
Capturing Game Telemetry with Provenance

Troy Costa Kohwalter* Leonardo Gresta Paulino Murta Esteban Walter Gonzalez Clua

Universidade Federal Fluminense, Computação, Brasil

ABSTRACT

The outcome of a game session is derived from a series of events,
decisions, and interactions that are made during the game. Many
processes and techniques have been developed by the game
industry in order to understand this outcome. A successful method
is game analytics, which aims at understanding the player behavior
patterns to improve game quality and enhance the player
experience. However, the current methods for analytics are not
sufficient to capture the underlying cause-and-effect influences that
shape the outcome of a game session. These relationships allow
developers and designers to better identify possible mistakes in the
gameplay design or to fine-tune their games. In a recent work,
Kohwalter et al. introduced a conceptual framework based on
provenance to capture these relationships and manually instantiated
such framework in some games. In this paper, we propose a
concrete component for capturing provenance data and the cause-
and-effect relationships among game objects, and for automatically
building the correspondent provenance graph. This provenance
data allows a more powerful support for the visual game analytics.
We implemented our component in the Unity game engine and
show two case studies over open-source games.
Key-words: Game, Game Analytics, Tracked Game Data,
Provenance Graph.

1 INTRODUCTION

The analysis of tracked game data have become an important stage
of game design and production in the last few years [1]. It brings
advantages, such as measuring the game stability [2], dynamic
adjusting the difficulty of the game [3], performing behavioral
analysis [4], balancing the game experience [5], understanding
common behaviors [6], and even improving the monetization
process [1]. Moreover, game telemetry allows game developers to
collect player interactions in the game inconspicuously over
extended time periods, during production and after deployment.

However, tracking game data and making it understandable is
challenging due to the complexity of the games, leading to huge
amounts of information. Moreover, deciding which information
should be tracked and recorded is another challenge. One of the
most common types of telemetry data is though states changes [7],
[8], [9]. Even though state data is easier to examine, they lack
contextual information and provides only high-level view of what
transpired in the game. In contrast, telemetry data that captures
events [10], [11] can provide more low-level and fine-grained
information, capturing and describing player activity and relating
more closely to the game session. Furthermore, since the data is
collected at fine-grain, developers can use aggregating techniques
to summarize the data by giving an overview of the game sessions
and only digging through the fine-grained data when necessary.

However, no known approaches for game analytics take into
consideration the cause-and-effect relationships between events
during a game session, which may be an important factor for

*e-mail: tkohwalter@gmail.com
1Provenance refers to the documented history of an object's life

cycle and is generally used in the context of art, digital data, and
science [13].

determining the reasons that led to a certain outcome. In a recent
work, Kohwalter et al. [12] introduced the usage of digital
provenance1 in games in order to detect these cause-and-effect
relationships. The main goal of that work was to propose a
conceptual framework, named Provenance in Games (PinG),
which collects information during a game session and maps it to
provenance terms, providing the means for a post-game analysis.
This conceptual framework was applied over a game named SDM
[14], which focuses on teaching Software Engineering concepts.
The provenance support in SDM allowed for a broader range of
analysis by using collected provenance information to generate a
provenance graph [15]. In another work, Lidson et al. [16] extracted
provenance information using a non-intrusive technique through
image processing mechanisms. In a more recent work, Kohwalter
et al. [17] also demonstrated the benefits of using the PinG
approach during game analysis of serious games, helping students
to understand the underlying reasons for an outcome.

The main goal of this paper is to propose a component for
capturing the provenance data and automatically generate the
provenance graph for analysis. The generated provenance graph
can be used for data mining, automatic analysis tools, or a
visualization tool, such as Prov Viewer [18], a provenance graph
visualization tool that supports multiple features for visual data
analysis, including spatial-referencing the graph in the game level
map. We implemented our provenance capture component in the
Unity game engine, making simple the adoption of the PinG
conceptual framework by existing games. We present our PinG
component in action by applying it over two different games,
showing that we are able to capture cause-and-effect relationships
and visualize these relationships over the game map for proper
visual analysis.

The remaining of the paper is organized as follows: The second
section presents related work and the third section provides
background information in the form of an overview of the PinG
conceptual framework. The fourth section presents our proposed
PinG component. The fifth section shows two case studies over
different games and the last section concludes this work, pointing
out future works.

2 RELATED WORK

The literature adopts different terms for tracked game data, such
as gameplay data, logged data, play traces, and telemetry data.
Moreover, the process of analyzing such data, referenced here as
game analytics, is also named in different ways, such as gameplay
visualization, visual data mining, and game session analysis. In this
section, we kept the original terms of each work, as they are usually
reflected in the approaches’ names.

