
BioPlan: An API for Classical Planning on BioCrowds
Maurcio C. Magnaguagno

Pontifcia Universidade Catlica
do Rio Grande do Sul (PUCRS)

Email: mauricio.magnagugno@acad.pucrs.br

Felipe Meneguzzi
Pontifcia Universidade Catlica

do Rio Grande do Sul (PUCRS)
Email: felipe.meneguzzi@pucrs.br

Abstract

Crowd simulation for evacuation situations often assumes that all
agents are trying to reach a single point within an environment. Al-
though such an assumption is not entirely wrong, human agents
often exhibit more complex behaviors, even if deviations from the
standard behavior are not particularly frequent. Classical planning
is far from the best way to achieve the minimal path or correct
behavior for agents, but adds a deeper level of reasoning about
complex goal-achievement and about actions that are more com-
plex than simply moving about. In this paper, we describe a crowd
simulation experiment that uses classical AI planning to enrich the
behavior of the agents in the scenario. Using this approach, we
can express not only the target destination of the agents, but also
(sub)goals and path preferences.

Keywords:: AI Planning, Crowd, Simulation

Author’s Contact:

1 Introduction

Computer games and simulations are often concerned with virtual
crowds to populate their simulated environments, with each spe-
cific application focusing on different concerns. Whereas games are
generally concerned with computational efficiency aimed at achiev-
ing a responsive experience, even at the cost of some of its realism,
simulations are concerned with realistic virtual crowds that respond
in a way that is compatible with real humans. Common to all of
these applications, the most basic problem to be solved is to make
individual agents navigate through a set of waypoints that are ei-
ther dynamically generated or previously established by a designer.
However, when an agent has more complex goals than simply arriv-
ing at one or more destinations, the problem becomes one in which
an agent needs to specify additional (sub)goals which need to be
exhibited in the simulation. To achieve these types of goal with-
out having to specify, at design-time, exactly the actions taken by
an agent, a planner is often required. In fact, AI planners have
been extensively used to compute the behavior of individual agents
in computer games [Orkin 2006]. However, computing individual
plans for large numbers of agents with many possible actions is pro-
hibitively time-consuming, which leads to the issue of using plan-
ning algorithms efficiently to generate behavior for several similar
agents.

In this paper, we describe a crowd simulation approach that uses
classical AI planning to enrich the behavior of the agents in the sce-
nario through a path influenced by agent desires shared by groups
of agents. Using this approach, we can express not only the target
destination for the agents, but also (sub)goals as desired states to
be reached, including parts of the map as path preferences. Our ap-
proach consists of converting agent preferences to a classical plan-
ning problem and employing a classical planner before the simu-
lation to generate paths with subgoals for agents within a crowd
to follow once the simulation starts. Although deterministic plans
from classical planners are often not suitable for generating be-
havior in complex spatial environments, we use the higher level
of abstraction of such plans in a way that allows rich crowd be-
haviour without a substantial addition in complexity to the simula-
tor. We achieve this by letting the collision avoidance mechanism
already present in the simulation add uncertainty to the resulting
plan-driven behavior of the agents. This makes the solutions more

flexible, changing the initial position of a group can render an en-
tire different path, with agents always looking for alternative ways
to reach their desires while maintaining a least-effort path.

Traditional approaches to crowd simulation have avoided the issue
of planning global behaviors more complex than moving agents
from one point in a map to another, thus focusing reasoning only
on the path itself [Sud et al. 2007]. This type of reasoning prevents
agents from employing actions more complex than movement and
pursuing desired states more complex than map positions. Such a
choice is motivated by the fine-grained representation of the simu-
lated maps, which avoids discretizing the space into a coarse grid
to achieve a realistic representation of individual agent movement.
Using such a state representation, reasoning about agent desired-
states becomes infeasible, since scalability issues arise once thou-
sands of agents have a single location as their desired destination.
Treuille et al. [Treuille et al. 2006] points out that global planning
with local collision avoidance may lead to unrealistic situations
such of large crowd concentrations with agents feeding into the con-
gested mass of agents, whereas real humans would try to avoid the
crowded region before getting stuck in it rather than blindly fol-
lowing their path and ending up stuck. In response, the authors
of Continuum Crowds have developed a method to plan globally so
that no agent ever gets stuck in the environment. Alternatively, Li et
al. [Li et al. 2001] try to achieve complex behavior while minimiz-
ing the global planning effort by employing the notion of a group
leader that performs complex reasoning, while a crowd of agents
conceptually follows this leader through a series of checkpoints as
they move through the scenario. In this setting, the leader not only
plans for itself, but also needs to make sure that its behavior in-
cludes tolerances so that the crowds that follow it do not get stuck.
By contrast, our approach aims to use a classical planner to gen-
erate plans for a group of agents in a single execution, generating
a single plan that is executed by each individual agent in a group
and letting the existing collision avoidance algorithms deal with the
details of movement at runtime. Although the use of planning capa-
bilities to expand behavior has been used previously as a cognitive
layer for animated characters [Funge et al. 1999], to the best of our
knowledge, its efficient use to drive behavior in crowd simulation
is novel.

Thus, our main contribution is an approach that uses classical plan-
ning to efficiently enrich a traditional crowd simulation model with
the notion of declarative goals while maintaining a substantial de-
gree of scalability. We demonstrate the applicability of our ap-
proach through an implementation based on the BioCrowds sim-
ulator [de Lima Bicho 2009] and a classical planner that does
STRIPS-style planning [Fikes and Nilsson 1971] using heuristic
search [Bonet and Geffner 2001]. The resulting system simplifies
the effort of crowd design and control while speeding up the com-
putation of multiple group paths by automatically generating the
data required by the planner whenever new paths are required.

