
GOF design patterns applied to the Development of Digital Games

Roberto Tenorio Figueiredo
Faculdade de Ciências Aplicadas e Sociais de Petrolina

FACAPE
Petrolina, Brazil

Geber Lisboa Ramalho
Centro de Informática

Universidade Federal de Pernambuco – UFPE
Recife, Brazil

Abstract

The game market is very competitive, requiring companies to
react rapidly to opportunities and demands. The adoption of
libraries and frameworks has helped developers to focus on
game logic, improving reuse and, consequently, fastening the
development. Unfortunately, these tools do not solve all
problems, since component reuse does not replace coding
completely. In fact, developing game logic involves several
elements that are particular to each game and cannot be easily
generalized. In this context, game industry could take
advantage design patterns, one of software engineering
techniques to aid developers in coding recurrent situations or
problems. A group of design patterns is quite famous as
defined by the GoF (Gang of Four), composed of twenty-three
patterns with recognized commercial applications use.
Unfortunately, the adoption of GoF design patterns is very
limited in game development. This work is a pioneer effort on
explaining in details how to use some the GoF patterns in the
development of games. This paper not only shows the final
result, but it presents the "before and after" the application of
these patterns and where they are assisting the programmer in
his or her task. The positive impact of adopting design patterns
has already been proved for the software industry in general,
but in this paper, for sake of completeness, we illustrate this
impact in a small experiment. The results have confirmed the
interest in using design patterns in game development.

Keywords: Design Patterns, GOF, Game Development.

Authors’ contact:
tenorio.petrolina@bol.com.br
glr@cin.ufpe.br

1. Introduction

The gaming industry was around 420 million dollars in 2011,
only in Brazil [2014], which generated a heated battle between
developer companies, who try to meet the demands of an
increasingly demanding and competitive market. Looking at
these numbers, plus the great competition in the industry,
developers, every day, look for new forms of programming
that combine low cost, agility, quality and acceptance in a
competitive market.

In this context, reusability has an important role and there
are several tools for improving reuse, such as game engines,
libraries, etc. [Perucia et al. 2005]. These tools are already

widely used in the production and development of games, but
there are other tools and techniques that can help that are less
used, for example, some DSLs (Domain Specific Languages)
and design patterns [Perucia et al. 2005].
Design patterns are one of the software engineering techniques
to aid developers in coding recurrent situations or problems. A
group of design patterns is quite famous as defined by the GoF
(Gang of Four) with recognized commercial applications use
[Gamma et al. 2000]. Twenty-three design patterns by Gof
were defined. They are: Abstract Factory, Builder, Factory
Method, Prototype, Singleton, Adapter, Bridge, Composite,
Decorator, Facade, Flyweight, Proxy, Chain of Responsibility,
Command, Interpreter, Iterator, Mediator, Memento,
Observer, State, Strategy, Template Method, Visitor.

Unfortunately, the adoption of GoF design patterns is very
limited in game development, according to the survey done in
the section II. Many contest this assertion, due to Design
Patterns are widely known and used, however, a research more
depth confirms its veracity.

This work is a pioneer effort on explaining in details how
to use some the GoF patterns in the development of games.
This paper not only shows the final result of the application of
pattern, but also presents the entire process of adding the
patterns where it matters, the "before and after" the application
of these patterns and where they are assisting the programmer
in his task. This detailed explanation is achieved with the
presentation of class diagrams, with and without the
application of patterns, examples, and discussions, comments
and relevant comments.

The positive impact of adopting design patterns has
already been proved for the software industry in general
[Deitel P. J.; Deitel H. M. 2005]. However, for sake of
completeness, we present in this paper a small experiment
presented on the topic "Experimentation" this paper. The
results have confirmed the interest in using design patterns in
game development.

2. Related Work

There are a lot of articles that comment about the application
of design patterns in games, but many of them define their
own patterns. Among the articles that comment about the
application of the GOF patterns, we have a very limited
amount of patterns worked. Articles include between one and
nine patterns, many of them repeating itself among the articles

SBC – Proceedings of SBGames 2015 | ISSN: 2179-2259 Computing Track – Full Papers

XIV SBGames – Teresina – PI – Brazil, November 11th - 13th, 2015 1

having more than ten patterns that were not mentioned in any
article.

