
Structural Analysis for Simple Games Source Codes Applied to
Programming Learning

Elanne C. O. Santos¹
,
²

Victor H. V. Sousa¹

Instituto Federal de Educação, Ciência e

Tecnologia do Piauí, IFPI¹

Gleison B. Batista²

Esteban W. G. Clua²

Universidade Federal de Fluminense, UFF²

Abstract

Teaching programming and algorithms is a big

challenge, not only in universities but also in schools

and training centers. Many proposals for stimulating

this process were made in the last years. Previously to

this work we had developed JPlay. The JPlay

framework was proposed and developed for teaching

programming with the development of simple 2D

games. In this paper we propose a heuristic based on

the structural analysis of the behaviors of a JPlay

program and, based on this heuristic, we developed a

tool that makes analyzes of JPlay programs, guiding

and teaching a student for a specific game

development. The heuristic consists on a comparison

approach between the student program and the model

program and it has four levels of analysis: the

sequential code pattern of the JPlay, standardization

model, the comparison of similar classes and

construction of behavior trees of similar variables.

Thus, the comparison consists on searching behaviors

of correspondence between pairs of classes among

these programs. In this paper we also present a review

of results of BrickBreak game based on the source

code of the integrated high school students in the

course of Computers.

Keywords: heuristic, programming, JPLAY, behavior,

learning, games

Authors’ contact:
elannecristina.santos@ifpi.edu.br

vhv.sousa@gmail.com

{gbatista, esteban}@ic.uff.br

1. Introduction

The teaching of programming and algorithms consists

in a big challenge, not only in universities but also in

schools and training centers. Studies point to the

difficulty of teaching and learning the disciplines

related to algorithms and programming, resulting in

high dropout rates in computer courses [Pinheiro et al.

2007, Barbosa et al. 2011]. The main reason for this

negligence is the difficulty in learning abstract

concepts of programming [Santos and Rapkiewicz

2007]. Many proposals for stimulating this process

were made in the last years [Allen et al. 2002; Kolling

et. 2013; Traetteberg and Aalberg 2006; Allowatt and

Edwards 2005].

In this sense, the JPlay framework was proposed

and developed for teaching programming [Feijó et al.

2010]. JPlay is a framework for facilitating the

teaching of programming, providing an algorithmic

learning process related with the logic of simple 2D

game development. JPlay does not interfere with the

structure of basic programming necessary for a correct

learning of algorithmic logic and does not introduce

specific features of design patterns or stereotypes of

games in the source code. The tool allows the students

an easy way to draw and move images on a computer

screen and provides methods and objects that help to

create 2D games using the Java language.

Previously to this work we proposed a semantic

analyzer based on behaviors comparison between two

programs: a model program and a student program. We

showed results using a comparison algorithm between

the variables of the same type of each pair of classes,

analyzing its game context instead of syntax details,

based on a heuristic for guessing variables behaviors.

The programs compared are simple 2D games

developed by JPlay framework. Thus, in order to

compare the behaviors of two programs we developed

a comparison algorithm between the classes of the

model program and student program, resulting in

similar pairs of classes. Previously, we show how the

algorithm combined the similar classes of the two

programs [Santos et al. 2013]. In the present paper we

will use a four levels heuristic, based on the structural

analysis of the behaviors. These levels are: the

sequential code pattern of the JPlay, standardization

model, the comparison of similar classes and

construction of behavior trees of similar variables. This

analysis will show more specifics results using a

behaviors comparison heuristic. Behaviors are

identified through the analysis of its occurrence scope

at the source code, such as an assignment, a loop or a

conditional usage. Therefore, when behaviors

differences are identified, the system makes

suggestions about these differences found in the

student program and gives clues that may indicate a

possible semantic error. The teacher adds the

suggestions in the form of comments in the source

code of the model program, which are automatically

captured by our solution. In this paper, we will also

show some results of this comparison.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 761

2. Related Work

During the process of learning programming different

techniques can be used for students in addition of

learning to program with the purpose of acquiring good

programming practices. The techniques are classified

as follows: tests based programming, programming

pattern, automatic evaluator, programs diagnostic

systems [Pinheiro et al. 2007].