2 Background

Path planning1 algorithms are commonly used within simulations
to compute paths from a starting position to a goal position for
agents to use according to their behaviors. Thus, in this section
we review relevant prior work on path planning and agent behav-
ior. One of the key aspects of a crowd simulation is the way in
which agents move through the simulated space and interact with
each other when collisions may occur. One of the first crowd sim-

1Path planning is often referred to simply as planning in crowd simula-
tion literature as in [Treuille et al. 2006], in this paper, to avoid confusion,
we shall differentiate path planning from AI planning (or simply planning).

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 703

ulation systems, Boids [Reynolds 1987], uses a behaviour model
based on simple rules to generate actions based on agent percep-
tion. These rules controlled attraction and angle of movement of
bird-like creatures and later evolved to more human-like features
[Flach et al. 2013]. By contrast, we focus on the model used by the
BioCrowds simulator [de Lima Bicho 2009], which is based on a
biological phenomenon, comparing the growth of veins in leaves to
social interaction the idea of competition for space and creation of
trajectory guides the behavior of agents.

Although guiding an agent’s path using predetermined tasks (se-
quences of actions to be executed) is not new in BioCrowds [Flach
et al. 2013], its agents’ behavior is limited to a single destina-
tion during the simulation. The model proposed by [Flach et al.
2013] selects a random action to be performed and a path plan-
ning algorithm computes a path to the point where the action is
possible. Thus, BioCrowds agents lack the ability to reason about
higher-level goals (world-states to be achieved) and multiple goals
and subgoals. In order to address this limitation, we aim to use
a more advanced reasoning mechanism, whereby agents have a de-
sired world-state and use a domain-independent planning algorithm
to compute a sequence of complex actions in order to transition
from the current world-state into the desired world-state. Here, a
world-state may refer not only to a position in the environment, but
also other, more abstract goals such as avoiding a certain position.
Planning algorithms search using a specification of the environment
dynamics using transition rules described in a flexible formal lan-
guage as well as a specification of the problem to be solved [Ghal-
lab et al. 2004]. This allows very different problems and domains
to be solved by the same, efficient, algorithm. On the other hand,
path finding problems are usually solved by tailored search algo-
rithms, which generate a plan with a good response time but much
less flexibility. For example, adding keys and closed doors to an en-
vironment requires the reconstruction of the entire search algorithm
instead of a minimal reformulation of the domain to add actions to
unlock the door. The key point of planning is reusability, and plan-
ning research has yielded a number of formal languages, such as the
well known Stanford Research Institute Problem Solver (STRIPS)
language [Fikes and Nilsson 1971], and more recent the formaliza-
tions of the Planning Domain Definition Language (PDDL), which
is the standard planning language [McDermott et al. 1998] for the
ICAPS competition [Coles et al. 2012]. This is analogous to the no-
tions of procedural and declarative goals known in the autonomous
agents literature [Winikoff et al. 2002; Meneguzzi and De Silva
2013], which we borrow in this work. The usual approach is to use
a procedural goal, where a predetermined procedure once executed
successfully will achieve the goal. Our approach is the declarative
goal, where the state desired is declared and the plan is not readily
available as a procedure, being required a classical planner to find
the sequence that achieve the goal-state.

3 Crowds

Several approaches have been used to model crowd behavior, the
most influential models being based on flocking behavior [Reynolds
1987], sociological factors [Musse and Thalmann 1997], psycho-
logical effects [Pelechano et al. 2005], geographically-based di-
rection [Sung et al. 2004] and social forces [Helbing and Molnar
1995]. The models are usually concerned with local problems while
some global path planning is used to compute plans to reach an
agent’s goals. The flocking model [Reynolds 1987], which under-
lies all of these approaches, is a particle system with movement
based on rules, called steering behaviors, use to create a consistent
and fluid movement using local perception. All of these approach
use the following three fundamental steering behavior rules:

• Separation: avoid crowding near particles, particles try to
keep safe from collision in dense regions;

• Alignment: follow the average heading angle of near particles
to maintain itself as part of the crowd going to the same place;
and

• Cohesion: move towards the center of near particles, keep
particles together.

Figure 1: BioCrowds

This basic set of rules can be expanded to create realism for spe-
cific situations and recreates the idea of unlimited population for
the crowd, as flocks of birds emerge naturally with each bird sens-
ing only the birds immediately around itself.

3.1 BioCrowds

The BioCrowds model is based on a biological phenomenon that
happens in leaves, where the leaf veins are attracted to the auxin
hormone, resulting in particular growth patterns. Different parame-
ters of this distribution and attraction make different veins possible,
giving each plant a unique pattern. Since the veins compete for the
auxins, the model resembles a crowd where each agent competes
for more individual space, aiming to achieve a collision-avoidance
system between agents in a dense crowd. To test the model, the be-
haviors of crowds being simulated must be checked at runtime, to
ensure the following patterns are present:

• lane formation: as agents move, the free space behind them
becomes attractive for the other agents that are going in the
same direction, inducing several agents to use such spaces as
a collision-free path, limited only by the speed of the agents
ahead;

• arch formation: the flow of agents around an obstacle creates
an arch around the obstacle as agents avoid colliding with it
— arches can be seen as a special case of a lane;

• speed based on density: as more agents occupy the same
region their speed is affected to avoid collision with other
agents;

• bottlenecks at small spaces: as narrow paths are used by
many agents, the competition for the passage causes agents
to actually wait for the ones ahead of them to free the pas-
sage — bottlenecks may appear without walls around them if
a resource is the destination of several agents; and

• divergence: after passing through a bottleneck, agents usually
follow different paths, creating the inverse of bottlenecks, as
no obstacles or agents are there to slow down their movement.