The search of related work featured techniques of data
mining over the Internet and periodic CAPES site, in addition
to the annals of every year Congress on the topic, such as
ICSE (International Conference on Software Engineerin),
CSEE&T (Conference on software Engineering Education and
Training), SEKE (Conference on software Engineering and
Knowledge Engineering), CBSoft/SBES (Brazilian
Conference on Software / Brazilian Symposium on software
Engineering), SESRes (Software Engineering and Systems
Research), GDC (Game Developers Conference), SBGames
(Brazilian Symposium on Games and Digital Entertainment),
among others. In addition, all references of retrieved articles
were consulted in search of new references.

The works found were scrutinized. Follows the analysis of

the works most relevant to the theme of the research.

In his work, Ampatzoglou and Chatzigeorgiou [2006]
show the application and the use of design patterns in games,
trying to make the code more flexible and reusable game,
lowering maintenance costs, however, despite making
quotation from eleven of the twenty and three GoF patterns,
explains effectively only four (Strategy, Observer, State,
Bridge). The research is not just the patterns, it is the focus on
a few topics.

Have Trinidad and Fischer [2008] present the GoF design

patterns Singleton, Observer and Adapter and further defines
the Data Access Object and Monitor patterns which address
structural aspects and applicability of each patterns as well as
implementation examples, however, only the Singleton pattern
have your example with a focus on game development.

Despite not speaking directly about the application of the

GoF design patterns in games, the work of Björk and
Holopainen [2001] investigates the relationship between the
application of the design pattern and found bugs in software.
To achieve its goal, an empirical study on games developed in
Java was conducted. This research identified the number of
defects, the clearance rate and the patterns used in games. The
results show that the total number of use of patterns is not
correlated directly with the bugs. However, some design
patterns has a significant impact on the number of reported
bugs. Among the GoF patterns discussed are the singleton,
composite, adapter, observer, state, strategy, template method,
decorator, prototype, proxy and abstract factory.

The article Kaae [2001] comments on how the design

patterns can help the programmer in the early stage of game
programming, but does not directly address the GoF patterns,
only comments about how to apply the architectural pattern
MVC (Model-View-Control). Another study showing the
application of MVC in games is the work done by Wong and
Nguyen [Wong S. B.; Nguyen D. 2002], however, despite the

focus of his research is the MVC, it highlights the important
use of GoF state, strategy, and visitor patterns in games.

Gestwicki [2007] presents a model to support the design,
analysis and development of games with design patterns. The
model consists of a structural framework for describing the
components of the games and the interaction patterns that
describe how components are used by the players (or
computer). The study validates the use of five patterns in GoF
building games. They are: state, facade, observer, strategy, and
visitor.

In addition, some articles that comment about the use of

design patterns in games are educational character, ie, using
games to facilitate the learning of design patterns in the
undergraduates. Among the works in this direction, it is worth
highlighting Silveira and Silva [2006], showing how games
can be used as motivators in learning design patterns, being its
main focus the architectural patterns, citing and explaining just
the decorator pattern but others without citing a study of its
application.

In the works of Gestwicki and Sun [2007] and Gestwicki

and Sun [2008] an approach for teaching design patterns that
emphasizes object-orientation and the integration of patterns is
presented. The context of the development of computer games
is used to engage and motivate students, a case study is
presented based on EEClone, a computer game in arcade style
implemented in Java. These works focus on the GoF singleton,
facade, observer, state, strategy, and visitor patterns.

According to Martín, Díaz and Arroyo [2009], the design

of object-oriented software requires a combination of abilities
that cannot be easily transferred to the students in traditional
classes. Their studies show that can increase students'
understanding of design patterns through an approach that
consists in the development of a family of games in an
incremental way strategy. In the development of these games,
it is evident the use of architectural pattern MVC and GoF
observer, strategy, template method, factory method, abstract
method and proxy patterns.

Although this educational line, Wick [2005] discusses the

complexity of the design patterns and learning how this
complexity can be reduced with the use of digital games as
practical examples of the application of patterns. This paper
discusses the GoF patterns observer, state, singleton,
command and visitor.

