by 
an action executed by the player, can be identified. Conversely, 
influences in the player’s action, such as an influence from another 
character that affected the transition of one state to another, are not 
present in the graph (there are no edges linking edges). 

3 PING: PROVENANCE IN GAMES 

The Provenance in Games (PinG) conceptual framework [12] was 
developed to map provenance concepts to the context of games. 
PinG was based on the PROV model [19], which provides the basis 
for specifying information that was involved in creating or 
influencing a particular object. Thus, PinG provides a mapping of 
elements from the provenance domain to the corresponding 
elements in a game domain, relating each data type of the 
provenance graph to typical elements found in games. In the game 
context, the provenance graph shows actions performed by 
characters (player or non-player) and events that occurred during 
game sessions, and the causal dependencies among these actions or 
events. It is important to notice that the edges’ orientation in the 
provenance graph goes from the present to the past, instead of the 
common orientation used in graphs, which are from the past to the 
future. In order to track provenance data, it was first necessary to 
define the provenance’s counterparts in the game context to create 
a provenance graph to capture and represent a game session through 
the events that occurred. 

In order to use the provenance vertex types, it is first necessary 
to define their counterparts in the game context. In the context of 
provenance, entities are defined as physical or digital objects. In the 
PinG approach, they are mapped into game objects without 
autonomous behavior.  In provenance, an agent corresponds to a 
person, an organization, or anything with responsibilities. In the 
game context, agents are mapped into characters present in the 
game or game objects with autonomous behavior, such as event 
controllers, plot triggers, or the game’s artificial intelligence 
overseer that manages the plot. Therefore, agents represent 
elements capable of making decisions or that have responsibilities 
in the game, while entities represent objects with no autonomous 
behavior. Lastly, activities are defined as actions taken by agents 
or interactions with entities. In the game context, activities are 
defined as actions executed or events that occurred throughout the 
game, such as attacking, dodging, and jumping.  

The information collected during the game is used for the 
generation of the provenance graph, which in turn is used by the 
visualization tool. In other words, the information collected 
throughout the game session is the information displayed by the 
provenance graph for analysis. Thus, all relevant data should be 
registered, preferentially at fine grain. The way of measuring 
relevance varies from game to game, but ideally, it is any 
information deemed relevant by the game designer that can be used 
to aid the analysis process. 

4 PING FOR UNITY 

In a previous work, Kohwalter et al. [17] implemented the 
provenance data gathering directly in the game. Thus, in this work 
we introduce a generic component capable of gathering provenance 
during a game session, leading to a domain-independent and low-
coupling solution. This PinG component   for Unity is composed of 
components written in UnityScript (a version of JavaScript used by 
Unity3D) that provides easier provenance extraction, requiring 
minimal coding in the game's existing components. This 
component has three different types of modules: seven Core 
modules, one Interface module, and five Auxiliary modules. 

Figure 1 illustrates a simplified class diagram for this component, 
named PinGU (PinG for Unity). Core classes are in yellow, 
Interface classes are in light blue, and Auxiliary classes are in 
orange. The Core classes represent the infrastructure of PinG and 
are responsible for provenance information management, making 
everything transparent to the game designer. Analogously, it can be 
referenced as the provenance "server". Behind the scenes, the 
Provenance Controller class manages the creation of new vertices 
and edges and links them in the provenance graph. Meanwhile, the 
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Influence Controller class manages the cause-and-effect 
relationships (influence edges), dealing with possible influences 
and passing it to the Provenance Controller class when they 
actually materialize in the game. The Provenance Container class 
exports the data to a XML file. 

The Interface classes are the gateway between the game and the 
Core classes. While the Core classes can be seen as the server, the 
Interface classes can be seen as the client application. The Extract 
Provenance class is where all provenance-gathering operations 
must pass through in order to reach the provenance-managing unit 
(or server). The Auxiliary classes contain pre-defined functions 
customized for a specific behavior, making easier to implement the 
provenance gathering.  