Those patterns did emerge in BioCrowds, proving that the model
actually resembles the human interaction that occur in crowded
spaces [Solmaz et al. 2012]. Agents compete for fixed markers
(such as the auxins) distributed randomly across the free space, al-
locating and freeing these markers as they move through the space,
allowing other agents to occupy their previous space. The amount
of markers allocated around each agent is based on their require-
ment for personal space. Such a way of reasoning about space is
called proxemics, which define different types of relation agents
may have based on distance to other elements in the environment.
Proxemics dictate the distance agents try to keep from each other,
simplifying the obstacle reasoning the agents must do, as positions
without free markers are seen as impossible to occupy.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 704

4 Classical AI Planning

Classical planning is an area of AI concerned with creating algo-
rithms to solve problems defined with a generic formal language
that treat environment states as sets of discrete variables [Ghallab
et al. 2004]. A classical planner is usually based on a search algo-
rithm that tries to find a sequence of actions (formally defined as
a plan) that, when executed, modifies the initial state of the world
into the desired goal state. This plan is the sequence of intermediary
points of the usual A* for path planning, but instead of points, the
effects of each action yield the desired state when executed in order
and successfully. Below, we summarize the key concepts concepts
in AI planning required for our work:

• a state is a structure containing world properties true at a par-
ticular point in time;

• free-variables are values that can be any object from the prob-
lem, will be substituted to ground actions;

• a predicate is a named property of the world with any number
of terms, each term can be a free-variable or an object;

• objects are explicitly or implicitly defined by the problem —
once defined a problem’s actions can be expanded into its pos-
sible instances;

• a proposition is a named property of the world with any num-
ber of terms, each term is an object;

• an action or operator is part of a domain’s transition func-
tion that can be applied to the current state, it is specified in
terms of preconditions and effects (expressed as logical for-
mulas over predicates);

• the preconditions of an action is set of predicates (or a free-
form logical formula) that must be true in the current state for
an action to be applicable (executable) in that state;

• the effects of an action are a set of predicates that will be
added or deleted from the current state, creating a new state;

• a domain describes the key elements of a planning domain,
comprising the set of valid predicates (properties of the world)
and the actions (transition function) available in the domain;

• a problem is a specific instance of the domain to be solved,
with a set of objects, the entire initial state and the goal state
that must be reached; and

• a solution or plan is a finite sequence of operators available
to the domain that when applied to the initial state satisfy the
goal state [Nebel 2011].

Some problems may have no solution (i.e. no plan exists that can
transform the initial state into the goal state), while some problems
may have multiple solutions. A plan is said to be optimal if it is
the shortest plan that achieves the goal. To take advantage of the
possibility of multiple plans for a given problem, some planners re-
lax optimality constraints to speed-up search and find a suboptimal
plan. Note that the sequence of actions may be represented in a
tree-like structure to better describe dependency and order between
actions, although the linear idea of sequence is used to simplify the
relationship of preconditions and effects.

4.1 Planning Languages

The formal elements we describe in this section are used in the def-
inition of planning languages, the first of which was implemented
for Stanford Research Institute Problem Solver (STRIPS) system.
STRIPS is a planning system created in 1971 [Fikes and Nilsson
1971] that became important due to its formalization of the de-
scription of the world, providing much of the structure for planning
problem specifications we describe above. In order to specify more
complex domains, later planners defined a series of extensions and
planning languages. These languages were consolidated into the
Planning Domain Definition Language (PDDL)[McDermott et al.
1998], created in 1998 to be the standard language for AI planning.

4.2 Classical Planning Algorithms

Different algorithms solve planning problems using different ap-
proaches on how to deal with the several combinations of action
sequences that yield a solution. The most straightforward planning
mechanism consists of a forward search in the state-space, checking
which actions can be applied to the current state generating further
states until the goal state is found. For much of the evolution of
planning algorithms, forward search did not yield efficient results,
due to the need for very good heuristics to avoid the large branch-
ing factor inherent to this type of planning. However, later research
has shown that such heuristics are possible for very efficient plan-
ning [Bonet and Geffner 2001]. In this paper, we use a heuristic
search-based planning algorithm.

5 BioPlan: A classical planning
extension to BioCrowds

BioCrowds is both a model (see Section 3.1) and simulator that sim-
ulates interacting agents based on fixed markers in space. Agents
move through the environment trying to reach a sequence of ‘way-
points’, which must be manually adjusted by a human designer. In
order to reach their destinations, agents move by trying to occupy
free markers around them, without differentiating whether the lack
of free adjacent markers is due to walls, or the transient occupation
of a marker by another agent. As each agent tries to occupy the
markers in the direction of the next goal position, a problem arises
when there is not enough intermediary destinations to guide them,
which, as a result, become stuck not knowing whether to try alter-
native paths or to wait for a nearby marker to become free. Plan-
ning becomes interesting at this point, to find a path between the
current position and one of many goal positions defined as declar-
ative goals. The use of declarative goals frees a designer to simply
specify what the goals are (be they positions in the map, or other,
abstract states), and let the planning algorithm generate the inter-
mediary positions in the map, as well as the positions that are to be
avoided to prevent agents getting stuck. Classical planning on the
other hand costs too much processing power for a group of agents
and also removes freedom as the plan gives a description of each
step, but has the flexibility of a declarative goal state. If we de-
scribe a goal state and how to perform actions to reach this state
it is possible to remove some intermediary points to add freedom.
Moving from a desired point to a desired state means we do not
want to occupy a position, but what is there.