3. Design Patterns

Design patterns represent a considerable advance in the area of
object-orientation, as it provides a catalog of project plans to
admit reuse these solutions that have been tested and proven to
be efficient for solving similar [Gamma et al. 2000] problems.

SBC – Proceedings of SBGames 2015 | ISSN: 2179-2259 Computing Track – Full Papers

XIV SBGames – Teresina – PI – Brazil, November 11th - 13th, 2015 2

The use of the design pattern is of paramount importance
as it offers a facility at the time of maintenance, since it leaves
the project well documented, the scalability of the project, ie,
the ability to manipulate the system and support the full load
required by resources, the reuse of all materials, resulting in
significant increases in productivity [Larsen S.; Aarseth E.
2006]. Design patterns are considered a way to represent
record and reuse projects micro architectures repeated as often
as necessary, and also the experience accumulated by
designers throughout the development of the project [Larsen
S.; Aarseth E. 2006]. The importance design patterns are to
know exactly what's wrong and what's best for him. It is
important to analyze the case and the solution to the situation,
because it is through this analysis and knowledge of design
patterns that you can decide which to use, how to use and why
to use a particular design pattern, if it really is the best choice
to solve this problem [Gamma et al. 2000].

Another point that should be taken into consideration is

that most of the time a project is not developed alone. So if the
entire development team already has knowledge of design
patterns, if necessary explain how we developed a any
functionality will be saved a long time [Gamma et al. 2000].
Design patterns used efficiently inheritance, polymorphism,
composition, modularity and abstraction, very important for
the development of object-oriented concepts projects, thus
building a reusable, efficient code, high cohesion and low
coupling [Gamma et al. 2000].

4. Applications of GOF design patterns in
games

The intention of this chapter is to show in detail each of the 23
GoF patterns and their application in the development of
digital games, however, due to the limitation of pages, only a
few will be presented. The complete list of GoF patterns for
game can be accessed in
http://www.osfedera.com/get/federa/Dis_final.zip.
The examples this section are only didactic situations to
explain how the patterns could be used.

4.1. Builder

Where to apply: In many games, many criticisms are made
towards enemies, because they are exactly the same or are
only slight variations of the enemies of previous stages. An
example of this can be seen in the game "Street of Rage". The
class diagram of a game designed to generate enemies without
using patterns can be seen in Figure 4.1, where you can see a
class "enemy", identified as "father" and several classes of
enemies, who inherit this "father "and alter some
characteristic. Every new feature to be changed, a new class
must be created, thus occupying more space in memory. The
creation of a wide variety of enemies is something costly and
time-consuming the games, besides occupying memory and
disk space [Perucia et al. 2005].

Solution proposed by the pattern: One way to optimize the
creation of varied enemies, reducing the resource consumption
of the machine is using the Builder pattern. The patterns
proposes the creation of a complex enemy with various items,
moves, weapons and garb quite different, various types of
punches and kicks, as well as different styles of fighting. The
concrete builder class will create several characters, starting
this enemy "master", separating some of these features and
elements to compose several distinct characters. The diagram
with an example of applying the pattern builder can be seen in
Figure 4.2.

Fig. 4.1.: Partial class diagram of a game that shows the creation of enemies
without using the Builder pattern. The enemies have slight variations of an

enemy father.

Fig. 4.2. Class diagram of a partial game, which shows the creation of
enemies using the patterns Builder. Each enemy may have some features that
made it unique in the game, and all these features come from a single class
enemy.

4.2 Prototype

Where to apply: As previously discussed, the creation of
identical or extremely similar enemies can generate criticism
from his players, but on devices with limited resources
(mobile phones, tablets, etc.) this idea can be the only way to
create groups of enemies. One difficulty that can arise in

SBC – Proceedings of SBGames 2015 | ISSN: 2179-2259 Computing Track – Full Papers

XIV SBGames – Teresina – PI – Brazil, November 11th - 13th, 2015 3

creating enemies is replicated code duplication in each unit of
these elements, generating effort in creating and possible
adjustments to these elements may undergo during
development. An example of replication can be seen in figure
4.3 of class diagram showing three enemies in a replicated
stage.