 

Figure 1: Simplified class diagram for PinGU. 

4.1 Integrating PinGU into an Existing Game 

In order to capture provenance data from a game, a game developer 
can use PinGU, which is available at GitHub2. We use the game 2D 
Platformer Tutorial3 from Unity as a running example of the 
PinGU integration. Figure 2 shows a screenshot of the game where 
the player has to kill aliens to gain score points. The game has two 
different types of enemies and the player can collect two different 
types of items to aid in his fight (health and ammunition items). 

The first stage of usage consists on creating a game object in the 
scene to act as a centralizing server for the provenance information. 
This game object will have two attached classes: 
ProvenanceController and InfluenceController, which is 
illustrated in Figure 3. As said earlier, both classes are used to 
manage all provenance information and graph generation, thus only 
one instance of each are necessary per game scene. If the game is 
comprised of multiple scenes, then each scene will have its own 
provenance graph. These two classes use the other Core classes, 
which act as libraries and must not to be place in the scene. 

2 http://gems-uff.github.io/ping/ 

 

Figure 2: 2D Platformer game. 

 

Figure 3: 1st stage for PinG integration, showing the Provenance 

game object and its scripts. 

The second stage is to attach the ExtractProvenance class in each 
character or entity in the game (i.e. NPCs, player, interactive 
objects, prefabs) and link it to the object created in the first step. 
This class is responsible for creating all the provenance vertices for 
the game entity that is attached to and then passing these vertices 
to the ProvenanceController to insert it in the graph. Figure 4 
illustrates an example of adding the class to the Hero game object, 
which is the player’s avatar from the 2D Platformer. 

 

Figure 4: 2nd stage for PinG integration, showing the insertion of the 

provenance tracking class in existing agents and entities. 

3 https://www.assetstore.unity3d.com/en/#!/content/11228 
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The third stage is to identify the actions and their interactions 
with other actions in the game design document. In the running 
example, we identify the existing classes that contain the actions 
that we want to track, which is illustrated by Figure 5. The same 
figure also shows a summary of each selected class and their 
responsibility in the game, grouped by the identified agents (i.e., 
Enemy, PlayerControl, PickupSpawner). The classes for the agents 
also contain additional actions, such as spawning item and 
movement. 

The fourth stage is creating the domain-specific provenance 
tracking functions and attaching it to each entity in the game that 
has the ExtractProvenance module. Each existing module should 
have a provenance function for each possible action that the entity 
can perform and that we are interested in tracking.  

 

Figure 5: 3rd stage for PinG integration, showing the 2D Platformer 

classes and Game Design. 

Unfortunately, it is necessary to create these provenance function 
calls due to domain contextual information. However, all these 
provenance functions are small and simple, following the same 
four-step recipe and changing only the context information used 
during each step:  

 
1. Add game-related attributes (e.g., health points, 

experience points, etc.);  

2. Create the appropriate vertex (Activity, Agent, or Entity);  

3. Check for influences (if applicable);  

4. Generate influence (if applicable).  

The first step is used to configure the desired information to be 
extracted during the execution of each action or event. They will 
appear at the graph's vertices as attributes. Unity already provides 
default attributes, such as location, tag, object name. However, 
game-sensitive attributes such as health points, magic points, and 
player score must be manually added by the AddAttribute(<name>, 
<value>) function of ExtractProvenance class. After adding the 
desired attributes, the second step creates the provenance vertex 
and places it in the graph. This vertex can be any of the three 
provenance types and must be specified by the user by calling the 
NewActivityVertex, NewAgentVertex, or NewEntityVertex 
functions. 

The third and fourth steps are related to influence. The third step 
is used to verify if there is any influence that can affect the current 
action. If so, they are automatically inserted in the graph as an edge 
connecting the respective vertices. This verification can be made 
by a tag (HasInfluence(<tag>)), which is used to group a collection 

of influences that has something in common, or by an influence ID 
(HasInfluence_ID(<ID>)).  