In order to plan reasonably fast, agents are grouped based on simi-
lar initial and desired states. All agents share the same map with the
same action-points. Action-points are specific places where agents
can achieve a certain abstract feature. Groups may consist of a sin-
gle agent or hundreds of agents. Since multiple agents may start
in the same initial state and share goals, we can group agents that
share the same initial and goal configuration, and plan once for sev-
eral agents. Agent groups have a set of shared attributes for path
planning that are inherited by all agents in a group, but some at-
tributes are randomized per agent, e.g. speed. Such different path
planning attributes naturally lead to the actual paths taken by the
agent being different even for agents in the same group, as speed
and collision may create a different local scenarios for each agent.
Although there are many more attributes, we summarize in Table 1
those attributes that are relevant for our model.

After the groups were described the next important element in a
simulation is the map. The map is important for both planning and
simulation, as obstacles define the environment and action-points
define the different ways agents may achieve a certain feature. The
map is considered static and described in a discrete form to the
planner, making the goal of planning the change of the agents in-
ternal state instead of the world itself. Changing the map is usually
a good idea for coordinated groups, as agents plan to act at specific
places to reach the same goal, but becomes a problem for our crowd
model. Imagine the goal of a group to be behind a fireproof door
during an evacuation, the first agent to reach the door must open the
door, everyone enters the safe room and the door is then closed by
one them. This is a coordinated action, the problem can be broken
into smaller pieces (open, enter, close) and not every agent needs to

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 705

Table 1: Group attributes

Attribute Possible values Description
agents 1 to∞ Amount of agents from

group
route Array of nodes Source and target destina-

tion
path mode direct, A*, clas-

sical planning
Path generation method

freedom 1 to∞ Amount of edges between
nodes of path

start Array of
requirements

Initial state of group

goal Array of
requirements

Desire state of group

speed Float Agent maximum speed
without obstacles

proxemics Float How near a marker must be
to be used by the agent

color RGB The color used by agents,
path and marker’s connec-
tor

execute all those actions. If implemented by our planner all agents
would have to close the door behind them as no agent knows if they
are the last one to reach the door. An inconsistency happens if two
agents reach the door at the same time, only one would be able to
open it. This exemplifies very well the crowd planning problem, the
agents do not recognize being part of a group and do what they need
to satisfy their needs, even if all agents have the same goals. The
second problem is the single entity approach, in order to make the
last agent close the door, each agent would need to plan individually
and one would need to be the designated at the agent responsible for
closing the door. Thus, we concentrate on a static map as the sim-
ulator cannot display mutable features of the environment, such as
doors being open or closed.

Our model is based on planning paths for all agent groups before the
simulation starts. Instead of planning for the N groups at the same
time, making the problem more complex for a large N, our model
breaks the problem down for each group, making the simulation
not only simpler but also more realistic. The simulation is more
realistic because, in the real world, agents follow a path and react to
other individuals as obstacles that alter their path locally. Therefore
the behavior of the agent and not the plan is important locally. Our
approach is also simpler, because taking into account all groups at
the same time would yield a plan that represents the position of the
groups in a discretized and deterministic way, which is not true at
simulation time as collision avoidance and speed make the agents
diverge locally from the optimal path to keep moving.

The desired state can involve several propositions beyond the posi-
tion, with several being dependent and possible to achieve in differ-
ent ways according to the initial state and actions available. Unlike
path-planning, an agent using our planner may desire to explicitly
avoid a certain property, such as starting dirty and desiring to be
clean (not dirty). Most planners are tailored to deal with positive
only literals, but to achieve full flexibility, both positive and nega-
tive literals must be supported. Once the positions inside the range
of the bomb are identified the desired state is to stay away enough.
Even if the agent tries to maximize this distance the effect is the
same inside a game, and a plan long enough means a less process-
ing than an extremely long plan with the agent running as far as
possible, probably until reaching the border of the map.

As the simulation is executed, the agents occupy positions with dif-
ferent speeds (that are not represented by the planner) based on the
random distribution of the markers and individual speed settings.
Blindly following the plan to avoid other groups at the same time
is not enough because of those non-deterministic attributes. If we
used a planner in which those details were explicitly represented,
the resulting plans would eliminate the realism of the situations
created by this randomness, as agents would re-plan only if a large
number of agents completely blocked their passage to their desti-

Planning

Map Setup

BioPlan API

Group Setup Requirements

ProblemDomain Paths Disabled
Auxins Map Groups

Planner BioCrowds

Figure 2: Flow of the proposed model

nation. Replanning would also create a processing bottleneck as
only individuals require replanning based on their current situation.
Therefore the simulator received few modifications to accept input
from our planner.

Adding the output of a classical planner as input for the simulator
in a seamless way requires some constraints on the output of the
planner to be interpreted correctly by the simulator, since the simu-
lator expects a path and not a plan as input a conversion is required.
The planner requires the map of the environment as much as the
simulator and a conversion process was required to automate the
generation of group attributes, adjacency information of the map,
how actions interact with the world-state and how agents execute
the plan or deal with a failure in planning. In other words a unique
input was required to describe both planner and simulator inputs.

6 Implementation

In our implementation we modify a Ruby implementation of a
search-based classical planner in such a way as to focus on a sin-
gle group at a time, instead of generating several domain/problem
inputs for each group, certain specific points of the planner were
modified. Planning languages describe operators in terms of action
schemata with variables that can be substituted for objects in the
domain using unification, generating concrete (ground) operators.
Thus, a single action schema may result in a very large number of
operators, leading to a large branching factor. Instead of planning
for every group at the same time the system focuses on each group,
which means more plans, but each one with less steps. Search-
based planners have to deal with problems with large branching fac-
tors due to the large number of possible concrete operators, by fo-
cusing on each group, we minimize the branching factor. Moreover,
once concrete operators are generated and the planner knows the ex-
act size of the state representation, we generate an internal binary-
vector based representation that allows for very efficient planning
both in terms of runtime and memory use. This approach speeds up
the planning process and makes it easier to debug problem domains.