Solution proposed by the patterns: A solution to this
problem is proposed by default prototype. As can be seen in
Figure 4.4, using the default causes the classes of enemies are
independent of the choice phase and the amount of generated
enemies is done at runtime and can be adjusted according to
the need of the game and the load instantiated objects that the
device supports. The gerarInimigo () method creates a new
object requesting that the InimigoPrototipo class (one of his
sons) be doubled.

Fig. 4.3: Partial diagram of a game showing the generation of identical
without the use of patterns Prototype enemies.

Fig. 4.4: Partial diagram of a game showing the generation of identical
enemies using the Prototype pattern.

4.3 Singleton

Where to apply: Several elements of a game cannot be
replicated anywhere else, such as replication can lead to
inconsistencies, both logical, as the game's storyline. An
example of this is the main character that the player will

control during the game. In many games, the main character
can only appear once. An example of a problem that can
happen with a doubling of this character is the inconsistency
of events.

Solution proposed by the pattern: One way to ensure a
single instance of any object is to use the Singleton design
pattern. Figure 4.5 shows a situation without the use of the
pattern, where one wrong programming in some class method
engine can generate more than one instance of the Character
class. In Figure 4.6 has become the application of the
Singleton pattern, which suggests a class to instantiate the
class character through a static method that will not allow a
second instantiation, thus ensuring the uniqueness of the
instance of the Character class, avoiding inconsistencies and
errors.

Fig. 4.5: Partial diagram of a game without using the Singleton pattern. The
game engine can instantiate more than one character, because there is no
guarantee of uniqueness.

Fig. 4.6: Diagram of a partial match using the Singleton pattern. The character
can only be instantiated via the Singleton class, which ensures the uniqueness
of the instance of the class Character.

4.4 Flyweight

Where to apply: Each occasional enemies in a game is an
instance of an object. These instances consume memory with
information, often repeated, because the enemies usually have
common characteristics. When these enemies go in droves and
crowding the screen, several concurrent instances in real

SBC – Proceedings of SBGames 2015 | ISSN: 2179-2259 Computing Track – Full Papers

XIV SBGames – Teresina – PI – Brazil, November 11th - 13th, 2015 4

memory, which can cause slowdowns and even overhead will
be generated. The first solution is to limit the number of
simultaneous enemies, which can distort the game's plot, and
impact on other areas of the game such as difficulty and
dynamic game options.

Proposed solution by patterns: A solution to reduce the
impact of these problems, increasing the ability to generate
simultaneous enemies, using minimal memory is to use the
Flyweight pattern. With the default, a shared resource that can
be used by several enemies simultaneously object is created.
This object has no specific link with any enemies, and
contains only the information that is common among them.
Thus, each instance of an enemy only has exclusive
information, leaving the smaller objects, thus taking up less
space in memory. The diagram shown in Figure 4.7 shows the
generation of enemies the engine without the use of the
pattern. Each enemy will have all the information object class
"Enemy", occupying as much memory. In Figure 4.8 we have
the implementation of the Flyweight pattern, it is possible to
note the FlyweightAbstrato class that is nothing more than an
interface in which the concrete Flyweights may aggregate the
information specific to each enemy general information
Flyweight. There is also the
"InimigosInformacoesNaocompartilhadas" class that can store
information that need not be shared by Flyweight. The engine
maintains references to Flyweights because it stores or
generates information specific to each enemy, but can only
generate instances of Enemies by
FlyweightFabricaDeInimigos class, thus ensuring the
appropriate sharing of information.

Fig.4.7: Diagram of a partial match without the Flyweight pattern. The engine
generates only complete instances of enemies when necessary.

Fig. 4.8: Partial diagram of a game with the Flyweight pattern

4.5 Observer

Where to apply: In most current games, intelligent agents
are widely used [Perucia et al. 2005]. These agents are usually
the enemies of the player character, where the AI is applied.
The strategy of attacking enemies is calculated based on the
character's movement in order to avoid their attacks and
surround it on all sides. The problem happens when objects of
enemies must receive information handling and attack the
player, because any change in the character must be reported,
in addition, each map, the amount of zombies vary, so there is
no simple way to number of objects that need to be notified.
Obviously communication can not affect the consistency of
communicating objects. One way to establish communications
without the use of any patterns is illustrated in figure 4.9. A
routine is implemented in character with a reference for each
zombie one by one passing the necessary information.