The forth step is responsible of creating influences 
(GenerateInfluence), so they can be used by the third step. 
Influences can be created with some restrictions: They can expire 
when a certain time passes (e.g., spell duration), leading to the E 
(expire) suffix at the function (i.e., GenerateInfluenceE), or after a 
number of times used (e.g., spell that block the next X attacks) 
leading to the C (consumable) suffix (i.e., GenerateInfluenceC), or 
both (GenerateInfluenceCE). There is another type of influence 
that can be combined with the restrictions above, which represents 
something that was expected to happen but for some reason it did 
not. For example, there is a health item in the scene that the player 
is supposed to get, but he forgot or skipped it. Thus, if the player 
did not get it, then an influence is generated saying that the player 
"missed" the item. However, if the player did in fact get the item, 
then the normal influence (effect of getting the item) occurs. For 
those, the function has the suffix M (“missable”) (i.e., 
GenerateInfluenceMC, GenerateInfluenceMCE). 

Code 1 shows an example of a provenance function for our 
running example of one of the possible actions that can be executed 
by an enemy. The calls used in the Prov_Attack are implemented 
in the ExtractProvenance (NewActivityVertex, HasInfluence, 
GenerateInfluenceCE), with the exception of 
Prov_GetEnemyAttributes, which is domain related and the 
developer need to specify the desired attributes for tracking, besides 
the default attributes from Unity (i.e., Tag, object name, object 
coordinates). This is accomplished by creating a function (e.g., 
Prov_GetEnemyAttributes from the auxiliary classes) that invokes 
the function AddAttribute from ExtractProvenance by passing the 
attribute name and value for each attribute, as illustrated by Code 
2. 

 

Code 1: PinG code for tracking game data. Orange text in the code 

is domain-related. 

 

Code 2: Example of a provenance function for tracking attributes. 

After creating the necessary provenance functions for their 
respective game objects, the next step is to incorporate the function 
calls in existing game classes in order to register the provenance 
information. All this process becomes trivial if the developers have 
a detailed game design document stating all the possible actions 
that can be executed in the game along with their purpose. The 
action list shows the actions that are desired to be tracked and the 
necessary provenance functions that need to be made. Meanwhile, 
the action’s purpose gives us insights on the influences that they 
can generate during or after executing the action.  

Code 3 shows an example of code insertion in an existing game 
module responsible for controlling the artificial intelligence (AI) of 
enemy characters in the game. The “damageAmout” is a 
configurable variable from the original class that states the damage 
the attack will cause. We inserted the provenance call for the 
Prov_Attack function, whose code appears in Code 1 in the function 
responsible to make the enemy AI fire at the player. We added a 
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package of auxiliary classes that, depending on the type of the 
game, does the majority of the work and requires only coding the 
function call in the existing game classes. Furthermore, they can 
also be used as a guiding example in cases that the desired action is 
not already implemented. These classes are PBMProv, PlayerProv, 
EnemyProv, and EnviromentProv, and each is customized for the 
particular type they represent (Car-related movements, Player, 
Enemy, and Environment). 

 

Code 3: Provenance function call insertion into existing classes. 

The last step is to add a provenance export function to an event 
so it can save the current provenance graph to an external xml file 
when the designated event is executed (e.g., player’s death, 
completing the level). Code 4 illustrates the provenance functions 
for our running example responsible for exporting the tracked data, 
which is linked to the player’s death, and Code 5 shows the 
insertion of the provenance function call to track the information. 

 

Code 4: Provenance function for the player’s death action. 

The PinGU integration is explained with more detail in the 
tutorial available at the component’s GitHub page, showing all 
provenance functions and their insertion in the identified modules. 
Figure 6 shows an example of the generated provenance graph from 
the tracked actions executed during a game session, which was 
rendered using Prov Viewer. We can see in this graph the player’s 
and each enemies’ actions and how they interacted with each other 
by looking at the vertical colored edges. 