Joslin [10] proposed the Gameplay Visualization Manifesto
(GVM), which is a framework for gameplay data logging that
uncovers gameplay events by attaching logging methods in game
objects responsible for generating relevant events during the game.

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 428

The event model is the basis for the game data logging framework.
It encapsulates the information that is desired by users and
classifies the events in three groups: immersion, quest, and social.
The immersion group represents events related to increasing the
player’s sensation of being involved in the game flux. The quest
group represents events related to quest creation, execution, and
analysis. Lastly, the social group represents events related to social
factors in the game, such as group meeting or interaction with other
characters.

The main application of GVM is for collecting game metrics,
such as player deaths, position, time spent in available features
(e.g., crafting and fighting), item usage (e.g., equipment), actions
performed, and player enjoyment. Therefore, GVM does not track
cause-and-effect relationships, only the executed actions along with
their timestamp and location, in addition to character attributes and
equipment.

 Kim et al. [11] proposed the Tracking Real-Time User
Experience (TRUE) approach that combines human-computer
interaction (HCI) instrumentation, which collects user initiated
events (UIEs), and log file analysis techniques in order to
automatically record user interactions with games. Thus, TRUE can
capture behavioral data and the attitudinal information behind the
decisions made by the player in order to obtain better understanding
of the context of each captured behavior.

Nevertheless, the designer still needs to infer the reasons behind
the elements that led to an outcome. This occurs because the
contextual information are only extra attributes that were tracked
during the execution of the action and not actual relationships
between events and thus it does not capture cause-and-effect
relationships and must be inferred by the designer when analyzing
the logged data. Moreover, TRUE was designed for the industry
and is not easily available for indie companies. Even though we did
not explore attitudinal data with PinG, it can be trivially
incorporated in our approach as attributes for the player’s actions
or by creating specific activity vertices only for the attitudinal data
when they are captured.

Playtracer [8], which is a visual tool designed to illustrate how
groups of players move through the game space, aids the designer
by tracking game states and showing common pathways and
alternatives that players used to succeed or fail in their tasks,
identifying pitfalls and anomalies in the scene. Nonetheless,
Playtracer does not consider temporal information and does not
preserve the order of the states visited by players when he/she
revisits the same state. Moreover, incorporating Playtracer in the
game design is challenging because it requires designers to define
a state distance metric and identify relevant states.

Play-Graph [7] captures and illustrates the sequence of states and
the actions that caused the state change from the players over the
course of the game. In the Play-Graph context, a game state
describes a certain configuration of the game or an entity, while
actions consist on player interactions within the game, such as
shooting, jumping, or using an object. In this concept, a game is
viewed as a finite state machine with a finite number of states and
transitions between them. The states are composed of a set of
attributes from the game and players trigger actions at some
specific points in the game. However, due to the nature of how the
data is structured in Play-Graph, the understanding of player
behavior is guided by the player progression in the game (e.g.,
killed a boss), and not by how he/she interacted with the world (e.g.,
combat rounds from the battle against the boss). From the available
documentation, there is no way to determine interactions or
influences. Only the changes from one state to another, caused by
an action executed by the player, can be identified. Conversely,
influences in the player’s action, such as an influence from another
character that affected the transition of one state to another, are not
present in the graph (there are no edges linking edges).

3 PING: PROVENANCE IN GAMES

The Provenance in Games (PinG) conceptual framework [12] was
developed to map provenance concepts to the context of games.
PinG was based on the PROV model [19], which provides the basis
for specifying information that was involved in creating or
influencing a particular object. Thus, PinG provides a mapping of
elements from the provenance domain to the corresponding
elements in a game domain, relating each data type of the
provenance graph to typical elements found in games. In the game
context, the provenance graph shows actions performed by
characters (player or non-player) and events that occurred during
game sessions, and the causal dependencies among these actions or
events. It is important to notice that the edges’ orientation in the
provenance graph goes from the present to the past, instead of the
common orientation used in graphs, which are from the past to the
future. In order to track provenance data, it was first necessary to
define the provenance’s counterparts in the game context to create
a provenance graph to capture and represent a game session through
the events that occurred.

In order to use the provenance vertex types, it is first necessary
to define their counterparts in the game context. In the context of
provenance, entities are defined as physical or digital objects. In the
PinG approach, they are mapped into game objects without
autonomous behavior. In provenance, an agent corresponds to a
person, an organization, or anything with responsibilities. In the
game context, agents are mapped into characters present in the
game or game objects with autonomous behavior, such as event
controllers, plot triggers, or the game’s artificial intelligence
overseer that manages the plot. Therefore, agents represent
elements capable of making decisions or that have responsibilities
in the game, while entities represent objects with no autonomous
behavior. Lastly, activities are defined as actions taken by agents
or interactions with entities. In the game context, activities are
defined as actions executed or events that occurred throughout the
game, such as attacking, dodging, and jumping.