Proposed solution by patterns: A solution to accomplish

this communication, with weak coupling is the application of
the Observer pattern. The character class knows its observers
from a list and has methods to include them or exclude them,
as these can vary with the progress of the game. The
"ObserverZumbi" class defines an interface for objects that
need to be notified. The "PersonagemConcreto" class stores
the interesting information for the zombies and notifies them
whenever a change occurs. Once informed of a change, the
zombies consult the character and use the information
obtained to adjust your strategy of action. The diagram of the
pattern can be seen in Figure 4.10.

SBC – Proceedings of SBGames 2015 | ISSN: 2179-2259 Computing Track – Full Papers

XIV SBGames – Teresina – PI – Brazil, November 11th - 13th, 2015 5

Fig.4.9: Partial diagram without the use of the Observer pattern. There is a
strong coupling between the character's class and the classes that represent the
enemy.

Fig. 4.10: Partial Diagram using the Observer pattern. The objects of the
enemies are reported every movement of the character, without the strong
engagement by the proposed solutions without the use of the patterns.

4.6 State

Where to apply: In any game, the events that can occur with a
character, will depend on certain characteristics of the
transient at a given moment. An example of this happens in
the game Sonic The Hedgehog, the event where the main
character bump into an enemy may have different
consequences according to your current feature. The figure
4.11 illustrates different states of the Sonic character. In figure
4.11 (a) have their normal state without rings to bump into an
enemy in this state the character loses a life and return to the
beginning of the stage, if you have even more lives. In figure
4.11(b) have the character with a shield, to bump into an
enemy in this state the character simply lose the shield, will
show a jump back and the game proceeds normally. The figure
4.11(c) shows the character with the call temporary
invincibility, to bump into an enemy in this state, the enemy
dies and no result will be transmitted to the character.

Fig.4.11: (a) Normal Sonic (b) shell with Sonic (c) Sonic with temporary
invincibility

Another example can be seen in games Marvel Avengers

Alliance. Upon receipt of enemies or aid allies attacks the
character can have temporary gains or losses depending on
what you have been given. In the case of earnings, for
example, the character may get "Resists and Burn", the state
where the character can not be burned; "Resistant to Poisons"
state, where the character can not suffer poisoning;
"Resistance to Bleeding" state, where the character suffers no
damage because of bleeding; "Agil", where the character has
been his ability to escape increased by 25%; "Strengthened"
state where the character has his strength increased by 25%;
"Protected" status, where your character has increased by 25%
and "Focused" state where your character has increased by
25% marksmanship defense. In the case of losses, the
character can be "burned", a state that makes you suffer
damage each turn of struggle and has reduced its defense;
"Poisoned", the state where the character takes damage each
turn and has lowered his attack; "Bleeding" state, where the
character takes damage each turn and every attack made;
"Slow", where the character has been its ability to reduced
leakage by 25%; "Weakened" state where the character has its
strength reduced by 25%; "Exposed" state, where the character
has their defense reduced by 25% and "Tonto" state, where the
character is diminished on 25% shooting.

Proposed solution by default: Changes made to objects and
reactions characters and events become independent of the
state that the object is. The State object is responsible for
assessing the state of the object and make the appropriate
changes and reactions. In Figure 4.12 we can see the partial
diagram of the game Marvel Avengers Alliance without
applying the State pattern. You can see that the states of
character are attributes and methods of the Character class,
causing a strong coupling between the states and the
individual character's actions, leaving the heavier and
operators will not be used constantly class, since the character
is not always burned, exposed, dizzy, weakened, poisoned,
bleeding and reading simultaneously. In Figure 4.13 we have
the diagram using the State pattern, there is now the states of
character that are decoupled from the main class, allowing
states can be removed or added without any change in the
character class and whose actions may be modified without
any concern for the rest of the system.

SBC – Proceedings of SBGames 2015 | ISSN: 2179-2259 Computing Track – Full Papers

XIV SBGames – Teresina – PI – Brazil, November 11th - 13th, 2015 6

Figure 4.12: Partial diagram of the game Marvel Avengers Alliance, without
the State pattern, in case of losses.