We integrate all of these systems in a processing pipeline, illustrated
in Figure 2. Each subsystem (the classical planner and the simula-
tor) requires its data to be converted before it can commnunicate
with the other. To address that, we implemented the BioPlan API,
which handles all translation processes. The designer must spec-
ify map, groups and transition rules to be used by the planner as
in code 1. Actions for moving throughout the space are statically
defined and reused in all simulation domains, and additional rules
for specific simulation requirements are translated into additional
planning operators. These rules are then used to create valid PDDL
actions.

The groups are defined based on the number of agents, route (start/-
goal), path mode (direct, A*, planning) and when planning is used,
a degree of freedom and a set of requirements to fulfill along the
path. This degree of freedom can be used to avoid an unnatural
movement by the agents, removing intermediary movement-only
actions among the plan. Once the map is consistent, it is possible to
extract information about which nodes can be accessed. There are

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 706

three types of nodes so far and only clear nodes can be accessed,
wall nodes are always closed and avoidance nodes are always con-
sidered closed for planning but clear for the simulator. This in-
formation is used to avoid creating markers at specific regions in
the simulator. The map is also analyzed to find the adjacency be-
tween the nodes, creating the edges to be used by the planner. The
requirements and some of the group attributes are part of the prob-
lem as initial or goal state while the domain is a static file with the
movement and a generic action that can be performed based on the
requirements previously defined. The planner is executed for each
group defining planning as operating mode and if successful the
plan is modified according to the freedom of the group in question.

� �
r e q u i r e ’ B ioP lan ’

g r o u p 0 = {
: a g e n t s => 15 ,
: r o u t e => [8 3 9 , 6 6 6] ,
: mode => BioP lan : : PLANNING,
: f reedom => 3 ,
: s t a r t => [’ n u l l ’] ,
: g o a l => [’ r e c e i v e f o o d ’]

}

g r o u p 1 = {
: a g e n t s => 7 ,
: r o u t e => [8 3 9 , 5 4 0] ,
: mode => B i o p l a n : : PLANNING,
: s t a r t => [’ n u l l ’ , ’ u s e b a t h r o o m ’] ,
: g o a l => [’ r e c e i v e f o o d ’]

}

g r o u p 2 = {
: a g e n t s => 5 ,
: r o u t e => [8 3 9 , 5 4 0] ,
: mode => BioP lan : : ASTAR

}
g r ou ps = [group 0 , g ro u p 1]

r e q u i r e m e n t s = [
{

: a t => 968 ,
: r e q u i r e => ’ n u l l ’ ,
: a b l e => ’ u s e b a t h r o o m ’
} ,
{

: a t => 440 ,
: r e q u i r e => ’ u s e b a t h r o o m ’ ,
: a b l e => ’ p a y f o o d ’
} ,
{

: a t => 165 ,
: r e q u i r e => ’ p a y f o o d ’ ,
: a b l e => ’ r e c e i v e f o o d ’
}

]
map = Image . load bmp (’map1 . bmp ’)

B ioP lan . s e t u p (groups , map , r e q u i r e m e n t s)� �
Code 1: API

6.1 Domain Knowledge

Domain knowledge is a series of small optimizations and tricks
about a specific domain that can yield a better or faster solution
when used. Several problems have to deal with the fact that the do-
main knowledge is incomplete or non-existent. The map with wall-
s/obstacles and starting and goal points is not enough to have a good
plan. Most problems faced by the BioCrowds model come from
collision avoidance from narrow paths and agents being thrown
away from their route by other agents. Adding more input to the

Algorithm 1 BioPlan setup

1: procedure BIOPLAN::SETUP(groups,map, requirements)
2: clean map
3: mark disabled map nodes
4: save marked nodes to file
5: add requirements to initial state
6: for g in groups do
7: add current state of g to initial state
8: add goals of g to goal state
9: end for

10: extract graph from map
11: add adjacencies to initial state
12: save map to file
13: save problem to file
14: for g in groups do
15: if mode g is PLANNING then
16: plan← planner(domain, problem, g)
17: if plan found then
18: path← []
19: for action in plan with index i do
20: if action = move and i % g.freedom = 0 then
21: path push position
22: else if action = do then
23: path push position
24: end if
25: end for
26: save path to file
27: else
28: print warning for g
29: Downgrade g to path planning
30: end if
31: end if
32: end for
33: save groups to file
34: end procedure

Figure 3: Regions to avoid during planning

map can yield a better path. Some of those problems are explained
in this section with more detail.

6.1.1 Map Contour

Without a predefined path, agents tend to use a movement pattern
similar to a best-first search, thus approaching the goal position
without taking into consideration the contour of the map. This usu-
ally results in failure (being stuck) if the distance is too long, as
more walls may appear in the way. The failure persists even with a
predefined path, with agents becoming trapped by an irregular wall.
To actually avoid passing near those walls and becoming stuck in a
local minima, additional knowledge of places to avoid is added to
the map. This knowledge is used by the planner to both speed-up
(eliminate nodes from the search) and leave those nodes as clear
nodes during simulation and letting agents use them as a last re-
source when more individual space is needed. Several tricks can be
used, such as: aiming to pass through a door targeting exactly its
midpoint; avoiding walking too close to walls in passages to avoid
being surprised by other agents; and avoiding traversing queues of
waiting agents, but rather pass behind the queues. Some of those
examples can be seen in Figure 3 in which gray squares represent
the regions to avoid and black squares represent the walls.