The information collected during the game is used for the
generation of the provenance graph, which in turn is used by the
visualization tool. In other words, the information collected
throughout the game session is the information displayed by the
provenance graph for analysis. Thus, all relevant data should be
registered, preferentially at fine grain. The way of measuring
relevance varies from game to game, but ideally, it is any
information deemed relevant by the game designer that can be used
to aid the analysis process.

4 PING FOR UNITY

In a previous work, Kohwalter et al. [17] implemented the
provenance data gathering directly in the game. Thus, in this work
we introduce a generic component capable of gathering provenance
during a game session, leading to a domain-independent and low-
coupling solution. This PinG component for Unity is composed of
components written in UnityScript (a version of JavaScript used by
Unity3D) that provides easier provenance extraction, requiring
minimal coding in the game's existing components. This
component has three different types of modules: seven Core
modules, one Interface module, and five Auxiliary modules.

Figure 1 illustrates a simplified class diagram for this component,
named PinGU (PinG for Unity). Core classes are in yellow,
Interface classes are in light blue, and Auxiliary classes are in
orange. The Core classes represent the infrastructure of PinG and
are responsible for provenance information management, making
everything transparent to the game designer. Analogously, it can be
referenced as the provenance "server". Behind the scenes, the
Provenance Controller class manages the creation of new vertices
and edges and links them in the provenance graph. Meanwhile, the

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 429

Influence Controller class manages the cause-and-effect
relationships (influence edges), dealing with possible influences
and passing it to the Provenance Controller class when they
actually materialize in the game. The Provenance Container class
exports the data to a XML file.

The Interface classes are the gateway between the game and the
Core classes. While the Core classes can be seen as the server, the
Interface classes can be seen as the client application. The Extract
Provenance class is where all provenance-gathering operations
must pass through in order to reach the provenance-managing unit
(or server). The Auxiliary classes contain pre-defined functions
customized for a specific behavior, making easier to implement the
provenance gathering.

Figure 1: Simplified class diagram for PinGU.

4.1 Integrating PinGU into an Existing Game

In order to capture provenance data from a game, a game developer
can use PinGU, which is available at GitHub2. We use the game 2D
Platformer Tutorial3 from Unity as a running example of the
PinGU integration. Figure 2 shows a screenshot of the game where
the player has to kill aliens to gain score points. The game has two
different types of enemies and the player can collect two different
types of items to aid in his fight (health and ammunition items).

The first stage of usage consists on creating a game object in the
scene to act as a centralizing server for the provenance information.
This game object will have two attached classes:
ProvenanceController and InfluenceController, which is
illustrated in Figure 3. As said earlier, both classes are used to
manage all provenance information and graph generation, thus only
one instance of each are necessary per game scene. If the game is
comprised of multiple scenes, then each scene will have its own
provenance graph. These two classes use the other Core classes,
which act as libraries and must not to be place in the scene.

2 http://gems-uff.github.io/ping/

Figure 2: 2D Platformer game.

Figure 3: 1st stage for PinG integration, showing the Provenance

game object and its scripts.

The second stage is to attach the ExtractProvenance class in each
character or entity in the game (i.e. NPCs, player, interactive
objects, prefabs) and link it to the object created in the first step.
This class is responsible for creating all the provenance vertices for
the game entity that is attached to and then passing these vertices
to the ProvenanceController to insert it in the graph. Figure 4
illustrates an example of adding the class to the Hero game object,
which is the player’s avatar from the 2D Platformer.

Figure 4: 2nd stage for PinG integration, showing the insertion of the

provenance tracking class in existing agents and entities.

3 https://www.assetstore.unity3d.com/en/#!/content/11228

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 430

The third stage is to identify the actions and their interactions
with other actions in the game design document. In the running
example, we identify the existing classes that contain the actions
that we want to track, which is illustrated by Figure 5. The same
figure also shows a summary of each selected class and their
responsibility in the game, grouped by the identified agents (i.e.,
Enemy, PlayerControl, PickupSpawner). The classes for the agents
also contain additional actions, such as spawning item and
movement.

The fourth stage is creating the domain-specific provenance
tracking functions and attaching it to each entity in the game that
has the ExtractProvenance module. Each existing module should
have a provenance function for each possible action that the entity
can perform and that we are interested in tracking.

Figure 5: 3rd stage for PinG integration, showing the 2D Platformer

classes and Game Design.