Figure 4.13: Partial diagram of the game Marvel Avengers Alliance, with the
State pattern, in case of loss

5. Experimentation

As discussed, it’s been proved that the use of design pattern
promotes a significant increase in productivity on software
development [Larsen S.; Aarseth E. 2006]. However, to
illustrate the impact of the application of design patterns
proposed here in the development of digital games, the
experiment was conducted. The objective of the experiment
was to examine the improvements and quantize the adoption
of design patterns in games, in relation to the reduction in
development time, decreased in the presence of bugs and
reducing lines of code. The participants were students of

computing FACAPE. Students enrolled in the experiment
were divided into groups in a total of six groups with three
people each. The idea was to apply a AB test to compare the
groups that used design patterns with those that did not. The
division of the groups tried to balance the participants
experience in C# language and in game development. Because
of the time that students had and the complexity involved in
the process, only three design patterns were used in the
experiment, they were: Singleton, Prototype and Facade.
These patterns were chosen because of the ease in its
development and the possibility of being applied to a simple
game. The day before the execution of the experiment, these
three groups (referred to as groups A, B and C) received an
explaination on the three patterns GoF, without no specific
hints on how to use them in the game they will implement the
next day. To the other groups (called D, E and F), nothing was
explained. On the day of the experiment, this task description
was given: "Each group will have a computer available and
should develop a set of specifications that are being passed on
to them in Visual Studio 2010 tool with XNA Game
Development Library previously installed both in the
laboratory. All of you have received an ongoing project and
will use everything that the project offers. Whoever finishes
first with all specifications, will win a prize. Get to work". The
requirements of how the game should be and the images to be
used, were provided to all groups. Groups A, B and C, who
had received lessons on Design Patterns, also received the
ready classes for the three design patterns that should be
implemented.

The purpose of classes be delivered ready it is demonstrate
that a key advantage of the design patterns, the code reuse,
really decreases the development time and the number of lines
typed code.

The game used in the experiment was a simple space ship

game with a single screen where a player throws bullets to up
to attempt to hit in the space ships enemies that shoot bullets
down, trying to hit the space ship player. If the player is hit
three times, he dead. If hit ten enemy space ships, will be
deemed the winner.

Results:

1 2 3 4 5 6 7
A Yes 06h50m 100% 0 246 21
B Yes 06h36m 90% 1 253 23
C Yes 06h05m 100% 0 218 25
D No 07h40m 100% 1 345 15
E No 09h45m 80% 1 259 1
F No 06h40m 100% 1 251 6

1 – Group 2 – Use of patterns
3 – Approximate time 4 – Completeness
5 – Bugs 6 – Lines of Code
7 – Number of Classes

SBC – Proceedings of SBGames 2015 | ISSN: 2179-2259 Computing Track – Full Papers

XIV SBGames – Teresina – PI – Brazil, November 11th - 13th, 2015 7

With the results obtained can conclude that the average
implementation time of the game with the use of patterns was
06:31, while the average of the teams that did not use patterns
was 08:02. Regarding completeness, almost all teams
managed to complete the project, having the balance between
teams that used patterns and not used. Bugs were observed in
all projects using no patterns and only a bug in projects that
used patterns. Moreover, the average number of lines of code
of the teams that used the patterns was 717 lines, while the
average of the projects that did not use patterns was 855 lines.
In relation to the quantity of classes, can be seen that the
average number of classes of groups using the patterns was 23
classes. Well above the average of 07 classes, earned the
group who did not use patterns.

Therefore we can measure the gain at development time

using patterns was about 18.9% and the gain code lines was
about 16.14%. In addition, improved software quality,
reducing the amount of bugs generated. It is also possible to
measure the amount of generated classes increased by more
than three times when the patterns are used, this does not
mean more work, since there was a reduction in the total
number of lines typed. These results were expected since the
literature on design patterns already says such gains in
software and commercial applications.

Although the number of participants is not enough to come
to definitive conclusions, the experimental data show clear
evidence that the use of patterns reduces the programming
effort and time required to develop a project of games,
improving the quality of code. This is due to code reuse
provided by the patterns, which, in addition to providing a
ready solution to a recurring problem, allows the reduction in
effort with the use of ready-made classes that other games can
also reuse.