The map is defined by nodes, nodes can be clear, walls and avoid-
ance. Avoidance node certain are useful not only to remove certain
paths from consideration, but also to provide much more control

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 707

Figure 4: Bathroom bottleneck

over the resulting paths, something any designer want. Constrain-
ing where desired and letting the group free otherwise. The map
walls represent places where no auxins exists, creating a lack of
a possible path for agents. The terrain can be seen at Figure 11,
with a zoom in the upper left corner, where green squares are the
nodes and the black dots the auxins. Connected nodes are possible
paths and auxins represent free space that agents use while moving
to conquer more individual space in their goal direction. The avoid-
ance system was inspired by the preference system of [Cassol et al.
2011], but instead of being part of the behavior it became part of
the planning process.

6.1.2 Perception and choice

One of the main problems is how much freedom the agents can
have. The idea of group here would be broken if some agents took
a different path. In some situations this makes sense, like in a bath-
room choice according to the size of the waiting line, but the prob-
lem persists not on how the agents would perceive this, but how ef-
fective is to let them free to explore based solely on perceptions or
use some forks in the plan. Instead of using a reasoning system dur-
ing run time the idea is to let each agent have more freedom with-
out forgetting the path, removing some intermediary points. The
simple removal of intermediary points can lead to failure in some
cases, identify those cases is important to understand how free the
agent can be while staying close to the path in narrow passages.
One of the main problems that removing intermediary points is not
enough is the bottleneck that happens when agents achieve one of
their goals and suddenly start coming back. This can be seen in the
bathroom situation, Figure 4, as the agents reach the bathroom they
start coming back and compete for their previous space, breaking
the lane formation created by the BioCrowds model. Some agents
will try to go to the free side while others make the bad choice and
end up stuck until most agents find their way to the bathroom.

6.1.3 Heuristic

Most problems can be solved faster using a relaxation strategy to
focus in the relevant attributes. Working with this subset of the ac-
tual problem may lead to a sub-optimal solution with less resources
used. Finding the heuristic to a specific problem is a problem by it-
self and since a classical planner have no idea which domains may
be presented as input a specific heuristic for the problem cannot be
used. Methods to relax the problem definition are used. One of the
most basic heuristics is the Hamming distance [Hamming 1950],
since the problem is completely observable it is possible to com-
pare the current state with the desired state and count how many
propositions (state variables) are different. Most propositions are
modified by a single action, but several properties of the world may
be affected by the same action, making this heuristic inadmissible
for several problems and yielding longer plans. Problems without
much information about the desired state cannot take any advan-
tage too, for most states the heuristic return the same value while
slowing the search to compute the difference between states and ex-
panding like a breadth-first search. Figure 5 shows an example of
computing the Hamming distance between states, with some propo-
sitions having a desired value (1 or 0) while others being do not
care (X). To use this heuristic with the compression algorithm a

Propositions of desired state X 0 1 0 1

Propositions of state B 1 1 1 0 0

Propositions of state C 0 0 1 0 02

Distance

1

Distance

Figure 5: Hamming distance of two states according to a desired
state

modification was required. The compression algorithm uses sev-
eral bits for the same exclusive proposition, while the heuristic is
trying to compare those bits without exclusivity, therefore a filter
is required. The filter tests the compressed part first, if different it
counts as one difference, the other bits are treated normally, each
one counting as one. The little the difference, the promising the
state looks. Incremental solutions, where each part of the desired
state can be conquered without lost, will be achieved very fast by
this heuristic. While trade solutions, where part of the goal must be
lost for another part, will be achieved after other solutions failed.
The heuristic can be much better used if different propositions are
treated with different values of importance, creating a better evalu-
ation system. The evaluation is the decision process that will help
the search, giving priority to expand states that appear to be near
the desired state. Although not a relaxation the Hamming distance
gives a speed-up for most problems while not adding complexity.

7 Results

Three scenarios were created, one with several random walls and
two more realistic ones. The path modes already supported by the
BioCrowds simulator were exposed to the API, direct and A*. In
every scenario the direct mode shows the problem of not having an
entire path to follow, with some agents becoming stuck in the first
perpendicular wall they encounter, while others bounce to reach
freedom. Using the internal A* generated path is still a good choice
when the group only wants to reach some point, but kills the entire
freedom. The avoidance system, removing node connections with-
out removing auxins, fits the A*, as both planners only use nodes.
When there is a set of requirements to attend the planning is the
tool of choice, making all the choices before the simulation starts
and creating a robust path for the group. Both A* and planning can
fail, that is one of the reasons to find a path before the simulation
starts. If A* fails there is no path from the source point to the goal
point, the group path can be modified to direct mode, this way the
agents will keep trying to achieve their goal without success and
their influence on other groups path remains. If planning fails the
requirements may be unobtainable and after given-up can switch
to A*. Switching path modes can only help if there is no path to
meet the requirements, avoidance nodes can block some paths if
not used carefully and need to be relaxed by the user or the plan-
ner. As A* is affected by the avoidance nodes there is no guarantee
that giving up requirements will be enough. This way no group has
to be destroyed because of path/requirements failure and the sim-
ulation will show what was predicted, total failure (agent can not
reach destination with requirements) or partial failure (agent reach
destination without requirements) by simplification of goal. The
main problem with automatic relaxation of map, removing avoid-

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 708

Figure 6: Random map input as image file

ance nodes as planner fails, is how a single group will affect the
map used as input by the simulator and how to enforce avoidance
of some parts to simulate a real event. Let it be clear that the planner
does not know the cause of failure, it simply knows that there is no
sequence of actions that can be executed to reach the desired state.
The cause may be the map, therefore relaxation of map preferences
may help, or the requirements being on completely disconnected
regions of the map, being impossible for the agents to reach both
requirements, and only a modification of the requirements would be
enough to successfully find a plan. Real events being recreated may
use more than avoidance nodes to raise the path quality, they may
remove a path that people considered too dangerous or was not per-
ceived at the time as a viable path. There are two ways a classical
planner could deal with this without adding too much complexity,
recreating the problem with less nodes and having several levels of
avoidance nodes to remove as planning failed or letting the designer
know that is failing and deciding what to do with the current map.
We chose the designer as the first option to implement as creating
different levels of avoidance is interesting while time consuming to
define.