 

Figure 6: Example of the generated graph for the 2D Platformer. 

 

Code 5: Fragment of the original Remover module: Added the 

provenance function call in the player’s death.  

4.2 Capturing Game Scene 

We also implemented a specialized camera module in order to 
simplify the process of capturing the game map to use it in 
combination with the provenance graph. This camera is 
orthographic, which preserves the dimensions and does not change 
coordinates to accommodate the perspective of the viewer. Thus, 
this camera needs to be placed either directly above the game scene 
or laterally (for platform games), allowing it to capture the entire 
map. This module automatically captures the screenshot of the 
scene and the necessary data required to align the provenance 
graph, which uses world space coordinates, with the captured map, 
which uses pixel position. The screenshot resolution can also be 
adjusted in the module. 

The camera module captures the camera's world position 
(cameraPosition) and the camera's upper left corner coordinates in 
world position (leftCorner). The camera's position is used to 
translate the game map in order to align it with the graph and is 
easily obtained by getting the position of the camera in world space. 
The second information is used to scale the graph to match the 
picture and is captured by converting the camera position from 
viewport space to world space, which is the upper left corner.  

In order to align the graph with the map, it is necessary to find a 
scale factor, that can be trivially be calculated by Equation 1. 

𝑠𝑐𝑎𝑙𝑒𝐹𝑎𝑐𝑡𝑜𝑟 =  
0.5 × 𝑝𝑖𝑐𝑡𝑢𝑟𝑒𝑊𝑖𝑑𝑡ℎ

𝑙𝑒𝑓𝑡𝐶𝑜𝑟𝑛𝑒𝑟.𝑥 − 𝑐𝑎𝑚𝑒𝑟𝑎𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛.𝑥
                               (1) 

The scaleFactor is used to transform the world coordinates 
captured from the provenance data to pixel coordinates used in the 
screenshot of the game map. Therefore, the game designer only 
needs to position the orthographic camera in the game scene and 
add the camera module in order to capture the entire map and the 
necessary data. After that, the designer can use the coordinates 
captured by the module and the screenshot in a visualization tool. 

4.3 Provenance Graph Visualization 

One of the purposes of collecting provenance data is to be able to 
generate a provenance graph to aid the developer in analyzing and 
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inferring the reasons of the outcomes. After incorporating the 
PinGU approach into an existing game, the provenance data is 
captured and stored while a game session is being played. 
Afterwards, users can generate a provenance graph for that specific 
game session.   

The generated provenance graph is exported to a simple XML 
file containing a list of vertices and edges in the graph. This data 
can be used for data mining, exploration, and visualization. For this 
work, we employ an open-source provenance visualization tool 
named Prov Viewer4 [18], which uses a graph framework to allow 
detailed rendering and visual data analysis and exploration of the 
provenance information. The tool provides many visualization and 
manipulation features: (1) collapsing, highlighting the relevant 
information in the graph; (2) filtering, removing information that is 
not relevant for a given analysis; (3) graph merge, integrating the 
analysis of multiple game sessions; (4) specialized layouts, 
organizing the graph in a more understandable way; (5) domain 
configuration, customizing the visualization for specific needs; and 
(6) shapes, sizes, and colors, supporting a clear distinction of 
information types. Figure 7 illustrates the tool’s architecture, 
highlighting its main features. 

 

Figure 7: Prov Viewer's high-level architecture (from [18]). 

When evaluating tracked attributes, Prov Viewer uses traffic 
light scheme to quickly differentiate values, thus changing vertex 
color to the appropriate shade. The shades vary from red to green, 
with yellow as the middle term. Similarly, edges also use shades to 
distinguish values of the same type (e.g., damage), as well as 
thickness to show how strong the relationship is. Bright red 
represents negative values, bright green represents positive values, 
and darker shades represent values near zero. This feature allows 
the user to quickly identify strong influences in the graph just by 
looking at the edge’s thickness and their color. Figure 8 illustrates 
some of these visualizations features in action. 