Based on previous works [Delgado 2005; Pinheiro

et al. 2007], we classify the techniques related to

programming learning context as follows:

programming based unit testing, proposals of

programming environments, automatic evaluator,

analysis of programming patterns and automatic

depuration systems (intelligent tutoring systems and

programs diagnostic systems).

In programming based unit the teacher provides a

set of specific tests to solve a particular problem and

the student must build a program that allows the

achievement of expected results in the execution of all

tests [Pinheiro et al. 2007; Traetteberg and Aalberg

2006]. The proposals of programming environments

consist on the fact that some development tools were

created in order to assist students in introductory

programming, such as BlueJ and DrJava [Kolling et al

2013; Allen et al. 2002].

The automatic evaluator is used to help the teachers

with tasks of activities corrections. The teacher can

define acceptance tests to be automatically executed

after the students deliver their programming activities

and results of the tests can be used to compose the final

score the student [Pinheiro et al. 2007]. We can quote

the Web-Cat [Allowatt and Edwards 2005] as an

automatic evaluation tool.

The analysis of programming patterns is based on

research of programming learning suggestions that

experienced developers solved when looking for

previous solutions that are related to the new problem

and that can be adapted to the ideal situation [Delgado

2005]. Thus, the concept of patterns is based on the

fact that experienced programmers are able of solve

new problems through the analysis of a previously

solved problem. They can identify what structure to

use, what types of data is involved, as well as other

ways to solve the same problem, through previous

experiences that identify solutions [Alexis and Deller

2013]. Previous experiments contain the basis for

Programming patterns, which are solutions that often

appear in solving computational problems [Alexis and

Deller 2013]. Thus, patterns translating programming

strategies created by experts can lead to good

programming practices. We can quote the systems

Proust [Johnson and Soloway 1984] and PROPAT

[Delgado 2005] as systems that use the strategy of

analysis of programming patterns.

An automatic depuration system is a system that

uses techniques in order to find and classify

components from a program. Based on the type of

technique used, this may be classified as a

programming intelligent tutoring systems and program

diagnostic system.

Laura is one of the first attempts to build a tutoring

system for teaching programming and is written in

Fortran [Botelho 2010]. Its strategy is a comparison

between two programs, the model and the candidate.

The comparison is possible through the representation

of the model and candidate programs by graphs, and its

heuristic strategy to identify step by step the elements

of the graphs [Adam and Laurent 1980].

We have previously developed a knowledge

modeling system for semantic analysis of Games

[Santos et al. 2013] and is based at learning objectives.

It aims to find and to classify possible errors that

happen in the program. Therefore it can be used in

order to guide the student about these errors. It has a

function of interpreting semantically and

architecturally a Java program developed that uses the

JPlay and return results of this examination to the

programmer. The process consists on a comparison

between the student program and model program. For

this, the programmer must select, in his integrated

development environment (IDE) tool, the model

program that he wants to use as reference, previously

available in a repository. Thus, the analyzer is able to

interpret semantically the program that is being built

by the student, may point out problems and suggest

possible solutions.

The comparison is based on behaviors of the

programs. Different behaviors between the model

program and student program produce suggestions

about possible errors in the student´s source code.

Thus, in order to compare the behaviors of two

programs we developed a comparison algorithm

between the classes of the model program and student

program, resulting in similar classes pairs. Previously,

we show how the algorithm combined the similar

classes of the two programs [Santos et al. 2013].

After the selection of similar classes, variables of

each pair are compared and similar variables pairs are

selected. Then, at this stage, the analysis shows more

specifics results using a comparison algorithm between

the variables of the same type of the pairs of classes.

The comparison is based on variables behaviors.

Behaviors are identified through the occurrence, at the

source code, of assignments, loops or conditionals

statements. Therefore, when behavioral differences are

identified at the student program, the algorithm makes

suggestions about. The teacher adds these suggestions

in the form of comments in the source code of the

model program.

A difference is that our proposal is based on a

design pattern oriented to simple 2D game, following

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 762

the original purpose of JPlay [Feijó et al. 2010]. One

more important difference concerns the comparison

between similar variables. In the case of Laura, for

example, two graphs of the model program and

candidate program are built and compared. In our work

we can build a data structure (behavior tree) starting

from the behaviors of the variable, and compare each

of these structures, thus obtaining a higher level of

granularity in this heuristic strategy in order to identify

behaviors differences between programs.