The maps being used here are 42x24 and can yield 5000 proposi-
tions of adjacency using a Moore neighborhood (8 connected cells
around), this step is generated from a char-based map (an image
can also be used, conversion is supported by the API). Although
the maps used are rectangular grid-based the idea of connectivity
based on Cartesian coordinates would become a constraint for dif-
ferent connectivity systems (like hexagonal tiles) and nodes are ref-
erenced by an identifier instead. A new map input method would be
required to generate the connections for the planner and a few mod-
ifications in the simulator to actually display the map correctly. The
Hamming heuristic helped the planner with nothing to a little speed-
up for the proposed problems, would be much better for more com-
plex scenarios as in simple scenarios most states are reached after
a movement and the distance evaluation stays the same. The great
planning optimization came from the compression, as the world can
be represented by a single integer and operated through binary op-
erations very fast instead of a sequence of integers. The scenarios
are presented in the subsections and require less than 2 seconds to
be solved.

7.1 Random Scenario

The random scenario was the first environment created and only il-
lustrates the output of the tool. Can be seen at Fig. 6 and 7 with
the two groups, a dark blue group being the control group (without
path, direct mode) and the clear blue group being the path planned
group. The planning group must avoid a long line to reach its goal,
achieve part of its desires with an action in a specific point of the
map and reach the other side. The control group just tries to reach
the other side, but walls with varying angles make the goal much
harder than previously thought. The control group was used to un-
derstand how much competition exists between the agents and was
the motivator for the use of avoidance nodes, as many agents get
stuck in this scenario and how to enforce planning to avoid those
dangerous regions.

Figure 7: Random scenario

Figure 8: Lab map input as image file

7.2 Lab Scenario

In the Lab scenario, Fig. 8 and 9, the narrow paths become a prob-
lem that requires more than what the avoidance nodes may help, as
other agents push others inside near rooms and the chance of groups
collision being extremely high in the narrow corridors. Perhaps the
problem is the perception of agents or the design of the space, a
more accurate map is required to see if the environment is working
against the agents. This environment have two bathrooms available
and one printer room, two groups want to use the bathroom and go
back to their respective rooms while one group wants to get the pa-
pers they printed and also use the bathroom. It is possible to see
that each group tries to reach the nearest bathroom and the paper
group goes around the lab in order to achieve both goals.

7.3 Snack Bar Scenario

In the snack bar scenario, Figures 10 and 11, the agents can go to
a bathroom, pay for the food at the first counter and receive the
food at the second counter. Some requirements were created to this
scenario: each agent only can buy if they don’t need to go to the

Figure 9: Lab scenario

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 709

bathroom first, once they bought they can receive the food. Some
groups already start with no bathroom need while others only want
to buy the food to later eat. The freedom here is that the bathroom
can be easily reallocated and more than one bathroom can exist
without problem, even more complex relations can be created, but
the goal was to simplify the entire process, therefore there is no
need to define the map and where the actions are possible at the
same time, the map only holds the walls and the requirements can
be obtained at specific nodes once their preconditions are satisfied.

Figure 10: Snack bar map input as image file

Figure 11: Snack bar scenario

8 Conclusion and Future Work

In this paper, we have described a novel approach based on classical
planning for the generation of group behavior in crowd simulation.
Classical planning and some domain knowledge can be applied to
yield custom paths to BioCrowds, adding not just complexity to the
paths but lowering the chance of failure (in the form of agents being
unrealistically stuck in the map) as well as providing a more mean-
ingful way to represent subgoals for the agents being simulated.
Although our current implementation shows a relatively small set
of subgoals being expressed by a single agent group, our approach
can be easily employed to help develop more realistic scenarios
without the need to explicitly define alternative paths to subgoals,
ultimately allowing a simulation designer to focus on higher-level
agent behavior. Although one may argue that the centralized and
deterministic solution of the planner undermines the approach of
crowd simulation with distributed behavior, two considerations can
be used in favor of our implementation. The first is that knowl-
edge of the markers is exactly the same for all BioCrowds agents.
Every agent perceives the world in the same way, and no space is in-
vaded because of different point of views, consequently centralized
marker knowledge is already assumed by the BioCrowds model.
The second point is the that the generated plans are not followed
blindly by the agents, as each agent tries to solve the local problems
based on their specific situation during simulation. Thus, our plans
are merely guidelines for intermediary points that the agent follow
as they try to reach their goal. Agents are grouped just for time-
saving purposes as all would plan for the same goal from the same
starting point. The only limits of planning being time and memory
for the process, a thousand agents would plan the same way as a

single agent, the difference would happen just in the simulation as
less markers would be available per agent in the paths planned.

Our implementation was validated in a number of scenarios, how-
ever, there are some problems in our current setup. In some scenar-
ios, maps with narrow choke points tend to require user intervention
through the explicit specification of avoidance points. Although our
focus so far has been on the integration of a planner into the crowd
simulation tool, we aim to expand our work in a number of ways.
First, we aim to investigate other mechanisms for node avoidance
besides user-expressed avoidance nodes, and instead generate them
automatically based on generic sets of rules (e.g. using cellular
automata). Moreover, we aim to allow different preferences to be
used for different subgroups within the same simulation (e.g. to
avoid certain map regions as only authorized personnel may en-
ter). Performance is not considered a problem, most problems are
solved in less than 2 seconds by an interpreted planner with sev-
eral type conversions and IO to the disk for debug and input to the
simulator. A tailored version for a specific system could use low-
level optimizations in the integration. Also most simulations and
games do not require long plans every few seconds with immediate
response. It is interesting to see the agents also taking time to think,
perhaps leaving one core in a multicore machine for planning. The
only problem is how to act once the plan fails, either by memory,
time-out or impossibility to find a solution, as this may have to be
handled different for each scenario the agents are in.