Unfortunately, it is necessary to create these provenance function
calls due to domain contextual information. However, all these
provenance functions are small and simple, following the same
four-step recipe and changing only the context information used
during each step:

1. Add game-related attributes (e.g., health points,

experience points, etc.);

2. Create the appropriate vertex (Activity, Agent, or Entity);

3. Check for influences (if applicable);

4. Generate influence (if applicable).

The first step is used to configure the desired information to be
extracted during the execution of each action or event. They will
appear at the graph's vertices as attributes. Unity already provides
default attributes, such as location, tag, object name. However,
game-sensitive attributes such as health points, magic points, and
player score must be manually added by the AddAttribute(<name>,
<value>) function of ExtractProvenance class. After adding the
desired attributes, the second step creates the provenance vertex
and places it in the graph. This vertex can be any of the three
provenance types and must be specified by the user by calling the
NewActivityVertex, NewAgentVertex, or NewEntityVertex
functions.

The third and fourth steps are related to influence. The third step
is used to verify if there is any influence that can affect the current
action. If so, they are automatically inserted in the graph as an edge
connecting the respective vertices. This verification can be made
by a tag (HasInfluence(<tag>)), which is used to group a collection

of influences that has something in common, or by an influence ID
(HasInfluence_ID(<ID>)).

The forth step is responsible of creating influences
(GenerateInfluence), so they can be used by the third step.
Influences can be created with some restrictions: They can expire
when a certain time passes (e.g., spell duration), leading to the E
(expire) suffix at the function (i.e., GenerateInfluenceE), or after a
number of times used (e.g., spell that block the next X attacks)
leading to the C (consumable) suffix (i.e., GenerateInfluenceC), or
both (GenerateInfluenceCE). There is another type of influence
that can be combined with the restrictions above, which represents
something that was expected to happen but for some reason it did
not. For example, there is a health item in the scene that the player
is supposed to get, but he forgot or skipped it. Thus, if the player
did not get it, then an influence is generated saying that the player
"missed" the item. However, if the player did in fact get the item,
then the normal influence (effect of getting the item) occurs. For
those, the function has the suffix M (“missable”) (i.e.,
GenerateInfluenceMC, GenerateInfluenceMCE).

Code 1 shows an example of a provenance function for our
running example of one of the possible actions that can be executed
by an enemy. The calls used in the Prov_Attack are implemented
in the ExtractProvenance (NewActivityVertex, HasInfluence,
GenerateInfluenceCE), with the exception of
Prov_GetEnemyAttributes, which is domain related and the
developer need to specify the desired attributes for tracking, besides
the default attributes from Unity (i.e., Tag, object name, object
coordinates). This is accomplished by creating a function (e.g.,
Prov_GetEnemyAttributes from the auxiliary classes) that invokes
the function AddAttribute from ExtractProvenance by passing the
attribute name and value for each attribute, as illustrated by Code
2.

Code 1: PinG code for tracking game data. Orange text in the code

is domain-related.

Code 2: Example of a provenance function for tracking attributes.

After creating the necessary provenance functions for their
respective game objects, the next step is to incorporate the function
calls in existing game classes in order to register the provenance
information. All this process becomes trivial if the developers have
a detailed game design document stating all the possible actions
that can be executed in the game along with their purpose. The
action list shows the actions that are desired to be tracked and the
necessary provenance functions that need to be made. Meanwhile,
the action’s purpose gives us insights on the influences that they
can generate during or after executing the action.

Code 3 shows an example of code insertion in an existing game
module responsible for controlling the artificial intelligence (AI) of
enemy characters in the game. The “damageAmout” is a
configurable variable from the original class that states the damage
the attack will cause. We inserted the provenance call for the
Prov_Attack function, whose code appears in Code 1 in the function
responsible to make the enemy AI fire at the player. We added a

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 431

package of auxiliary classes that, depending on the type of the
game, does the majority of the work and requires only coding the
function call in the existing game classes. Furthermore, they can
also be used as a guiding example in cases that the desired action is
not already implemented. These classes are PBMProv, PlayerProv,
EnemyProv, and EnviromentProv, and each is customized for the
particular type they represent (Car-related movements, Player,
Enemy, and Environment).

Code 3: Provenance function call insertion into existing classes.

The last step is to add a provenance export function to an event
so it can save the current provenance graph to an external xml file
when the designated event is executed (e.g., player’s death,
completing the level). Code 4 illustrates the provenance functions
for our running example responsible for exporting the tracked data,
which is linked to the player’s death, and Code 5 shows the
insertion of the provenance function call to track the information.

Code 4: Provenance function for the player’s death action.

The PinGU integration is explained with more detail in the
tutorial available at the component’s GitHub page, showing all
provenance functions and their insertion in the identified modules.
Figure 6 shows an example of the generated provenance graph from
the tracked actions executed during a game session, which was
rendered using Prov Viewer. We can see in this graph the player’s
and each enemies’ actions and how they interacted with each other
by looking at the vertical colored edges.

Figure 6: Example of the generated graph for the 2D Platformer.

Code 5: Fragment of the original Remover module: Added the

provenance function call in the player’s death.