3. JPLAY

Our proposal is based in the JPlay framework. JPlay

was previously developed with the purpose of teaching

computer science and algorithms based in game

development.

We classify the first level of analysis as the

sequential code pattern of the JPlay. A sequence code

pattern of the JPlay is a code sequence in the program

based on JPlay that must always happen when the

program is correct.

In order to identify sequential patterns in JPlay

architecture, we divide the JPlay diagram into three

parts: the interaction between game and player,

characters and output game.

The classes responsible for interaction between

game and player are: Keyboard (define input data for

the keyboard) and Mouse (define input data for

mouse). The classes responsible for creating the

characters of the game are: Animation (defines an

animation. It must have a picture and their frames. A

frame is a piece of the picture responsible for the

movement of animation), Sprite (the Sprite class

extends the Animation class. The Sprite class contains

methods that can make the image move across the

screen) and Body (the Body class extends the

Animation class. Like Sprite, the Body class also

contains methods that can move the image, and beyond

these methods it adds methods to accelerate and

decelerate the image across the screen). The classes

responsible for outputs in the game are: Window

(defines a window where all the game elements will be

drawn), Time (defines a time counter), Sound (defines

the sound that will be played in the game) and

Collision (it is a static class, used to check if there was

a collision between two objects. The occurrence of a

collision can be verified using this method in all

classes, or by the Collision static class).

4. A Heuristic Based on Behaviors
Comparison of Programs

We propose in this work a heuristic based on behaviors

comparison of the programs with the aim of analyzing

the code being generated by the students. The system is

composed by many stages and modules, which are

illustrated in Fig. 1.

Basically, the systems start classifying tuples of

classes that are taken from both the model class, which

corresponds to the teacher´s program, and student code

(1). The analyzer then checks if the pairs of classes are

standardized according to the properties defined by the

teacher for each exercise, which corresponds to the

model program (2). Thus, in the standardization phase

(2), the student´s code must be standardized according

to the model program so that they can be compared

later. Thus, a markers structure must be filled in each

of the classes of the program model. Each marker

indicates the characteristics that the class must have to

implement their behavior. The teacher must inform

through comments, in the source code of the model

program, the values of the markers in each of the

classes of the program model. Then, the analyzer

identifies, in the student code, the values of the

markers of each class. Some of the markers that are

used are: inheritance, constructor, movex, movey,

keyboard, mouse, method, game object, main and

game loop. Although we define basic markers, more

specific markers can be defined by the teacher. If the

standardization is correct for each pair of classes, the

analyzer checks for JPlay sequential pattern (3) and

starts the comparison process (4), classifying variables

pairs between pair of classes, otherwise the analyzer

requests the student adaptations in the code and the

process returns to the beginning.

5. Jplay Sequential Pattern

Our proposal is based on design patterns of sequence

used in JPlay framework. A JPlay sequential pattern is

a code sequence in the program based on JPlay that

must always happen when the program is correct.

JPlay follows a typical game framework pattern:

objects, also called as game objects, are initially

defined. A loop is initiated (also called as a game loop)

and each iteration corresponds to a frame being

produced. In this loop all game objects are updated

with their corresponding logic (coming from an AI

algorithm, physic algorithm or even from the user

interface sequence).

Figure 1. Stages of the Semantic Analyzer Process

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 763

Finally, all the elements of the game are drawn in

the screen. Fig. 2 illustrates the typical sequence of

activities of the JPlay framework:

A main method must be defined in the initialization of

the program (1);

- In the body of the main method objects will be

instantiated. One of these objects must contain a game

loop (infinite loop). Finding a class that contains this

loop means finding the loop execution of the program

(2).

- In the class that contains the game loop (infinite

loop) objects are declared (3a). At this point it is

possible to check if all objects were also declared and

have been instantiated (3b).

-Objects declared as Sprites, Animations and

GameImages should be drawn in the window of the

game; at this point it is necessary to verify if all

declared objects of these types were draw (4).

- An object declared as Window should be updated

in the game window; at this point it is necessary to

verify if the Window object is updated. These objects

must also call their update method (5).