References

BONET, B., AND GEFFNER, H. 2001. Planning as heuristic search.
Artificial Intelligence 129, 1, 5–33.

CASSOL, V. J., MARSON, F. P., VENDRAMINI, M., PARAVISI,
M., BICHO, A., JUNG, C., AND MUSSE, S. 2011. Simu-
lation of autonomous agents using terrain reasoning. In Proc.
the Twelfth IASTED International Conference on Computer
Graphics and Imaging (CGIM 2011), Innsbruck, Austria. IAST-
ED/ACTA Press.

COLES, A., COLES, A., OLAYA, A. G., JIMÉNEZ, S., LÓPEZ,
C. L., SANNER, S., AND YOON, S. 2012. A survey of the
seventh international planning competition. AI Magazine 33, 1,
83–88.

DE LIMA BICHO, A. 2009. Da modelagem de plantas à dinâmica
de multidões: um modelo de animação comportamental bio-
inspirado. PhD thesis, Universidade Estadual de Campinas.

FIKES, R. E., AND NILSSON, N. J. 1971. STRIPS: A new ap-
proach to the application of theorem proving to problem solving.
Artificial intelligence 2, 3, 189–208.

FLACH, L. M., CASSOL, V. J., MARSON, F. P., AND MUSSE,
S. R. 2013. A procedural approach to simulate virtual agents
behaviors in indoor environments. In Intelligent Virtual Agents,
Springer, 448.

FUNGE, J., TU, X., AND TERZOPOULOS, D. 1999. Cogni-
tive modeling: knowledge, reasoning and planning for intel-
ligent characters. In Proceedings of the 26th annual confer-
ence on Computer graphics and interactive techniques, ACM
Press/Addison-Wesley Publishing Co., 29–38.

GHALLAB, M., NAU, D., AND TRAVERSO, P. 2004. Automated
Planning: Theory and Practice. Elsevier.

HAMMING, R. W. 1950. Error detecting and error correcting
codes. Bell System technical journal 29, 2, 147–160.

HELBING, D., AND MOLNAR, P. 1995. Social force model for
pedestrian dynamics. Physical review E 51, 5, 4282.

LI, T.-Y., JENG, Y.-J., AND CHANG, S.-I. 2001. Simulating vir-
tual human crowds with a leader-follower model. In Computer
Animation, 2001. The Fourteenth Conference on Computer Ani-
mation. Proceedings, IEEE, 93–102.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 710

MCDERMOTT, D., GHALLAB, M., HOWE, A., KNOBLOCK, C.,
RAM, A., VELOSO, M., WELD, D., AND WILKINS, D. 1998.
PDDL-the planning domain definition language.

MENEGUZZI, F., AND DE SILVA, L. 2013. Planning in BDI
agents: a survey of the integration of planning algorithms and
agent reasoning. The Knowledge Engineering Review FirstView
(9), 1–44.

MUSSE, S. R., AND THALMANN, D. 1997. A model of human
crowd behavior: Group inter-relationship and collision detec-
tion analysis. Springer.

NEBEL, B. 2011. On the compilability and expressive
power of propositional planning formalisms. arXiv preprint
arXiv:1106.0247.

ORKIN, J. 2006. Three states and a plan: the ai of fear. In Game
Developers Conference, vol. 2006, 4.

PELECHANO, N., O’BRIEN, K., SILVERMAN, B., AND BADLER,
N. 2005. Crowd simulation incorporating agent psychological
models, roles and communication. Tech. rep., DTIC Document.

REYNOLDS, C. W. 1987. Flocks, herds and schools: A distributed
behavioral model. ACM SIGGRAPH Computer Graphics 21, 4,
25–34.

SOLMAZ, B., MOORE, B. E., AND SHAH, M. 2012. Identifying
behaviors in crowd scenes using stability analysis for dynami-
cal systems. Pattern Analysis and Machine Intelligence, IEEE
Transactions on 34, 10, 2064–2070.

SUD, A., GAYLE, R., ANDERSEN, E., GUY, S., LIN, M., AND
MANOCHA, D. 2007. Real-time navigation of independent
agents using adaptive roadmaps. In Proceedings of the 2007
ACM symposium on Virtual reality software and technology,
ACM, 99–106.

SUNG, M., GLEICHER, M., AND CHENNEY, S. 2004. Scalable
behaviors for crowd simulation. In Computer Graphics Forum,
vol. 23, Wiley Online Library, 519–528.

TREUILLE, A., COOPER, S., AND POPOVIĆ, Z. 2006. Contin-
uum crowds. In ACM Transactions on Graphics (TOG), vol. 25,
ACM, 1160–1168.

WINIKOFF, M., PADGHAM, L., HARLAND, J., AND THANGARA-
JAH, J. 2002. Declarative & Procedural Goals in Intelligent
Agent Systems. In Proceedings of the Eighth International Con-
ference on Principles and Knowledge Representation and Rea-
soning, Morgan Kaufmann, D. Fensel, F. Giunchiglia, D. L.
McGuinness, and M.-A. Williams, Eds., 470–481.

SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Computing Track - Full Papers

XIII SBGames - Porto Alegre - RS - Brazil, November 12th - 14th, 2014 711