 

Figure 8: (a) Original graph; (b) graph with a color schema; (c) 

collapse of two activities; (d) collapsing of the agent's 

activities; (e) graph c after another collapse; and (f) temporal 

filter. (from [18]). 

4 http://gems-uff.github.io/prov-viewer/ 
5 https://www.assetstore.unity3d.com/en/#!/content/10 

The tool also has a spatial layout that organizes the vertices in 
the graph by their spatial coordinates and can be used for spatial or 
geo-referencing the data. The layout supports the usage of an 
orthographic image, which is captured in the PinGU component. 
This is particularly useful for corresponding elements with other 
graphical representations, such as a map of the game scene. When 
using the spatial layout in conjunction with a background image, 
the user can see where each tracked event occurred just by looking 
at the graph's placement in the image. All the graph images in the 
following sections were rendered using Prov Viewer. 

5 CASE STUDY 

The following sub-sections present two open-source game samples 
(Car Tutorial5 and Angry Bots6) where we demonstrate the 
generated provenance graphs by incorporating PinGU. In the first 
game, we focus on showing that the provenance data can facilitate 
the graph analysis on how previous actions or events affect future 
actions. We also show how the provenance graph evolves when the 
game has multiple cycles. In the second game, we show another 
case of provenance data with a different genre of game, allowing 
for easy identification of sections that were not explored by the 
player and where he/she had more difficulty. We did not modify 
the games in any way nor added new features besides coupling with 
the PinGU, which is only responsible for tracking provenance data. 
Both case studies use Prov Viewer tool for visualizing the 
provenance graphs. 

5.1 Car Tutorial 

The first case study is the Car Tutorial from Unity asset store. This 
tutorial has only one racetrack and focuses on the arcade style 
racing game. In addition, there is no implemented AI for opponent 
cars. Following the conceptual framework, PinG tracks events and 
actions executed during the game session, along with their effects 
on other events, to compose the provenance graph (e.g., crashing 
the car, pressing the car's brake).  

We can use the car's coordinates in the track to plot the graph so 
that it is possible to visualize where the player was when the action 
was executed. This visualization also allows the designer to quickly 
identify which sections of the track the player had trouble. Thus, 
we can take advantage of spatial-referencing the data during the 
provenance visualization. We used a screenshot of the game map 
taken by our camera module with dimensions of 1070x802.  

Figure 9 shows the provenance graph of one game session, using 
the car's coordinates and the track's picture as background. This 
graph is composed of 169 vertices and 867 edges extracted from a 
107-second game session, which represents one complete lap in the 
track. The vertices are colored according to the car's speed (gradient 
from white when close to zero and green for high values) and the 
visible edges are the speed delta between vertices.  

We can quickly identify sections of the track that the player may 
have had issues, either by reducing the speed too much or by 
crashing, by just looking at the plotted graph in the race track. As 
an example, Figure 10 shows a zoomed section of the graph to 
better illustrate the reasons behind a car crash. The zoomed section 
of the graph has a different vertex-coloring scheme to differentiate 
events. By analyzing it, we can see that the car crash (red vertex) 
was influenced by two factors. The first one was on the previous 
curve, where the car lost contact with the ground (purple vertex 
with a blue edge linking the crash) after passing through the rumble 
strips at the end of the maneuver, thus preventing the player to 
prepare for the following turn. The second reason was that the 
player was too fast, as indicated by the red edge from the blue 
vertex, which is a reduction of the car's turn rate due to high speed. 

6 https://www.assetstore.unity3d.com/en/#!/content/12175 
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Figure 9: Spatial referencing provenance data. 

 

Figure 10: Influences behind a car crash. 