4.2 Capturing Game Scene

We also implemented a specialized camera module in order to
simplify the process of capturing the game map to use it in
combination with the provenance graph. This camera is
orthographic, which preserves the dimensions and does not change
coordinates to accommodate the perspective of the viewer. Thus,
this camera needs to be placed either directly above the game scene
or laterally (for platform games), allowing it to capture the entire
map. This module automatically captures the screenshot of the
scene and the necessary data required to align the provenance
graph, which uses world space coordinates, with the captured map,
which uses pixel position. The screenshot resolution can also be
adjusted in the module.

The camera module captures the camera's world position
(cameraPosition) and the camera's upper left corner coordinates in
world position (leftCorner). The camera's position is used to
translate the game map in order to align it with the graph and is
easily obtained by getting the position of the camera in world space.
The second information is used to scale the graph to match the
picture and is captured by converting the camera position from
viewport space to world space, which is the upper left corner.

In order to align the graph with the map, it is necessary to find a
scale factor, that can be trivially be calculated by Equation 1.

𝑠𝑐𝑎𝑙𝑒𝐹𝑎𝑐𝑡𝑜𝑟 =
0.5 × 𝑝𝑖𝑐𝑡𝑢𝑟𝑒𝑊𝑖𝑑𝑡ℎ

𝑙𝑒𝑓𝑡𝐶𝑜𝑟𝑛𝑒𝑟.𝑥 − 𝑐𝑎𝑚𝑒𝑟𝑎𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛.𝑥
 (1)

The scaleFactor is used to transform the world coordinates
captured from the provenance data to pixel coordinates used in the
screenshot of the game map. Therefore, the game designer only
needs to position the orthographic camera in the game scene and
add the camera module in order to capture the entire map and the
necessary data. After that, the designer can use the coordinates
captured by the module and the screenshot in a visualization tool.

4.3 Provenance Graph Visualization

One of the purposes of collecting provenance data is to be able to
generate a provenance graph to aid the developer in analyzing and

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 432

inferring the reasons of the outcomes. After incorporating the
PinGU approach into an existing game, the provenance data is
captured and stored while a game session is being played.
Afterwards, users can generate a provenance graph for that specific
game session.

The generated provenance graph is exported to a simple XML
file containing a list of vertices and edges in the graph. This data
can be used for data mining, exploration, and visualization. For this
work, we employ an open-source provenance visualization tool
named Prov Viewer4 [18], which uses a graph framework to allow
detailed rendering and visual data analysis and exploration of the
provenance information. The tool provides many visualization and
manipulation features: (1) collapsing, highlighting the relevant
information in the graph; (2) filtering, removing information that is
not relevant for a given analysis; (3) graph merge, integrating the
analysis of multiple game sessions; (4) specialized layouts,
organizing the graph in a more understandable way; (5) domain
configuration, customizing the visualization for specific needs; and
(6) shapes, sizes, and colors, supporting a clear distinction of
information types. Figure 7 illustrates the tool’s architecture,
highlighting its main features.

Figure 7: Prov Viewer's high-level architecture (from [18]).

When evaluating tracked attributes, Prov Viewer uses traffic
light scheme to quickly differentiate values, thus changing vertex
color to the appropriate shade. The shades vary from red to green,
with yellow as the middle term. Similarly, edges also use shades to
distinguish values of the same type (e.g., damage), as well as
thickness to show how strong the relationship is. Bright red
represents negative values, bright green represents positive values,
and darker shades represent values near zero. This feature allows
the user to quickly identify strong influences in the graph just by
looking at the edge’s thickness and their color. Figure 8 illustrates
some of these visualizations features in action.

Figure 8: (a) Original graph; (b) graph with a color schema; (c)

collapse of two activities; (d) collapsing of the agent's

activities; (e) graph c after another collapse; and (f) temporal

filter. (from [18]).

4 http://gems-uff.github.io/prov-viewer/
5 https://www.assetstore.unity3d.com/en/#!/content/10

The tool also has a spatial layout that organizes the vertices in
the graph by their spatial coordinates and can be used for spatial or
geo-referencing the data. The layout supports the usage of an
orthographic image, which is captured in the PinGU component.
This is particularly useful for corresponding elements with other
graphical representations, such as a map of the game scene. When
using the spatial layout in conjunction with a background image,
the user can see where each tracked event occurred just by looking
at the graph's placement in the image. All the graph images in the
following sections were rendered using Prov Viewer.