6. Standardization model

In order to standardize the student´s code in

accordance to the model program, we propose the

usage of specific markers for each class at the model

program. The markers must be declared at the

beginning of each class of the model program. Each

marker reports a value of behavior that the class should

follow.

In order to correctly evaluate the class by the

analyzer, it is necessary that the values of its markers

are in agreement with the markers of its class pair in

the program model. Some of the most important

markers are:

 Inheritance: Identifies the super class.

 Constructor: The constructor of the class must

be declared.

 Move X: A method to move the object on the

x axis must be declared. The keywords used

to find this behavior are called this.x (attribute

used in JPlay) or movex (method used in

JPlay).

 Move Y: A method to move the object on the

y axis must be declared. The keywords used

to find this behavior are called this.y (attribute

used in JPlay) or movey (method used in

JPlay).

 Keyboard: Identifies the use of the keyboard

in this class. The keyword used to find this

behavior is called keydown (method used in

JPlay).

Figure 2. JPlay Sequential Pattern

 Mouse: Identifies the use of the mouse in this

class. The keyword used to find this behavior

is called isleftButtonPressed (method used in

JPlay).

 Object Game: Identifies instantiated game

objects in this class.

 Main: Identifies a main method in this class.

 Game loop: Identifies an infinite loop in this

class.

 Comment: the first comment identifies the

general behavior of the class. The others

comments are specific and are associated with

each marker. Just below of a marker follows a

comment explaining the behavior associated.

The comments are used to inform the student

about the behaviors of the class.

The example illustrated on Fig. 3 shows the

markers of the “Ball” class. According to Fig. 3, the

“Ball” class must inherit from Sprite (inheritance), and

it has three methods: the constructor (constructor), a

method to move the ball in the x-axis (moveX) and a

method to move the ball in the y-axis (moveY).

7. Classes Pairs Classification

Our proposal in Santos et al. [2013] affirm that since

Badros approach allows the preservation of the source

code and our method needs a subsequent semantic

analysis, we initially convert all classes from a

developed program into a XML representation, based

on the proposed JavaML method. Due the increase of

tag’s representation from JavaML 2.0, we ignored this

update.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 764

 Figure 3. Examples of markers being applied at the “Ball”

class in the model program

In order to semantically analyze a code under

development, the programmer must select in a

repository another program which will act as a model

program for the comparison. The analysis consists in

compare pairs of classes. Every class of the

programmer code and from the program base will

initially be transformed into XML by the parser. Each

XML file will be read and interpreted by Java language

using Document Object Model [DOM 2012].

After defining the pairs of classes, the comparisons

between pairs are performed. The goal on this stage

consists on identifying the pairs of classes that have

higher similarity. The analysis of similarity between

pairs of classes is based on rules previously established

[Santos et al. 2013]. The matrix is first initialized with

its similarity values, represented by the “weight”

attribute, equal to 0 (zero) in all its elements. Other

attributes are initialized with null.

There are specific rules to find the first and second

pair. In order to classify the first pair of similar classes

we establish as a single rule that the class contains the

“main” method. When it finds two classes containing

this method, the weight value is 2 and the “main”

attribute value is true. After, in order to classify the

second pair of similar classes we establish only one

rule: if the class contains the game loop. When it finds

two classes containing the game loop, the weight value

is 2 and the “gameloop” attribute value is true. The

others attributes are calculated according to the rules

defined in [Santos et al. 2013] in order to be performed

more analysis of the student program.

After the first and second pair of similar classes

being classified, the analyzer will take the rest of the

classes of the program to be processed. This

classification is performed in levels. First, the analyzer

will search pairs of classes that extend from the same

super class. In Fig. 4, for example, the “MyBall” class

belongs to student program and the “Ball” class

belongs to model program. During the classification

the analyzer verifies that the “MyBall” and “Ball”

classes extend from the same Sprite class. The analyzer

verifies the list of variables of each one of the classes

of the program that extend the same super class. In Fig.