 

Figure 11: Provenance graph from multiple laps. 

Using the tracked telemetry data from other laps of the race, we 
can begin to detect patterns during the game session or even 
compare the player's performance between laps. This analysis can 
also be extended to different game sessions by comparing the 
generated provenance graphs. Figure 11 illustrates an example of 
the generated provenance graph when gathering data from multiple 
laps during a single play session, enabling the designer to detect 
behavioral patterns and locations where the players are struggling 
the most. For example, Figure 12 shows a section of the track that 

is characterized by having multiple curves in the track. We can see 
the player's performance during each lap of the race, where each 
lap is represented by a different edge color. The first, second, and 
third laps are presented by red, green, and blue edges respectively. 
Moreover, the first and last vertices of each lap are marked with 
circles of the same color as the edge and the timestamps are 
represented by the yellow numbers beside the vertex. As we can 
see, the player had approximately the same speed in all laps due to 
having the same shade of green when entering this section of the 
track. However, the player took fifteen seconds to pass through this 
section of the track on his first lap (52 - 37), seventeen seconds 
during the second lap (131 – 114), and ten seconds on the third lap 
(200 – 190).  

By analyzing Figure 12, we can see a purple edge that 
represented the reason behind the crash in the first lap (marked by 
the purple circle). This purple edge represents a cause-and-effect 
relationship, showing that the crash happened because the player 
passed through rumble strips (brown circle) and, as a result lost car 
stability, could not complete the turn. Furthermore, notice the steep 
angles the player had to make due to his positioning in each curve. 
During the second lap (green edges), the player tried to avoid the 
crash by reducing speed. However, the player reduced too much 
speed to enter the second curve (white-green vertices). During the 
third lap (blue edges), the player managed to improve his 
performance and avoid any crashes by better positioning the car 
before each curve and thus reducing the necessary angle to make 
the turn while maintaining a nearly constant speed. 

 

Figure 12: Zoomed section from yellow rectangle on Figure 11. 

5.2 Angry Bots 

We conducted a second case study using a very different style of 
game, called Angry Bots, also from the Unity asset store. Angry 
Bots belongs to the hack-and-slash genre, being a top-down action 
shooter. In the available scenario, the player has to face enemy 
robots and interact with the environment in order to complete the 
level. Figure 13 illustrates one of the possible visualizations of the 
provenance data gathered by our component, showing the vertex 
visualization scheme for the player's health attribute value (vertex 
color using a traffic light scheme) and the edges that influences in 
it (green and red edges) as the game progresses. Blue vertices 
represent other characters in the game (enemies), blue edges 
represent the chronological order of events, and green edges 
represent player’s health generation due to his passive regeneration 
ability. By analyzing Figure 13, we can see the chronology of 
events, regions visited by the player, sections where more action 
happened, places where the player engaged in battle, and when the 
player suffered heavy health loss. In this game, we used a 
screenshot taken by our camera with the dimensions of 4280x3208 
in order to show that the figure size does not affect the graph 
alignment process. This increase of resolution allows for a higher 
detail of the game scene visualization when zooming the graph 
during analysis. 
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Figure 13: Picture of the entire graph. Vertex coloring based on 

player’s Health attribute. 

Considering that the player recovers health periodically, it is 
possible to infer that the cause of some deaths was the rush through 
the level without waiting to recover health or because of a tough 
enemy. Figure 14 illustrates the first case, where the player tried to 
rush through the game without waiting to regenerate the player’s 
health, lost from the previous battles. The light blue arrows were 
added in the figure to highlight the player's general movement and 
does not belong to the provenance data. 

 

Figure 14: Player's health when trying to rush the game. 