5 CASE STUDY

The following sub-sections present two open-source game samples
(Car Tutorial5 and Angry Bots6) where we demonstrate the
generated provenance graphs by incorporating PinGU. In the first
game, we focus on showing that the provenance data can facilitate
the graph analysis on how previous actions or events affect future
actions. We also show how the provenance graph evolves when the
game has multiple cycles. In the second game, we show another
case of provenance data with a different genre of game, allowing
for easy identification of sections that were not explored by the
player and where he/she had more difficulty. We did not modify
the games in any way nor added new features besides coupling with
the PinGU, which is only responsible for tracking provenance data.
Both case studies use Prov Viewer tool for visualizing the
provenance graphs.

5.1 Car Tutorial

The first case study is the Car Tutorial from Unity asset store. This
tutorial has only one racetrack and focuses on the arcade style
racing game. In addition, there is no implemented AI for opponent
cars. Following the conceptual framework, PinG tracks events and
actions executed during the game session, along with their effects
on other events, to compose the provenance graph (e.g., crashing
the car, pressing the car's brake).

We can use the car's coordinates in the track to plot the graph so
that it is possible to visualize where the player was when the action
was executed. This visualization also allows the designer to quickly
identify which sections of the track the player had trouble. Thus,
we can take advantage of spatial-referencing the data during the
provenance visualization. We used a screenshot of the game map
taken by our camera module with dimensions of 1070x802.

Figure 9 shows the provenance graph of one game session, using
the car's coordinates and the track's picture as background. This
graph is composed of 169 vertices and 867 edges extracted from a
107-second game session, which represents one complete lap in the
track. The vertices are colored according to the car's speed (gradient
from white when close to zero and green for high values) and the
visible edges are the speed delta between vertices.

We can quickly identify sections of the track that the player may
have had issues, either by reducing the speed too much or by
crashing, by just looking at the plotted graph in the race track. As
an example, Figure 10 shows a zoomed section of the graph to
better illustrate the reasons behind a car crash. The zoomed section
of the graph has a different vertex-coloring scheme to differentiate
events. By analyzing it, we can see that the car crash (red vertex)
was influenced by two factors. The first one was on the previous
curve, where the car lost contact with the ground (purple vertex
with a blue edge linking the crash) after passing through the rumble
strips at the end of the maneuver, thus preventing the player to
prepare for the following turn. The second reason was that the
player was too fast, as indicated by the red edge from the blue
vertex, which is a reduction of the car's turn rate due to high speed.

6 https://www.assetstore.unity3d.com/en/#!/content/12175

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 433

Figure 9: Spatial referencing provenance data.

Figure 10: Influences behind a car crash.

Figure 11: Provenance graph from multiple laps.

Using the tracked telemetry data from other laps of the race, we
can begin to detect patterns during the game session or even
compare the player's performance between laps. This analysis can
also be extended to different game sessions by comparing the
generated provenance graphs. Figure 11 illustrates an example of
the generated provenance graph when gathering data from multiple
laps during a single play session, enabling the designer to detect
behavioral patterns and locations where the players are struggling
the most. For example, Figure 12 shows a section of the track that

is characterized by having multiple curves in the track. We can see
the player's performance during each lap of the race, where each
lap is represented by a different edge color. The first, second, and
third laps are presented by red, green, and blue edges respectively.
Moreover, the first and last vertices of each lap are marked with
circles of the same color as the edge and the timestamps are
represented by the yellow numbers beside the vertex. As we can
see, the player had approximately the same speed in all laps due to
having the same shade of green when entering this section of the
track. However, the player took fifteen seconds to pass through this
section of the track on his first lap (52 - 37), seventeen seconds
during the second lap (131 – 114), and ten seconds on the third lap
(200 – 190).

By analyzing Figure 12, we can see a purple edge that
represented the reason behind the crash in the first lap (marked by
the purple circle). This purple edge represents a cause-and-effect
relationship, showing that the crash happened because the player
passed through rumble strips (brown circle) and, as a result lost car
stability, could not complete the turn. Furthermore, notice the steep
angles the player had to make due to his positioning in each curve.
During the second lap (green edges), the player tried to avoid the
crash by reducing speed. However, the player reduced too much
speed to enter the second curve (white-green vertices). During the
third lap (blue edges), the player managed to improve his
performance and avoid any crashes by better positioning the car
before each curve and thus reducing the necessary angle to make
the turn while maintaining a nearly constant speed.

Figure 12: Zoomed section from yellow rectangle on Figure 11.

5.2 Angry Bots

We conducted a second case study using a very different style of
game, called Angry Bots, also from the Unity asset store. Angry
Bots belongs to the hack-and-slash genre, being a top-down action
shooter. In the available scenario, the player has to face enemy
robots and interact with the environment in order to complete the
level. Figure 13 illustrates one of the possible visualizations of the
provenance data gathered by our component, showing the vertex
visualization scheme for the player's health attribute value (vertex
color using a traffic light scheme) and the edges that influences in
it (green and red edges) as the game progresses. Blue vertices
represent other characters in the game (enemies), blue edges
represent the chronological order of events, and green edges
represent player’s health generation due to his passive regeneration
ability. By analyzing Figure 13, we can see the chronology of
events, regions visited by the player, sections where more action
happened, places where the player engaged in battle, and when the
player suffered heavy health loss. In this game, we used a
screenshot taken by our camera with the dimensions of 4280x3208
in order to show that the figure size does not affect the graph
alignment process. This increase of resolution allows for a higher
detail of the game scene visualization when zooming the graph
during analysis.