5, for example, the “MyBall” and the “MyBar” class

belong to the student program and extend Sprite class,

the “Ball” and “Bar” class belong to model program

and also extend Sprite class. Then, all the combinations

between these classes of the two programs will be

analyzed with the goal of finding the pairs of classes

more similar. In this step the combinations are

performed by comparing the lists of variables of each

class from the programs, as shown in Fig. 6. Each

variable list contains the variable type and the number

of variables of each type. The algorithm compares each

pair of lists and calculates the difference between the

values of variables of same type, after the similarity

weight assigned the value of the sum of the results.

Then, the pair having the lowest weight is rated as the

most similar pair. Generally the comparison between

the lists of variables each class does not get full

precision. Thus, the results may be close to reality, but

not entirely correct. In order to obtain greater accuracy

in the result, the algorithm performs a second

comparison based on lists of behaviors. At the next

comparison, the algorithm generates lists of behaviors

containing the type of behavior and the value of that

type of behavior. The algorithm compares each pair of

lists again and then the pair containing the smallest

weight is classified as most similar pair. At this level,

all pairs of similar classes are defined, and the pairs

classified should be compared.

8. Variables Pairs Classification And
Comparison Of Behavior Trees

After defining all pairs of similar classes, variables of

the same type in each of the classes of the pair should

be compared according to their behavior and then pairs

of variables should be classified. The algorithm

compares the variables of the same type using a list of

behaviors and then the pair containing the smallest

weight is rated as the most similar pair of variables.

Figure 4. Example of “MyBall” and “Ball” classes code that

extend the same Sprite super class

Figure 5. Example of classes from student program and

model program that will be combined

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 765

Figure 6. Example of the comparison between “MyBall” and

“Ball” classes

After that, similar pairs of variables are defined and

then analyzed. In order to compare these variables, we

propose a tree structure, called behavior tree. This

structure contains all the behaviors of a variable, which

in our case we defined as 3 possible types:

 Assignment: It is identified when happens an

assignment statement in the class;

 Conditional: It is identified when happens a

conditional command in the class;

 Loop: It is identified when happens a loop

command in the class.

The example of the Fig. 7 shows an assignment

behavior of the “left” variable in the constructor of the

“Ball” class.

We build a behaviors tree to each variable, and the

analyzer compares the behavior tree of a variable of a

class that belongs to the student program with the

behavior tree of its similar variable from model

program. The behavioral trees of both the variables are

compared and when behaviors differences occur it is

possible that the student program has an error.

In this point, when behaviors differences are

identified in the trees, the analyzer makes suggestions

about these behaviors differences found in the student

program and give clues that may indicate a possible

semantic error. The suggestions are defined as

comments in the source code of the program model.

Each comment must be previously edited predicting

possible suggestions to the student. For example, in

Fig. 7, if the assignment behavior is not identified in

the behavior tree of the similar variable in the student

program, the following comment associated with the

behavior will be captured and suggested to the student:

 “In the class constructor, initialize the attribute
that controls the initial movement of the ball to
the left or right.”

The example in Fig. 8 shows the behaviors tree of

the “left” variable in the “Ball” class of the model

program. The example in Fig. 9 shows the behavior

tree of the similar “carry2” variable of the student

program, where in this case it is found a difference

(one more assignment behavior).

Figure 7. Example of the assignment behavior of the

variable “left” in the “Ball” class of model program

 Since the analyzer found a difference in the

assignment behavior at the comparison between the

behaviors trees of the "left" and "carry2" variables,

thus all comments related to the assignment behavior

in the model program will be suggested to the student:

 “In the class constructor, initialize the attribute
that controls the initial movement of the ball to
the left or right.”

 “Modify the movement of the ball if the ball
position at the X axis is less than minimum limit
of the game window and it is going to the left.”

 “Modify the movement of the ball if the ball
position in the X axis is greater than maximum
limit of the game window and it is going to the
right. Consider this case the width of the ball.
Example: maximum limit - width of the ball.”

Figure 8. Example of the behaviors tree of the variable “left”

in the “Ball” class of model program

Figure 9. Example of the behaviors tree of the “carry2”

variable in the “MyBall” class of student program

In this example, one more assignment behavior in

the student program does not necessarily change the

behavior of “MyBall” class, depending on the value

that was assigned to "carry2" variable, so the analyzer

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 766

does not have to give a totally accurate result for an

inappropriate behavior in “MyBall” class of student

program but it can give a suggestion closer to the truth

based on the difference found by comparing the trees.