6. Conclusion

Despite, the potential of the adoption of design patterns in
game development, this tool has been neglected by the game
community. This work represents the first attempt to
systematically shows how Gof patterns can be applied to game
development. The diagrams show a choice of how
programming is done without the pattern and the pattern,
bringing feedback on the improvements that the use of
patterns brought to the game design.

As future work will be organized a book describing the use
of design patterns in games and a site where researchers can
make their contributions, showing how a particular pattern
GoF was used in game development.

References

AMPATZOGLOU, A.; CHATZIGEORGIOU, A. 2006. Evaluation of object-
oriented design patterns in game development. University of
Macedonia. Thessaloniki (Greece), p. 10. 2006.

AMPATZOGLOU, Apostolos; GORTZIS, Antonis; KRITIKOS, Apostolos;

CHATZIASIMIDIS, Fragkiskos; ARVANITOU, Elvira M.;
STAMELOS, Ioannis. 2011 An empirical investigation on the impact of
design pattern application on computer game defects. In. XV
International Academic MindTrek Conference: Envisioning Future
Media Environments. Tampere, p. 8. 2011.

BJÖRK, S.; HOLOPAINEN, J. 2001. Patterns In Game Design. Ebook: The

Game Design Reader, p.410 a 437. 2005.

BNDES, 2014. Relatório Final. Mapeamento da Indústria Brasileira e Global

de Jogos Digitais. Fevereiro/2014. Contrato BNDES-FUSP 12.2.0431.1
Available in:
<http://www.bndes.gov.br/SiteBNDES/bndes/bndes_pt/Galerias/Arqui
vos/conhecimento/seminario/seminario_mapeamento_industria_games
042014_Relatorio_Final.pdf >. Accessed: 25 jun. 2014.

DEITEL, P. J.; DEITEL, H. M. 2005. Java Como Programar. Tradução de

Edson Furmankiewicz. 6. ed. São Paulo: Pearson Prentice Hall, 2005.

GAMMA, E. et al. 2000. Padrões de Projeto. Porto Alegre: Bookman, 2000.

GESTWICKI, P. V. 2007. Computer Games as Motivation for Design

Patterns. Ball State University. Muncie, p. 5. 2007.

GESTWICKI, P.; SUN, F.-S 2007. On Games, Patterns, and Design. In.

Symposium on Science of Design. p. 17-18, 2007.

GESTWICKI, P.; SUN, F.-S. 2008. Teaching Design Patterns Through

Computer Game Development. Journal on Educational Resources in
Computing (JERIC), New York, 01 Março 2008.

KAAE, R. C. 2001. Using design patterns in game engines. TietoEnator

Consulting A/S. Helsinki. Ebook, 2001.

LARSEN, S.; AARSETH, E. 2006. Level Design Patterns. Copenhagen: IT,

2006.

MARTÍN, M. A. G.; DÍAZ, G. J.; ARROYO, J. 2009. Teaching Design

Patterns Using a Family of Games. In. 14th SIGCSE Conference on
Innovation and Technology in Computer Science Education. p. 268-
272, 2009.

PERUCIA, A. S. et al. 2005. Desenvolvimento de Jogos Eletrônicos – Teoria

e Prática. São Paulo: Novatec, 2005.

SILVEIRA, I. F.; SILVA, L. 2006. Aprendizagem de Padrões de Projeto em

Ciência da Computação através de Jogos Digitais. In.XIV WEI -
Workshop sobre Educação em Computação. São Paulo, p. 10. 2006.

TRINDADE, J. M. F.; FISCHER, L. G. 2008. Estudo e Aplicação de Padrões.

Universidade Federal do Rio Grande do Sul. Rio Grande do Sul, p. 13.
2008.

WICK, M. R. 2005. Teaching Design Patterns in CS1: a Closed Laboratory

Sequence based on the Game of Life. In. 36th SIGCSE Technical
Symposium on Computer Science Education. Eau Claire, p. 487-491,
2005.

WONG, S. B.; NGUYEN, D. 2002. Design Patterns for Games. Rice

University. Houston, p. 5. 2002.

SBC – Proceedings of SBGames 2015 | ISSN: 2179-2259 Computing Track – Full Papers

XIV SBGames – Teresina – PI – Brazil, November 11th - 13th, 2015 8