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 434

Figure 13: Picture of the entire graph. Vertex coloring based on

player’s Health attribute.

Considering that the player recovers health periodically, it is
possible to infer that the cause of some deaths was the rush through
the level without waiting to recover health or because of a tough
enemy. Figure 14 illustrates the first case, where the player tried to
rush through the game without waiting to regenerate the player’s
health, lost from the previous battles. The light blue arrows were
added in the figure to highlight the player's general movement and
does not belong to the provenance data.

Figure 14: Player's health when trying to rush the game.

After the player engaged an enemy in a major battle, which the
player didn't leave unscathed by looking at the orange vertices, the
player continued advancing through the level. Then, on the player’s
third major engagement, where he was still wounded by looking at

the orange vertices, the player lost the majority of his remaining
health, as illustrated by the following red vertices. Even though the
player was low on health, he managed to dispatch his enemies on
the forth battle without losing a single health point (no red edges).
However, the player continued pressing on without resting, which
would allow for him to gradually restore his lost health points
before his next engagement, until dying on the next battle when the
player got hit by the enemy (Battle #5).

Figure 15, Figure 16, and Figure 17 illustrates the second case,
showing the sequence of events that led the player to a tough
engagement (Figure 17). By analyzing the picture, we can see that
the player started these events (Figure 15) with good health (green
vertices), leaving the first battle slightly injured (yellow vertex). A
few moments later he encountered another enemy in a side room
(Figure 16), where once again he overcame the enemy with only
minor wounds (vertex is still yellow). However, just when he left

Figure 15: Sequence of events of the player exploring a section of

the map and confronting an enemy.

Figure 16: Continuation of the sequence of events from Figure 15

with a second engagement inside a room.

Figure 17: Continuation of the events from Figure 16 that led the

player to a tough confrontation that resulted in his death.

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 435

the room, the player was ambushed by another enemy that was
patrolling the corridor (the new blue vertices in the corridor from
Figure 17). This enemy was a mech, which is much tougher than a
regular enemy (notice the high number of dark red edges that
represent player doing damage to the enemy). This battle resulted
in the player’s death after getting hit by two rockets (Figure 18)
followed by his resurrection shortly after (green vertex in the
bottom of Figure 17 that is linking the green edge to a red vertex).

Figure 18: A zoomed section from Figure 17 showing both the

moments the player was hit by the enemy’s rockets. Filtered to

show only the edges that affected the player’s Health.

Figure 19 illustrates the moments when the player died, which
are marked by red circles. Meanwhile, the orange circles illustrate
the player "refreshed" state after resurrecting, as well as the
resurrected location. Both situations have a green edge linking the
player’s death to the resurrection, which shows that his health went
from zero (red vertex) to maximum (green vertex) after
resurrecting. Notice that the player actually died three times trying
to beat the enemy mech from Figure 17 before finally defeating it.

Figure 19: Filtered graph showing the moments the Player died and

was resurrected.

6 CONCLUSION

This paper presented the concretization of PinG, a conceptual
framework for game telemetry that tracks the actions and events
alongside with their cause-and-effect relationships, through a
component in Unity. Our component facilitates the process of
tracking and storing the provenance knowledge for data exploration
and analysis. This provenance knowledge can aid the detection of
gameplay issues, support developers for a better gameplay design,
identification of game sections where players had issues and the
reasons behind these issues, and mining behavioral patterns from
individual sessions or groups of sessions.

Moreover, we showed two games that used our PinG component
to extract provenance knowledge, giving examples of analyses
from the provenance data. These examples demonstrated the
possibility of referencing the provenance knowledge in the game
map to better visualize and understand the events of a game session.
Despite not showing the typical, and simpler, existing game data
analytics techniques and data mining, we believe that the richness
of the provenance data extracted when using the PinG approach and

our component provides the necessary means to make possible
deeper game data analyses.

We are currently working on ways to improve the PinG
component to automate even further the data tracking, especially
for influences and, in the future, possibly implement the component
for other engines, such as Unreal Engine due to their recent
business change for indie developers. Moreover, due to the quantity
of the data extracted with PinG, we are studying techniques to
improve even further the visual analysis process. These studies
involve, but are not limited to, automatic graph inferences, data
mining, graph reduction, multiple graph analysis to compare
multiple game sessions or even cycles during a game (e.g., laps in
a racing game), enabling better strategies of provenance gathering
that take advantage of the game’s genre and type.