9. Results

In this paper we propose a novel heuristic that checks a

JAVA code and guide a student for a specific game

development, giving clues of possible semantic

failures, within a game oriented framework.

We developed a validation scenario in a classroom

with 10 students of the integrated high school of the

Informatics course. The students were proposed to

develop a “BrickBreak” game, using JPlay framework.

In this paper, we analyzed the “Ball” and “Bar” classes

of the 10 codes developed, based on the model

program developed by the teacher. The results analysis

presented here are related with two levels of analysis

(according to Fig. 1): Checking for standardization

between programs (2) and Comparison of the behavior

trees (5).

We evaluated the results according to behaviors

expected for each class. The “Ball” class has two basic

specifications: it must move in the x and y axis and

collide with objects (bar and block). The “Bar” class

also has two specifications: it should move through the

keyboard control, for both right and the left sides and

collide with the ball.

In case of the standardization model the results

were marked as positive when the analyzer does not

detect differences between the student program and the

standardization model and negative when the analyzer

detects differences between them.

For the behavioral trees, we evaluated the results as

false-positive when the analyzer does not detected

differences, but the behavior of the object is not correct

and false-negative when the analyzer detects

differences but the behavior of the object is correct. It

is considered, negative when the analyzer detects

differences that really it exists and positive when the

analyzer does not detect differences and the behavior

of object is correct.

Table I summarizes the results for the evaluation

strategy for the “Ball” class example.

Students 1 and 4 used one method more than

requested in the standardization of model. The analyzer

checks the difference between the students program

and standardization model and prints the following

suggestion for the student:

• “You probably defined more methods than the

necessary.”

About the comparison of behavior trees, there are

differences in the program of the students 1, 3, 4, 5, 6,

7, 9 and 10, according to Table I. The differences in

students 1, 3, 4, 5, 6 are defined as false-negative

because these differences don’t modify the behavior of

the program. Most of the differences in this class refer

to assignment behaviors and are false-negative results.

For example, the student 1 defines the “movex” and

“movey” variables. These variables are compared with

“left” and “up” of the “Ball” class of the model

program. The results of comparisons between “movey”

and “left” and “up” doesn´t show differences (the

values are equal to 0). However, the results of

comparisons between “movex” and “left” and “up”

show differences (the values are to 2), according to

Table II and Table III. The results of comparisons

between the variables are not exact, and ties happen,

thus the “movex” variable is combined with “left” and

“up” variables, and all the comments relating to

assignment behaviors of the “left” and “up” variables

are suggested to the student. The student 1 result, in

Table I, is false-negative because the difference found

don’t modify the general behavior of the student

program. The same result happens with students 3, 4,

6, 5, 7 and 9. The results of the comparison of behavior

trees show that the analyzer is not able to be totally

accurate, but is able to make a suggestion closer to the

truth to the student. The results of analysis according

with the standardization between programs are most

accurate, how much more standardized the student

program, will be found less inaccuracy on comparison

of the behavior trees. In case of the student 10, the

program is totally incorrect according to the expected

general behavior, the program is not according to the

standardization and it is not possible compare

variables, form pair of variables and compare the

behaviors trees. Thus all the comments relating to

behaviors of the “Ball” class are suggested to the

student.

TABLE I. TABLE EVALUATION FOR THE BALL CLASS

Student

Evaluation for the Ball class

Status

program

Analysis according

with the

standardization

between programs

Comparison of

behavior trees

1

Incorrect

(with the
standard

model)

Negative False-negative

2 Correct Positive Positive

3 Correct Positive False-negative

4

Incorrect
(with the

standard

model)

Negative False-negative

5 Correct Positive False-negative

6 Correct Positive False-negative

7 Correct Positive False-negative

8 Correct Positive Positive

9 Correct Positive False-negative

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 767

Student

Evaluation for the Ball class

Status

program

Analysis according

with the

standardization

between programs

Comparison of

behavior trees

10

Incorrect

(with the

standard
model and

general

behavior of
program)

Negative Negative

TABLE II. TABLE COMPARISON BETWEEN “MOVEX”