After the player engaged an enemy in a major battle, which the 
player didn't leave unscathed by looking at the orange vertices, the 
player continued advancing through the level. Then, on the player’s 
third major engagement, where he was still wounded by looking at 

the orange vertices, the player lost the majority of his remaining 
health, as illustrated by the following red vertices. Even though the 
player was low on health, he managed to dispatch his enemies on 
the forth battle without losing a single health point (no red edges). 
However, the player continued pressing on without resting, which 
would allow for him to gradually restore his lost health points 
before his next engagement, until dying on the next battle when the 
player got hit by the enemy (Battle #5).  

Figure 15, Figure 16, and Figure 17 illustrates the second case, 
showing the sequence of events that led the player to a tough 
engagement (Figure 17). By analyzing the picture, we can see that 
the player started these events (Figure 15) with good health (green 
vertices), leaving the first battle slightly injured (yellow vertex). A 
few moments later he encountered another enemy in a side room 
(Figure 16), where once again he overcame the enemy with only 
minor wounds (vertex is still yellow). However, just when he left 

 

Figure 15: Sequence of events of the player exploring a section of 

the map and confronting an enemy. 

 

Figure 16: Continuation of the sequence of events from Figure 15 

with a second engagement inside a room. 

 

Figure 17: Continuation of the events from Figure 16 that led the 

player to a tough confrontation that resulted in his death. 
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the room, the player was ambushed by another enemy that was 
patrolling the corridor (the new blue vertices in the corridor from 
Figure 17). This enemy was a mech, which is much tougher than a 
regular enemy (notice the high number of dark red edges that 
represent player doing damage to the enemy). This battle resulted 
in the player’s death after getting hit by two rockets (Figure 18) 
followed by his resurrection shortly after (green vertex in the 
bottom of Figure 17 that is linking the green edge to a red vertex). 

 

Figure 18: A zoomed section from Figure 17 showing both the 

moments the player was hit by the enemy’s rockets. Filtered to 

show only the edges that affected the player’s Health. 

Figure 19 illustrates the moments when the player died, which 
are marked by red circles. Meanwhile, the orange circles illustrate 
the player "refreshed" state after resurrecting, as well as the 
resurrected location. Both situations have a green edge linking the 
player’s death to the resurrection, which shows that his health went 
from zero (red vertex) to maximum (green vertex) after 
resurrecting. Notice that the player actually died three times trying 
to beat the enemy mech from Figure 17 before finally defeating it. 

 

Figure 19: Filtered graph showing the moments the Player died and 

was resurrected. 

6 CONCLUSION 

This paper presented the concretization of PinG, a conceptual 
framework for game telemetry that tracks the actions and events 
alongside with their cause-and-effect relationships, through a 
component in Unity. Our component facilitates the process of 
tracking and storing the provenance knowledge for data exploration 
and analysis. This provenance knowledge can aid the detection of 
gameplay issues, support developers for a better gameplay design, 
identification of game sections where players had issues and the 
reasons behind these issues, and mining behavioral patterns from 
individual sessions or groups of sessions. 

Moreover, we showed two games that used our PinG component 
to extract provenance knowledge, giving examples of analyses 
from the provenance data. These examples demonstrated the 
possibility of referencing the provenance knowledge in the game 
map to better visualize and understand the events of a game session. 
Despite not showing the typical, and simpler, existing game data 
analytics techniques and data mining, we believe that the richness 
of the provenance data extracted when using the PinG approach and 

our component provides the necessary means to make possible 
deeper game data analyses.  

We are currently working on ways to improve the PinG 
component to automate even further the data tracking, especially 
for influences and, in the future, possibly implement the component 
for other engines, such as Unreal Engine due to their recent 
business change for indie developers. Moreover, due to the quantity 
of the data extracted with PinG, we are studying techniques to 
improve even further the visual analysis process. These studies 
involve, but are not limited to, automatic graph inferences, data 
mining, graph reduction, multiple graph analysis to compare 
multiple game sessions or even cycles during a game (e.g., laps in 
a racing game), enabling better strategies of provenance gathering 
that take advantage of the game’s genre and type. 
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