REFERENCES

[1] M. El-Nasr, A. Drachen, and A. Canossa, Eds., Game Analytics -

Maximizing the Value of Player Data. In: Springer Science &

Business Media, 2013.

[2] G. Zoeller, “Development telemetry in video games projects,”

Game Dev. Conf. GDC, 2010.

[3] R. Hunicke, “The Case for Dynamic Difficulty Adjustment in

Games,” in Proceedings of the 2005 ACM SIGCHI International

Conference on Advances in Computer Entertainment Technology,

New York, NY, USA, 2005, pp. 429–433.

[4] A. Drachen, R. Sifa, C. Bauckhage, and C. Thurau, “Guns, swords

and data: Clustering of player behavior in computer games in the

wild,” Conf. Comput. Intell. Games CIG, pp. 163–170, 2012.

[5] C. Pedersen, J. Togelius, and G. N. Yannakakis, “Modeling Player

Experience for Content Creation,” Trans. Comput. Intell. AI Games

T-CIAIG, vol. 2, no. 1, pp. 54–67, Mar. 2010.

[6] B. G. Weber, M. John, M. Mateas, and A. Jhala, “Modeling Player

Retention in Madden NFL 11,” Innov. Appl. Artif. Intell. Conf. IAAI,

2011.

[7] G. Wallner, “Play-Graph: A Methodology and Visualization

Approach for the Analysis of Gameplay Data,” Found. Digit.

Games FDG, pp. 253–260, 2013.

[8] Y.-E. Liu, E. Andersen, R. Snider, S. Cooper, and Z. Popović,

“Feature-based projections for effective playtrace analysis,” Found.

Digit. Games FDG, pp. 69–76, 2011.

[9] M. S. El-Nasr and T.-H. Nguyen, “Glyph: Visualization Tool for

Understanding Problem Solving Strategies in Puzzle Games.”

[10] S. Joslin, R. Brown, and P. Drennan, “The gameplay visualization

manifesto: a framework for logging and visualization of online

gameplay data,” Comput Entertain, vol. 5, no. 3, p. 6, 2007.

[11] J. H. Kim, D. V. Gunn, E. Schuh, B. Phillips, R. J. Pagulayan, and

D. Wixon, “Tracking real-time user experience (TRUE): a

comprehensive instrumentation solution for complex systems,”

Hum. Factors Comput. Syst. CHI, pp. 443–452, 2008.

[12] T. Kohwalter, E. Clua, and L. Murta, “Provenance in Games,” Braz.

Symp. Games Digit. Entertain. SBGAMES, pp. 162–171, 2012.

[13] PREMIS Working Group, “Data Dictionary for Preservation

Metadata,” Implementation Strategies (PREMIS), OCLC Online

Computer Library Center & Research Libraries Group, Final report,

2005.

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 436

[14] T. Kohwalter, E. Clua, and L. Murta, “SDM – An Educational

Game for Software Engineering,” Braz. Symp. Games Digit.

Entertain. SBGAMES, pp. 222–231, 2011.

[15] T. Kohwalter, E. Clua, and L. Murta, “Game Flux Analysis with

Provenance,” Adv. Comput. Entertain. ACE, pp. 320–331, 2013.

[16] L. Jacob, T. Kohwalter, E. Clua, D. De Oliveira, and A. Machado,

“A Non-intrusive Approach for 2D Platform Game Design Analysis

Based on Provenance Data Extracted from Game Streaming,” 2014

Braz. Symp. Comput. Games Digit. Entertain. SBGAMES, pp. 41–

50, Nov. 2014.

[17] T. Kohwalter, E. Clua, and L. Murta, “Reinforcing Software

Engineering Learning through Provenance,” 2014 Braz. Symp.

Softw. Eng. SBES, pp. 131–140, Sep. 2014.

[18] T. Kohwalter, T. Oliveira, J. Freire, E. Clua, and L. Murta, “Prov

Viewer: A Graph-Based Visualization Tool for Interactive

Exploration of Provenance Data,” in Proceedings of the 6th

International Provenance and Annotation Workshop on

Provenance and Annotation of Data and Processes - Volume 9672,

New York, NY, USA, 2016, pp. 71–82.

[19] Y. Gil and S. Miles, “PROV Model Primer,” 2010. [Online].

Available: http://www.w3.org/TR/prov-primer/. [Accessed: 21-

Mar-2013].

SBC – Proceedings of SBGames 2017 | ISSN: 2179-2259 Computing Track – Full Papers

XVI SBGames – Curitiba – PR – Brazil, November 2nd - 4th, 2017 437

	173517