(STUDENT 1) AND “LEFT” (MODEL PROGRAM) VARIABLES

Comparison between “movex” (student 1) and “left” (model

 program) variables

Type of

Behavior

Number of behaviors

in “movex” variable

Number of

behaviors in

“left”

variable

Difference

Assignment 5 3 2

Conditional 2 2 0

Total differences 2

TABLE III. TABLE COMPARISON BETWEEN “MOVEX”

(STUDENT 1) AND “UP” (MODEL PROGRAM) VARIABLES

Comparison between “movex” (student 1) and “up” (model

program)

Type of

Behavior

Number of

behaviors in

“movex” variable

Number of

behaviors in

“up” variable

Difference

Assignment 5 3 2

Conditional 2 2 0

Total differences 2

The results of the evaluation of the “Bar” class at
the example is summarized by Table IV. The
differences in students 1, 2, 4, 5, 6, 7 and 8 are defined
as false-negative because these differences don’t
modify the program behavior. Most of the differences
in this class refer to standardization because the
analyzer did not find occurrence of the key words
“Keyboard” and “keydown” in the programs of all the
students, according Tab. IV. The standardization model
has defined JPlay objects and methods with these
names with the purpose of being used to implement the
movement of the bar through the keyboard control.
Students 1, 2, 4, 5, 6, 7 and 8 implemented the
keyboard control in another class program. Some of
them even used another JPlay method (called movex())
to accomplish the same behavior, that led to the
indication of the errors, although the behavior of the
programs were correct. Then the analyzer prints the
following comment for the student:

 “Please, check if you defined the movement of
the bar through the keyboard control.”

In the analysis of the behavior trees of students 1, 2,
4, 5, 6, 7 and 8 there are differences in all the behaviors
of the variables of the “Bar” class comparing with the
model program, because the analyzer could not mount
pairs of similar variables, thus all the comments

associated will be printed as simple suggestions for the
student.

In the special case of the student 3, 9 and 10, the
program behavior is actually incorrect, because the bar
is not moving properly. Thus, it is not possible compare
variables, form pair of variables and compare the
behaviors trees. Then the following comments are
shown as suggestions:

 “Define the movement of the bar to the right
through the use of the keyboard using the
KeyDown() method. Check which is, in the
game window, the maximum value of the right
margin.”

 “Increase the movement of the bar on the x
axis, making the bar moves to the right.”

 “Define the movement of the bar to the left
through the use of the keyboard using the
KeyDown() method. Check which is, in the
game window, the minimum value of the left
margin.”

 “Decrement the movement of the bar on the x
axis, making the bar move to the left.”

TABLE IV. TABLE EVALUATION FOR THE BAR CLASS

Student

Evaluation for Bar class

Status

program

Analysis according

with the

standardization

between programs

Comparison of

behavior trees

1

Incorrect

(with the

standard
model)

Negative False-negative

2

Incorrect

(with the

standard
model)

Negative False-negative

3

Incorrect

(with the
standard

model

and with
the

behavior)

Negative Negative

4

Incorrect
(with the

standard

model)

Negative False-negative

5

Incorrect

(with the

standard
model)

Negative False-negative

6

Incorrect

(with the
standard

model)

Negative False-negative

7

Incorrect

(with the
standard

model)

Negative False-negative

8

Incorrect
(with the

standard

model)

Negative False-negative

9 Incorrect Negative Negative

10 Incorrect Negative Negative

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 768

10. Conclusion

This paper presents a novel heuristic strategy based in

an analyzer that interpreting semantically a JPlay code,

guide a student for a specific game development

process. Although our implementations and tests are

related to JPlay framework, our proposal can easily be

adapted to other program patterns.

 The goals of the analyzer are to interpret semantically

a Java program that uses JPlay and return results of this

analysis to the student. Our proposal brings significant

contributions to researchers working in the field of

programming education and software engineering,

having as main contributions the architecture for

classification of similar classes and the definition of

the data structure (behavior tree) starting from the

behaviors of variables. Our paper also contributes in

the sense that introduces a tool able to semantically

interpret code built by students, returning results,

pointing out problems and suggesting solutions.

As future work we intend to develop a tutoring

interface in order to manage the results received by the

analyzer and the communication with the student.

Also, as future work, we intend to improve the

efficiency of the algorithm using classification

approaches.

References

ADAM, A., LAURENT, J., “LAURA, a system to debug

student programs”. artificial intelligence, v.15, n.1, pp.

75-122, 1980.

ALEXIS, V. de A., DELLER, J. F. “Aplicando Padrões de

Seleção no Ensino de Programação de Computadores

para Estudantes do Primeiro Ano do Ensino Médio

Integrado”. In X Encontro Anual de Computação –

EnAComp, 2013.

ALLEN, E., CARTWRIGHT, R. AND STOLER, B.

“Drjava: a lightweight pedagogic environment for java”.

SIGCSE Bull., 34(1):137-141, 2002.

ALLOWATT, A. AND EDWARDS, S. “Ide support for test-

driven development and automated grading in both java

and c++”. In eclipse “05: Proceedings of the 2005

OOPSLA workshop on Eclipse technology eXchange,

pages 100-104, New York, NY, USA. ACM Press. 2005.

BARBOSA, L. S., FERNANDES, T.C.B., CAMPOS, A. M.

C. “Takkou: Uma Ferramenta Proposta ao Ensino de
Algoritmos”. In: XXXI CONGRESSO DA
SOCIEDADE BRASILEIRA DE COMPUTAÇÃO -
WEI XIX WORKSHOP SOBRE EDUCAÇÃO EM
COMPUTAÇÃO, 2011, Natal. WEI XIX WORKSHOP
SOBRE EDUCAÇÃO EM COMPUTAÇÃO, 2011.

BOTELHO, C. A. “Sistemas Tutores no domínio da
programação”. Revista de Informática Aplicada/Journal
of Applied Computing, v.4, n. 1, 2010.

DELGADO, K. V. “Diagnóstico baseado em modelos num
sistema inteligente para programação com padrões
pedagógicos”. Master's dissertation, Institute of
Mathematics and Statistics. 2005.

DOM, available in http://www.w3.org/DOM/. Accessed in

November 2012.

FEIJÓ, B., CLUA, E., DA SILVA, F.S.C. Introdução à

Ciência da Computação com Jogos: Aprendendo a

Programar com Entretenimento. Campos Elsevier.1º ed.

2010.

JOHNSON, W. L., SOLOWAY E.. “Proust: Knowledge-

based program understanding”. In ICSE 84: Proceedings

of the 7th international conference on Software

engineering, pp. 369-380, Piscataway, NJ, USA, 1984.

IEEE Press.

JPLAY, available in http://www.ic.uff.br/jplay/. Accessed in

April 2012.

KOLLING, M., QUIG, B., PATTERN, A., AND

ROSENBERG, J. “The BlueJ system and its pedagogy”.

Journal of Computer Science Education, Special issue on

Learning and Teaching Object Technology, 13(4):249-

268,2003.

PINHEIRO, W.R., BARROS, L.N., Kon, F.. “AAAP:

Ambiente de Apoio ao Aprendizado de Programação”. In

Workshop de Ambientes de Apoio à Aprendizagem de

Algoritmos e Programação, São Paulo, 2007.

RAPKIEWICZ, C. E. ET AL."Estratégicas pedagógicas no

ensino de algoritmos e programação associadas ao uso de

jogos educacionais". RENOTE, v.4, n.2, 2006.

SANTOS, E.C.O., BATISTA, G.B., CLUA, E.W.G. “A

Knowledge Modeling System for Semantic Analysis of

Games Applied to Programming Education”. In SEKE

2013: Proceedings of the twenty-fifth International

Conference on Software Engineering & Knoledge

Engineering, pp-668-673, Boston, June 27-29, 2013.

SANTOS, N.S.R.S., RAPKIEWICZ, C.E.. “Ensinando

princípios básicos de programação utilizando jogos

educativos em um programa de inclusão digital”. In:

SBGAMES - VI Simpósio Brasileiro de Jogos para

Computador e Entretenimento Digital, 2007, São

Leopoldo - RS.

TRAETTEBERG, H., AALBERG. T. “Jexercise: a

specification-based and test-driven exercise support

plugin for eclipse”. In eclipse “06:Proeedings of 2006

OOPSLA workshop on eclipse technology eXchange,

pages 70-74, New York, NY, USA. ACM Press. 2006.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 769

